
Citation: Yang, R.; Zhang, F.; Xia, J.;

Wu, C. Landslide Extraction Using

Mask R-CNN with Background-

Enhancement Method. Remote Sens.

2022, 14, 2206. https://doi.org/

10.3390/rs14092206

Academic Editor: Sandro Moretti

Received: 23 March 2022

Accepted: 2 May 2022

Published: 5 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Landslide Extraction Using Mask R-CNN with
Background-Enhancement Method
Ruilin Yang 1, Feng Zhang 1,2,* , Junshi Xia 3 and Chuyi Wu 1

1 School of Earth Sciences, Zhejiang University, Hangzhou 310027, China; yangruilin@zju.edu.cn (R.Y.);
wuchuyi@zju.edu.cn (C.W.)

2 Zhejiang Provincial Key Laboratory of Geographic Information Science, Hangzhou 310028, China
3 Geoinformatics Unit, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan;

junshi.xia@riken.jp
* Correspondence: zfcarnation@zju.edu.cn; Tel.: +86-571-8827-3287

Abstract: The application of deep learning methods has brought improvements to the accuracy and
automation of landslide extractions based on remote sensing images because deep learning techniques
have independent feature learning and powerful computing ability. However, in application, the
quality of training samples often fails the requirement for training deep networks, causing insufficient
feature learning. Furthermore, some background objects (e.g., river, bare land, building) share
similar shapes, colors, and textures with landslides. They can be confusing to automatic tasks,
contributing false and missed extractions. To solve the above problems, a background-enhancement
method was proposed to enrich the complexity of samples. Models can learn the differences between
landslides and background objects more efficiently through background-enhanced samples, then
reduce false extractions on background objects. Considering that the environments of disaster
areas play dominant roles in the formation of landslides, landslide-inducing attributes (DEM, slope,
distance from river) were used as supplements, providing additional information for landslide
extraction models to further improve the accuracy of extraction results. The proposed methods
were applied to extract landslides that occurred in Ludian county, Yunnan Province, in August 2014.
Comparative experiments were conducted using a mask R-CNN model. The experiment using both
background-enhanced samples and landslide-inducing information showed a satisfying result with
an F1 score of 89.08%. Compared with the F1 score from the experiment using only satellite images as
input data, it was significantly improved by 22.38%, underscoring the applicability and effectiveness
of our background-enhancement method.

Keywords: landslide extraction; background enhancement; deep learning; landslide-inducing factors;
Mask R-CNN

1. Introduction

Landslides occur frequently worldwide, and they often result in severe casualties and
property damage, causing huge loss to transportation systems, industry, and agricultural
production. In addition, landslides may trigger emergencies if they occur close to human
settlements [1]. An accurate and quick detection of a landslide can offer a landslide’s loca-
tion and the scope of its reach, then assist in releasing evacuation information, formulating
an emergency rescue plan, and assessing disaster loss.

The conventional access to landslide information is based on field surveys. Since
landslides often happen in mountainous areas with complex terrain, field surveys can be
very time-consuming and dangerous [2]. Nowadays, satellite images with high spatial
resolution can be obtained from many platforms, and this has boosted the broad application
of landslide detections based on satellite images. A traditional visual interpretation method
can provide high accuracy, but it highly relies on expert knowledge and heavy artificial
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work [3]. There are also methods such as pixel-based and object-oriented extraction meth-
ods [4]. Both of them have been integrated with different machine learning models (e.g.,
random forests, support vector machine) to improve the efficiency of landslide extrac-
tion tasks and have certain achievements in application [5–8]. However, the pixel-based
method often has tattered and discontinuous extraction results. The object-based method
requires artificial adjustment on features and parameters and has a resulting model with
low portability.

In recent studies, deep learning has great performance in tasks such as classification,
object detection, instance segmentation, and so on [9]. Compared with the above methods,
deep learning methods can independently learn features from input data, thus reducing
subjective impact brought about by artificial feature extractions, and can also improve
efficiency [10]. Under this trend, landslide extractions have also been shifted from con-
ventional methods to more automatic methods based on deep learning. Romeo et al. [11]
used CNNs for landslide detections and proved that networks with deeper structures have
stronger feature learning ability. Nava et al. [12] was the first to combine CNNs and SAR
data for landslide detection and has achieved almost as much accuracy as with landslide
detections based on optical satellite images. Ju et al. [13] proved the applicability of deep
learning methods for old loess landslide detection tasks by experiments in Northwest
China.

Based on these studies, we can see deep learning as a reliable tool to address landslide
extraction tasks using remote sensing images of various types, and it has exceeded other
traditional approaches for high efficiency and automation [1,14]. However, landslides show
great diversity in shapes, textures, colors, and sizes, meanwhile some background objects
(e.g., river, bare land, buildings, roads) share similar features with landslides [13,15]. These
can be disturbances for landslide extraction models. In application, landslide extractions
often have training samples with unsatisfying quality, where deep neural networks cannot
be trained properly, causing insufficient feature learning [15,16]. The false extractions on
background objects are common contributors to low extraction accuracy [17]. An effective
way to solve the above problems is to extract precise, expressive features from training
data. In the field of landslide extractions, some efforts have already been made to improve
the feature learning step of deep learning methods. These studies can be roughly divided
into two types: optimizations on deep learning model structures and data enhancement on
training samples.

