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Abstract: Building damage maps can be generated from either optical or Light Detection