(1) Optimizations on deep learning model structures

Modifications on network structures are common ways to improve feature extraction
and increase accuracy. Qi et al. [18] built ResU-Net by combining U-Net and residual
modules, and conducted experiments in Tianshui, China to validate the model’s effective-
ness. Yi et al. [16] further strengthened feature learning, and built a cascaded end-to-end
LandsNet, whose F1 score was improved by 7% compared with ResU-Net. Liu et al. [10]
replaced the feature extraction layer of the Mask R-CNN model with ResNext network and
added edge loss function to improve extraction results of landslide boundaries and tiny
landslides. Aiming to make models more concentrated on important information, some
researchers introduced the attention mechanism into landslide extraction studies to achieve
better results. For example, a 3D attention mechanism [19] was proposed by Ji et al. for
landslide detection and was combined with various backbones to prove its feasibility and
robustness. To avoid false extractions on background objects, Zhu et al. [17] fused local and
non-local features to preserve contextual information, meanwhile adding a scale attention
module into the U-Net model. Based on these strategies, the F1 score was improved by
14.62%. Cheng et al. [20] reconstructed a YOLO-SA model based on YOLOv4 with an
attentional mechanism and fewer parameters to improve landslide detection accuracy
while maintaining the detection speed.
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(2) Data enhancement and supplement for training samples

Training samples are the basis of deep learning and have a dominant impact on
landslide extraction accuracy. Some simple data enhancement methods, such as rotating
and flipping, are already applied in many studies [10,20–22], but excessive rotations or
flips on single samples may cause overfitting [21]. In comparison, data enhancement
using multiple samples can provide more useful information [23]. Jiang et al. [15] made
simulated hard samples by utilizing background objects which share similar features
with landslides, and the improvements on false extractions were proved by the extraction
results of Bijie City and Tianshui City in China. Apart from data enhancement, many
researchers also used geoscience data as supplement for remote sensing images. For
example, Ghorbanzadeh et al. [24] proved that using slope gradient data as an additional
input layer can help models distinguish landslides and background objects with similar
spectral characteristics. Generally speaking, the proportion of landslides in a large-scale
image is relatively small compared with complex background. Given this phenomenon,
Yu et al. [4] based on NDVI (vegetation index) and DEM (digital elevation model), removed
background objects in a large extent and obtained potential landslide areas for further
accurate semantic segmentation. Liu et al. [21] combined DSM, slope, aspect, and optical
satellite images as a six-channel input to better extract landslides using the U-Net model,
and the F1 score was improved by 4.13% based on additional spatial information.

Both optimizations on network structures or training data can improve the accuracy
of landslide extractions to a certain extent. By contrast, enhancing training samples and
adding additional information are optimizations on data level, which are applicable for
deep learning models with different structures theoretically. How to provide more useful
information through modifications on training samples to improve the feature learning
step of deep learning methods is a direction worth working on. Aiming for that, we
developed a background-enhancement method which can provide comparisons between
landslides and confusing background objects for model training. Furthermore, landslide-
inducing factors have already been integrated with various deep learning methods to
analyze landslide susceptibility and have certain achievements [25–27]; hence it can be
considered that landslide-inducing factors can provide valid landslide-related information
for deep learning models. Therefore, this study also uses landslide-inducing factors as
additional layers to provide auxiliary information. Comparative experiments with and
without background-enhancement operations are made based on Mask R-CNN [28] model
and post-landslide satellite images of Ludian in 2014 to validate the effectiveness of our
proposed methods.

This paper is organized mainly in five sections. The reviews of recent research and
the main objective of our study are in Section 1. Section 2 gives basic information of
the study area and prepares the dataset for experiments. Section 3 introduces the Mask
R-CNN model, meanwhile specifies our background-enhancement method and the use of
landslide-inducing information. Section 4 shows the extraction results and discussions of
the comparative experiments. Finally, Section 5 concludes our work and the direction of
future research.

The main contributions of this study are as follows:

(1) Developing a background-enhancement method based on image splicing and a modi-
fied CutMix [29]. While increasing the amount of training data, the backgrounds of the
samples are more complex, assisting models to distinguish landslide and background
objects.

(2) Adding landslide-inducing topographic factors (DEM, slope, distance from river) into
input training data as auxiliary information. Using landslide formation mechanism as
a reference for landslide extractions.

(3) Evaluating the applicability and effectiveness of our proposed methods by comparative
experiments using Mask R-CNN and Ludian landslide data.



Remote Sens. 2022, 14, 2206 4 of 24

2. Study Area and Data
2.1. Study Area

Ludian county of Zhaotong city, Yunnan Province, lies in the north the of Yunnan–
Guizhou Plateau. The location of Ludian is shown in Figure 1a. Its special geological
structures and complex terrains have resulted in frequent geological disasters, including
earthquakes, landslides, and debris flows. On 3 August 2014, an earthquake occurred in
Ludian county [30]. Although the magnitude was only Ms 6.5, the earthquake triggered
massive secondary disasters such as landslides and collapses, causing further casualties
and property damage [31]. According to a newly updated inventory, the earthquake has
triggered more than 10,000 landslides [32], even causing large-scale barrier lakes [33].
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Figure 1. Information of the study area. (a) The location of Ludian county in Yunnan Province; (b) the
distribution of landslides in Longtoushan Town, Ludian county.

In this study, the proposed methods combined with Mask R-CNN model are designed
to detect landslides that happened in Ludian County. The distribution of Ludian landslides
is shown in Figure 1b [31]. The landslides mainly occurred in Longtoushan town of Ludian
county, and along the border of Qiaojia county and Ludian county.

2.2. Data Preparation

Considering the image quality and the density of landslides, we chose two areas with
blue bounding boxes shown in Figure 2 as training data, and the area with a red bounding
box shown in Figure 2 was chosen as test data. The training areas are 43.71 km2 in total and
have about 400 landslides, while the test area is 21.49 km2 and has about 238 landslides.

Post-landslide images used for model training and testing are obtained from the
Google Earth platform, taken on 20 August 2014. These images were taken only 17 days
after the earthquake, and they also served for other previous studies including visual inter-
pretations [32] and landslide detections [20], thus presumably they can provide sufficient
landslide information. Pre-landslide images are also from the Google Earth platform, taken
on 30 January 2014. Pre-landslide images are not involved in landslide extraction tasks in
this study; they only provide references when labeling landslides. More details of pre- and
post-disaster satellite images are shown in Table 1.
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Table 1. Detailed information of satellite images.

Resolution Source Satellite Collected Date

Pre-landslide image 0.27m/pixel CNES/Airbus Pleiades PHR1A 30 January 2014
Post-landslide image 0.27m/pixel Maxar Technologies GeoEye-01 20 August 2014

The landslide-inducing attributes used in this study are DEM, slope gradient, and
distance from river. The DEM data of the study area are from Google Earth platform, with
sampling interval of about 8.0 m. Slope data are projected and calculated from the DEM
data using ArcGIS 10.2. Both DEM and slope data have been interpolated and resampled so
that each pixel in the optical satellite images has its corresponding topographic value. The
river data are obtained from Open Street Map, and we made buffers to separate the study
area into six levels. The reasons for choosing these topographic data and their relations
with landslide distribution will be discussed in Section 3.3.

Due to running memory limits, the large-scale optical satellite images must be split
into smaller units. Smaller images can speed up the training process, but it is not always the
smaller the better [34]. The size of landslides in Ludian varies widely, as shown in Figure 3a.
If the splitting unit is too small, a large-sized landslide will be cut into many blocks, and the
features of landslide or background cannot be extracted properly. Considering the above
factors, we chose a size of 1024 × 1024 pixels to be cut out from the original images through
the regular grid sampling method. As an example, the splitting results of the test image are
shown in Figure 3.

Labels with great quality can be very helpful for model training and result analysis. For
lack of field investigations and aerial photographs, this study uses labels made in previous
study, and makes revisions based on 3D Google Earth images to ensure the accuracy. From
2014 till now, many researchers have already made investigations on landslides triggered
by the Ludian earthquake. The public dataset created in 2014 by Xu et al. [31] (available
on https://www.sciencebase.gov/catalog/item/594428d4e4b062508e32319f, accessed on
6 January 2022) was made based on visual interpretations using pre- and post-landslide
satellite images, aerial photographs and field investigation data. This public dataset has
already been cited in many similar studies [32,35,36] for references and comparisons. Thus,
it is a reliable dataset providing landslide locations and distributions. Wu et al. [32] pointed
out that labels created by Xu et al. are a bit rough due to satellite image resolution, and
labels created by Xu et al. contain only earthquake-triggered landslides that old landslides
are not included. To improve the labels to be more suitable for this study, some minor
revisions are made based on landslide locations provided by Xu et al., 3D Google Earth
images, and high-resolution optical satellite images of affected area.

https://www.sciencebase.gov/catalog/item/594428d4e4b062508e32319f
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This paper selects two areas as examples for comparing original labels from Xu et al. [31]
and our new labels, as shown in Figures 4 and 5.
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Figure 5. Examples of modifications on landslide boundaries. (a) 3D Google Earth image taken on 20
August 2014 with resolution 0.27 m, view to east; (b) Google Earth image taken on 20 August 2014
and the labels from Xu et al.; (c) Google Earth image taken on 20 August 2014 and the labels from
this study.

It can be seen from Figure 4a,b that large areas of old landslides are not labeled, since
this study does not only extract landslides triggered by a single event, so we include
old landslides in the training and testing dataset. Labels shown in Figure 5b have rough
boundaries. Considering that rivers and roads are areas most prone to false extractions,
mislabels on these background objects should be avoided as much as possible. Generally,
in the new labels, some old landslides and smaller landslides are relabeled, meanwhile the
boundaries of landslides are more accurate and detailed.

3. Methods
3.1. Landslide Extraction Framework

Our study aims to build and evaluate landslide extraction methods using background-
enhancement method and auxiliary landslide-inducing data. A general demonstration
of our work is shown in Figure 6. The whole process mainly includes three parts: data
preparation, comparative experiments, and result analysis.

In the data preparation part, we first obtain post-disaster optical satellite images
and crop them, label landslides based on open dataset created by Xu et al., and make
modifications with reference to 3D satellite images from Google Earth platform and high-
resolution pre- and post-disaster images. After these steps, the original satellite samples for
training and testing are generated. Then, we select factors having strong correlations with
landslide distribution based on quantitative analysis on study area. In this study, DEM,
slope, and distance from river are selected for the subsequent experiments, and samples
of these additional data are created corresponding to the original satellite samples. Lastly,
background-enhancement method is applied to original satellite samples and landslide-
inducing data to generate background-enhanced samples.

This study divides the training samples into four types, as shown in Figure 6. The
comparative experiments will be conducted based on them, to analyze the impacts brought
about by different training data. Furthermore, the background-enhancement method
proposed in this study is optimization on data level, so we combine the method with
different deep learning models to test its applicability and effectiveness.

Finally, quantitative evaluations on landslide extraction results will be performed
based on accuracy, recall, F1 score, and mIoU (mean intersection over union), and we will
compare the extraction results and ground truth values in detail, to further analyze the
influences brought about by the proposed methods.
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3.2. Mask R-CNN Model

Since Girshick et al. [37] proposed the original R-CNN (region-based convolution
neural network) model in 2014, many researchers have made contributions to new versions
of R-CNN model with various improvements. The object detection model used for our
comparative experiments is Mask R-CNN [28] developed by He et al. While some versions
of R-CNN, such as fast R-CNN [38] and faster R-CNN [39], only focus on locating objects
with bounding boxes, Mask R-CNN adds a branch that outputs a binary mask to further
achieve pixel level segmentation of objects. In addition, Mask R-CNN replaced ROI pooling
with a new method called ROI align, which can correct the misalignment brought about by
ROI pooling [28].

In general, the process of object detection and segmentation using Mask R-CNN
includes two main parts: the region proposal and the classification. The main steps are
shown in Figure 7.

When an image is input into the training process, the image feature extraction will be
performed first in the ResNet101 [27] backbone, which consists of five different convolution
modules and output feature layers with different scales. Then, the feature pyramid network
(FPN) [40] deals with these feature layers. Each layer will be upsampled and merged with
the layer at the next level to obtain a new merged feature layer, which will later be sent into
region proposal network (RPN) to generate proposal boxes using sliding windows. After
generating the proposal boxes, RoI align cuts out the corresponding area according to the
proposal box’s position on the feature layer and pools it into a new feature layer with fixed
size. Finally, the subsequent classification, regression, and mask generation are carried out.
The input convolutional kernel size for classification and regression is 7 × 7, and for mask
generation is 14 × 14.
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3.3. Background Enhancement

In order to apply deep learning methods effectively, a labeled training dataset with
great quantity and quality must be prepared to ensure the features can be properly learned.
Compared with some classic examples of object detection using Mask R-CNN, such as
detecting balloons and cells, landslides detection has more complex characters both in
background and landslide itself.

Taking landslides in Ludian as an example, the largest landslide has an area of about
345,000 m2, while the smallest is only about 12 m2 [32]. In addition, seen from these
samples cut from images of training area with a size of 1024 × 1024 shown in Figure 8,
the color, shape, and texture of landslides also show great diversity. In Figure 8a, there is
a landslide of common oval shape, with some small gray rocks and sands covering the
road. In Figure 8b, this landslide is just a part of the giant Hongshiyan landslide [31], so the
boundary cannot be seen in this block, and it is also covered by many stones. Compared
with the former two examples, the texture of landslides shown in Figure 8c,d is rather
smooth. The landslides in Figure 8c are covered by reddish brown mud, while those shown
in Figure 8d are more similar to debris flows with slender shapes.
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Figure 8. Samples of landslides in Ludian with different characters. (a) A small-scale landslide
with gray color and oval shape; (b) A large-scale landslide with crushed stones; (c) Landslides with
reddish brown color; (d) Landslides with slender shapes.

To reduce miss and false extraction, the model should learn the texture, shape, color,
and other features of landslides and be able to distinguish the differences between land-
slides and confusing backgrounds. However, in application of landslide detection, the
quantity and quality of the training dataset is often unsatisfactory. The majority of landslide
samples have simple backgrounds, such as the samples shown in Figure 9. Although these
samples have landslides with different sizes, colors, textures, and shapes, these features
cannot be properly learned during the training process because landslides are the only
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bright areas in these samples, so only very few features are needed for detecting landslides
from simple samples.
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as background; (b) Three brown tongue-shape landslides with green vegetation as background;
(c) A small landslide with green vegetation as background; (d) Tongue-shape landslides also with
vegetation as background.

In contrast, the sample shown in Figure 8d has complicated backgrounds, providing
comparisons between landslides, river, and roads, but the number of complicated samples
in our training dataset is rather small.

To deal with the complex characters of landslides and background and overcome
the shortage in training data, we propose a background-enhancement method to create
complicated samples, including the following two steps:

(1) Background enhancement by splicing images.
(2) Background enhancement by a modified CutMix.

3.3.1. Background Enhancement by Splicing Images

The operations of background enhancement by splicing images are shown in Figure 10
Firstly, one landslide image and three different non-landslide images are randomly chosen
from the training dataset. Then they are spliced into a new sample, in which some confusing
background objects such as bare land, river, or fields may be added, and so the landslide is
surrounded by more complicated background objects. We expect that these samples with
splicing operations can help the training process learn more characters of background and
improve the ability to detect landslides from confusing backgrounds.

Compared with the simulated hard samples created in the study carried out by
Jiang et al. [15], the selection of landslide and non-landslide samples to be spliced in
our study is random. Automatic and random selection of samples can reduce the subjective
impact brought about by manual work and improve efficiency.

3.3.2. Background Enhancement by a Modified CutMix

The CutMix method [29] proposed by Yun et al. creates a new sample by replacing a
random region in an image with pixels from another image to make models pay attention
to the entire region instead of some parts that are easy to distinguish, and CutMix method
has achieved better performance than similar strategies such as Mixup and Cutout [29].
Furthermore, instead of simply identifying the object category in the images, our study
needs to determine the position of landslides, so methods such as Mixup and Cutout are
less applicable compared with CutMix.

If only some discriminative characters, such as bright color, are learned for landslide
extraction, then the false extraction may happen more frequently when faced with confusing
background objects. To learn more detailed features of landslides and differences between
landslide and landslide-like background objects, a modified CutMix method is used in this
study.

The operation of our modified CutMix is demonstrated in Figure 11.
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Figure 11. Process of background enhancement by using a modified CutMix. (a) A small landslide
was randomly selected among three landslides to fill the part in non-landslide sample; (b) A large-
scale landslide was used to fill non-landslide sample; (c) A large-scale landslide was attached to river
area in non-landslide sample.

Step 1: One landslide sample (S1) and one non-landslide sample (S2) are randomly
selected from the training dataset.

Step 2: The area (B1) to be cut out from S1 and the area (B2) to be replaced in S2 are
defined. Unlike the original CutMix method, the areas to cut out and replace are of the
same size but possibly with different locations. B1 is the bounding box of a landslide in S1.
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If there are multiple landslides in S1, only one will be selected (as shown in Figure 11a), and
the selection is random. B2 has the same width and height as B1, but is relocated randomly.

Step 3: The offset between B1 and B2 caused by the relocation is calculated, the this
offset is used to set the label of this newly generated sample.

Some examples of samples generated using CutMix operations are also shown in
Figure 11. Different from the result of splicing operations, background objects adjacent to
landslide instances are all replaced. As shown in Figure 11b,c, the landslides in the original
images can be detected rather easily because they are the only areas with lighter color, but
if only judged by very few features, some background objects in the CutMix samples such
as river surface, buildings, and bare land may lead to false extraction, so more landslides
will be learned from these CutMix samples and the more perceptive the model will be.

3.4. Landslide Inducers

Topography, geology, seismology, meteorology, and hydrology [41–43] are common
factors when analyzing the causes of landslide formation, but so far, these kinds of infor-
mation have not been widely adopted as controlling factors in landslide detection.

This study adds landslide inducers into training data as a supplement because they
may offer great help when the model is deciding an area is landslide or not. For example,
if an area with landslide-like color, shape, and texture is located in flat terrain, then the
possibility for it being actual landslide is rather low. Therefore, based on these auxiliary
data, landslide-prone regions can be identified, thus bringing further help in landslide
detection. Among all the common inducers, three factors, DEM, slope, and distance from
river, are selected, because they are the major landslide-inducing factors and have shown
strong correlation with the distribution of landslides in Ludian. Furthermore, the DEM and
river system data are easy to obtain, so choosing these factors as auxiliary data can be more
conveniently implementable in future research.

The elevation data and the distribution of landslides are demonstrated in Figure 12a.
Areas with different elevations usually have different climates, then cause further impact
on the occurrence of landslides. As shown in Figure 12b, areas with relatively low elevation,
such as mountain and river valley, have more landslides. Landslide area density also shows
a decreasing trend as elevation value grows.
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According to many landslide susceptibility studies, slope is the main factor for land-
slide formations [44,45]. From Figure 13a, we can see an evident correlation between the
distribution of landslides and slope. Most landslides happen in red area with steeper
terrain. As shown in Figure 13b, the slope gradient in the study area varies from 0◦ to 81◦.
About 80.35% of landslides happened in areas with slope of 20◦–50◦, and landslide area
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density shows a increasing trend as slope value grows, which is probably because the more
significant the gradient, the stronger the gravity, then the more prone the landslide.

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 24 
 

 

on the occurrence of landslides. As shown in Figure 12b, areas with relatively low eleva-
tion, such as mountain and river valley, have more landslides. Landslide area density also 
shows a decreasing trend as elevation value grows. 

   
(a) (b) 

Figure 12. Analysis on relations between landslide distribution and elevation in Ludian. (a) The 
elevation data of study area; (b) the relations between landslide distribution and elevation. 

According to many landslide susceptibility studies, slope is the main factor for land-
slide formations [44,45]. From Figure 13a, we can see an evident correlation between the 
distribution of landslides and slope. Most landslides happen in red area with steeper ter-
rain. As shown in Figure 13b, the slope gradient in the study area varies from 0° to 81°. 
About 80.35% of landslides happened in areas with slope of 20°–50°, and landslide area 
density shows a increasing trend as slope value grows, which is probably because the 
more significant the gradient, the stronger the gravity, then the more prone the landslide. 

 

(a) (b) 

Figure 13. Analysis of relations between landslide distribution and elevation in Ludian. (a) The 
slope gradient of study area; (b) the relations between landslide distribution and slope gradient. 

As mentioned earlier, most landslides are located in the valley area. Normally, the 
side bank of the river valley is easily washed by the water flow; meanwhile, the frequent 
change of the river water level will also affect the formation of landslides. Distance from 
river has already been used in many landslide susceptibility maps, and it has shown a 
strong correlation with the occurrence of landslides [27]. 

In the study area, there are Niulan River, Longquan River, and Shaban River, as 
shown in Figure 14a. The relation between the distribution of landslides and the distance 
from river is evident: the majority of landslides locate in areas closed to river. When we 

Figure 13. Analysis of relations between landslide distribution and elevation in Ludian. (a) The slope
gradient of study area; (b) the relations between landslide distribution and slope gradient.

As mentioned earlier, most landslides are located in the valley area. Normally, the
side bank of the river valley is easily washed by the water flow; meanwhile, the frequent
change of the river water level will also affect the formation of landslides. Distance from
river has already been used in many landslide susceptibility maps, and it has shown a
strong correlation with the occurrence of landslides [27].

In the study area, there are Niulan River, Longquan River, and Shaban River, as shown
in Figure 14a. The relation between the distribution of landslides and the distance from
river is evident: the majority of landslides locate in areas closed to river. When we detected
landslides in the test area using the traditional Mask R-CNN model, we found that the
emergence of false extractions along the river is relatively frequent. Therefore, in order
to ease this problem, we made use of river data from Open Street Map to add auxiliary
information. Firstly, we made a 30 m buffer using Open Street Map data, and this buffer is
roughly estimated as river surface. Then, we made buffers of 200 m, 200–500 m, 500–1000 m,
and 1000–2000 m based on the river surface, and divided the study area into six levels,
as shown in Figure 14a. Location with 0 m distance from river is river surface, which is
designed specifically to solve the false extractions on river surface, because when an area
has a landslide-like bright character, but with 0 m distance from river, then the area is more
likely to be river surface instead of landslide, but for areas with distance > 0 m, as shown
in Figure 14b, there is a significant trend that the smaller the distance the more likely to
landslide.

In view of these relations between topographic factors and the distribution of land-
slides, we integrate these landslide-inducing factors with color, texture, and shape provided
by optical satellite data for comprehensive evaluation, in order to achieve better landslide
extraction results.
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4. Experiment
4.1. Accuracy Evaluation

Precision, recall, F1 score, and mIoU (mean intersection over union) are common
measures of accuracy evaluation for object detection and instance segmentation, and they
are applied to validate the effectiveness of the methods proposed in this research.

The landslide extraction in this research is a binary classification problem, that is, for
each pixel, there are only two cases: landslide or background. Therefore, the validation
is based on four kinds of extraction results, which are shown in Table 2, namely, TP (true
positive), FP (false positive), TN (true negative), and FN (false negative). TP are the areas
correctly extracted as landslide. FP are the background areas incorrectly extracted as a
landslide. FN are the landslide areas incorrectly extracted as background. TN are the areas
correctly extracted as background.

Table 2. Confusion matrix [46] between predicted value and true value.

True Value

Predicted Value
Landslide Background

Landslide True Positive (TP) False Negative (FN)
Background False Positive (FP) True Negative (TN)

Precision is used to evaluate how many areas extracted as landslides are real landslides.
Recall is used to evaluate how many landslides are correctly extracted. Generally speaking,
recall will be lower when precision is high, and precision will be lower when a recall is
high. To evaluate our model in a more balanced way, F1 score is added. These measures
are defined in Equations (1)–(3).

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

F1 Score =
2 × precision × recall

precision + recall
(3)

The Mask R-CNN model can detect the bounding box of landslides and meanwhile
extract the shape of landslides. To compare the extracted shape and ground truth value, we
used the mIoU [47] as the accuracy evaluation measure. It calculates the value of two areas’
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intersection that divides two areas’ union. This measure has been widely used in semantic
segmentation and is described in Equation (4).

mIoU =
1

n + 1
× ∑n

i=0
pii

∑n
j=0 Pij + ∑n

j=0 Pji−Pii
(4)

where n is set as 1 in our case, because landslide is the only category. pii means a pixel of
type i predicted as type i. Pij means a pixel of type i predicted as type j. Pji means a pixel of
type j predicted as type i.

4.2. Experimental Design

The hardware environment of this research is as follows: graphic card is GeForce GTX
1080 Ti, the processor is Intel(R) Xeon(R) Silver 4210, and memory is 64 GB.

We choose the open source code of matterport Mask R-CNN for comparative experi-
ments (https://github.com/matterport/mask_RCNN, accessed on 1 October 2021). It is
built on feature pyramid network and a ResNet101 backbone, using Python 3, Keras, and
TensorFlow. The configurations for model training and validation are set as follows: epochs
at 20, learning rate at 0.001, weight decay at 0.005, steps per epoch at 1000, gradient clipping
at 5.0, and a pretrained Mask R-CNN weighted from MS COCO dataset is obtained to
transfer parameter initial values.

Based on this environment and Ludian dataset, the first group of comparative ex-
periments is designed. As shown in Table 3, there are four experiments designed with
the same deep learning model but different input training datasets. The original satellite
images are cut from two training areas, with an amount of 531. Background-enhanced sam-
ples are created based on original samples though background-enhancement operations
mentioned in Section 3.3 and have an amount of 600. Corresponding landslide-inducing
data for both original and background-enhanced samples were made during data prepa-
ration. Experiment I uses only original satellite images as input dataset. Taking it as base
experiment, Experiment II adds additional landslide-inducing data, Experiment III adds
background-enhanced samples, and Experiment IV adds both landslide-inducing data
and background-enhanced samples. These experiments are designed to analyze impacts
brought about by different training data, and to validate the effectiveness of the proposed
method.

Table 3. Settings of comparative Experiment I.

No. Deep Learning Model Training Dataset

I Mask R-CNN Original Satellite Images
II Mask R-CNN Original Satellite Images + Landslide-inducing Data
III Mask R-CNN Original Satellite Images + Background-Enhanced Samples
IV Mask R-CNN Original Satellite Images + Background-Enhanced Samples + Landslide-inducing Data

A major character of the background-enhancement method proposed in this study is
that it only bring changes on a data level, so, theoretically, it can be applied to deep learning
models with different structures. To further test the applicability and effectiveness of the
proposed method, we also use U-Net [48] and PSPNet [49] to conduct landslide extraction
experiments. Both U-Net and PSPNet are relatively advanced deep learning models in
the field of instance segmentation and have fine and stable performance in many studies.
They can be reliable for assessing whether the model built in this study has advantage
in landslide extraction tasks and for analyzing the impacts on different deep learning
models from background-enhancement method. This study builds U-Net and PSPNet
based on open source code from Divam Gupta (https://github.com/divamgupta/image-
segmentation-keras, accessed on 25 April 2022). Comparative experiments are designed by
changing input training data, as shown in Table 4.

https://github.com/matterport/mask_RCNN
https://github.com/divamgupta/image-segmentation-keras
https://github.com/divamgupta/image-segmentation-keras
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Table 4. Settings of comparative Experiment II.

No. Deep Learning Model Training Dataset

V U-Net Original Satellite Images
VI U-Net Original Satellite Images + Background-Enhanced Samples + Landslide-inducing Data
VII PSPNet Original Satellite Images
VIII PSPNet Original Satellite Images + Background-Enhanced Samples + Landslide-inducing Data

Furthermore, an experiment is also designed to extract landslides using satellite images
taken on another date after disaster to test the model’s performance on multi-temporal
analysis. The detailed information of this post-landslide image is shown in Table 5. The
image was taken at 5 May 2015, a long time after the disaster. Some landslide areas have
been repaired already, or covered with vegetation, and there is no reliable ground truth
value for extraction result evaluations. Therefore, metrics for accuracy evaluation are not
calculated, and only some areas with old landslides are used for analysis.

Table 5. Detailed information of satellite images.

Resolution Source Satellite Collected Date

Post-landslide image 0.27 m/pixel CNES/Airbus Pleiades PHR1B 5 May 2015

4.3. Results and Discussions

The original image and ground truth landslide distribution map of the test area is
demonstrated in Figure 15, showing a reference for the extraction results. Landslides from
the test area were extracted using models trained from four comparative experiments, and
the results of four experiments are shown in Figure 16a–d.
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Figure 16a shows the result of Experiment I. The model is trained with only original
satellite images. We can see that there are a large number of false extractions (red area) along
the valley and river, and the missed extractions (blue area) are very obvious. Figure 16b
is the extraction result of the model trained with original images and landslide-inducing
data. It can be seen that the false extractions along the valley have decreased with the
help of landslide-inducing data, and some tiny false extractions caused by buildings have
disappeared. However, the missed extractions are not improved. Figure 16c is the result of
the model trained with original satellite images and background-enhanced samples. From
this result, we can see that the false extractions along the river and valley have disappeared
mostly, and the missed extractions along the image blocks located in the northeast area
have decreased significantly. Figure 16d is the result of the model trained with original
satellite images, landslide-inducing data, and background-enhanced samples. Using both
auxiliary landslide-inducing data and background-enhanced samples, Experiment IV has
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the best extraction result, on the whole. The areas of false and missed extractions have
decreased to a large extent, and the shape of the landslide is more complete compared
with the former three experimental results, but the performance in avoiding tiny false
extractions caused by buildings is not as satisfying as Experiment II.

To show the changes brought about by the proposed method in a more detailed way,
five representative samples were selected from the test dataset. Original satellite images and
ground truth labeled data (yellow masks) are shown in Figure 17a–e,f–j, respectively, giving
a reference for the comparisons. Comparisons between four comparative experiments
are shown in Figure 18. Furthermore, to highlight differences between ground truth and
extraction results, boxes with different colors are drawn. Yellow boxes in extraction results
indicate false extractions, while white boxes indicate missed extractions. By analyzing
the changes of boxes, the impacts brought about by using different training data can be
concluded.
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Figure 17. Samples for detailed analysis. (a–e) Original images of 5 samples; (f–j) ground truth labels
of 5 samples.

The extraction results are presented as red masks shown in Figure 18. From extraction
results of Experiment I shown in Figure 18a–e, we can see that the main factors leading
to false extractions are roads, river, and buildings, probably because these objects have
high reflectivity and are very similar to landslides in spectral characteristics, so it is rather
difficult to distinguish these objects and real landslides through automatic ways. At the
same time, some smaller landslides are neglected when multiple landslides exist in one
sample; see Figure 17c. After adding landslide-inducing data, as shown in Figure 17f–j, the
number of false extractions on river and roads reduced, but missed extractions increased.
Figure 17k–o show the extraction results after adding background-enhanced samples.
While false extractions reduced, the missed extractions were also less than the results of
Experiment III. The extraction results of Experiment IV using both landslide-inducing infor-
mation and background-enhancement method are shown in Figure 17p–t. Comparatively,
it has achieved the best performance. Although missed extractions still exist, the proposed
method has avoided majority false extractions on roads, rivers, and buildings. The shapes
and boundaries of landslides are also better identified.

The improvements on landslide extraction accuracy brought about by the methods
proposed in this study should also be evaluated by quantitative metrics. The precision,
recall, F1 score, and mIoU of four comparative experiments are shown in Table 6. Individual
impacts brought about by using landslide-inducing data or adding background-enhanced
samples are demonstrated by experimental results II and III, respectively, and the experi-
mental result IV shows the performance when using both methods.
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Table 6. Comparison of landslide extraction results from Mask R-CNN model trained with different
input data.

No. Model Input Data Precision/% Recall/% F1 Score/% mIoU/%

I Mask R-CNN Original Satellite Images 67.26 79.31 72.79 75.53

II Mask R-CNN Original Satellite Images +
Landslide-inducing Data 78.76 78.31 78.53 80.11

III Mask R-CNN Original Satellite Images +
Background-Enhanced Samples 84.83 84.92 84.87 85.28

IV Mask R-CNN
Original Satellite Images +

Background-Enhanced Samples +
Landslide-inducing Data

88.68 89.49 89.08 89.00

Experiment I used Mask R-CNN model trained with original satellite images, and after
adjustments on various settings, it achieved precision, recall, F1 score, and mIoU at 67.26%,
79.31%, 72.79%, and 75.53%, respectively. Based on the settings in Experiment I, subsequent
experiments were conducted. After adding landslide-inducing data, the precision was
improved significantly by 17.10% but the recall was not improved. This is in accordance
with previous analysis on extraction maps where false extractions decreased and missed
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extractions increased. After adding background-enhanced samples, the precision, recall, F1
score, and mIoU were all improved by 26.12%, 7.07%, 16.60%, and 12.91%, respectively. The
improvement brought about by background-enhancement method is much stronger than
adding landslide-inducing data. This is probably because the background-enhancement
method can also assist in increasing the amount of the training dataset. Finally, the im-
proved model using both landslide-inducing data and background-enhanced samples
achieved a great performance, with precision at 88.68%, recall at 89.49%, F1 score at 89.09%,
and mIoU at 89.00%. Each parameter is 31.84%, 12.83%, 22.38%, and 17.83% higher than
the traditional method using only satellite images as input.

Seen from the comparisons of extraction result maps and the quantitative metrics
shown in Table 6, it can be concluded that the background-enhancement method can help
models better distinguish the confusing background objects and landslides and can reduce
false and missed extractions effectively. Combined with auxiliary landslide-inducing
information, the performance can be even better.

To further test the applicability and effectiveness of the proposed method, we also use
U-Net and PSPNet for landslide extractions. The second group of comparative experiments
are also conducted by changing input training data, and the evaluations of extraction
results from different methods are shown in Table 7.

Table 7. Comparison of landslide extraction results from different methods.

No. Model Input Data Precision/% Recall/% F1 Score/% mIoU/%

V U-Net Original Satellite Images 52.28 69.95 59.83 66.48

VI U-Net
Original Satellite Images

+ Background-Enhanced Samples
+ Landslide-inducing data

68.29 78.00 72.82 75.59

VII PSPNet Original Satellite Images 56.61 65.86 60.89 67.52

VIII PSPNet
Original Satellite Images

+ Background-Enhanced Samples
+ Landslide-inducing data

76.02 66.16 70.74 74.55

Both U-Net and PSPNet have better performance after adding background-enhanced
samples and landslide-inducing attributes into training data. The U-Net model’s preci-
sion, recall, F1 score, and mIoU were improved by 30.62%, 11.51%, 21.71%, and 13.70%,
respectively. The PSPSNet model’s precision, recall, F1 score, and mIoU were improved by
34.29%, 0.46%, 16.18%, and 10.41%, respectively. Increase in precision normally relates to
the increase in true prediction and the reduction in false extractions; and increase in recall
normally relates to the increase in true prediction and the reduction in missed extractions.
Therefore, based on the results, it can be concluded that the background-enhancement
method can effectively improve the performance of the U-Net model and reduce false and
missed extractions to a certain extent. Although the recall of PSPNet was only slightly
improved, the overall accuracy was still much better than Experiment VII considering F1
score and mIoU.

Comparing the results from the above eight experiments, Mask R-CNN trained with
both background-enhanced samples and landslide-inducing data has the best performance,
on the whole. Based on this model, we obtained satellite images of test area taken at
another time after the disaster, to test the landslide extraction performance on multi-
temporal analysis. Due to the lack of reliable ground truth and changes on land surface,
only some areas with old landslides are used for analysis.

The comparisons of extraction results using images taken on 5 May 2015 and ground
truth labeled by visual interpretation are shown in Figure 19. These are four samples with
a size of 1024 × 1024 pixels, in different locations of test area, and have different ground
features. For samples shown in Figure 19a,b, the model achieved satisfying results that
most landslide areas are correctly extracted, but for the sample shown in Figure 19c, there
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is a large amount of missed extractions, and there are also false extractions on buildings
in Figure 19h. Possible reasons for the mistakes mentioned above are deficiencies of the
landslide extraction model, on one hand, and different spectral characteristics caused by
vegetation coverage in different seasons. Fine-tuning may be helpful to achieve better
results when using multi-temporal images for landslide extractions.
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5. Conclusions and Prospect

In this study, to deal with the shortage in training data and false extractions on
confusing background objects (e.g., river surface, bare land, buildings, roads), a background-
enhancement method was proposed, and landslide-inducing factors (DEM, slope gradient,
distance from river) were added to input data as auxiliary information. The landslide
data of Ludian City, Yunnan Province, and Mask R-CNN model were used to test the
feasibility of the method. In addition, U-Net and PSPNet were used to test the applicability
of background-enhancement method on different deep learning models.

Through comparisons of landslide extraction results from Mask R-CNN model trained
by different input data, it can be concluded that our proposed method can greatly help
in reducing false extractions and increasing the accuracy of landslide boundary extrac-
tion results. The Mask R-CNN model trained using background-enhanced samples and
landslide-inducing data achieved the best performance, on the whole, with precision at
88.68%, recall at 89.49%, F1 score at 89.09%, and mIoU at 89.00%. Compared with the tradi-
tional model trained with only satellite images, each metric improved by 31.84%, 12.83%,
22.38%, and 17.83%, respectively. In addition, the background-enhancement method and
the use of landslide-inducing factors can bring improvement to different deep learning
models theoretically, because the modifications are only on the data level. The results from
the second group of comparative experiments using U-Net and PSPNet and different input
training samples can support this viewpoint to some extent.

However, the extraction results still have errors, and the training areas and testing
areas in this study are rather close geographically. Considering the multi-temporal analysis
results in this study, if we want to apply landslide extraction based on the pretrained model
to a new area, or the same area but different time, then some adjustments are required.
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To reduce the workload of transfer learning, more effort will be placed on improving the
adaptability and mobility of the landslide extraction model in future work.
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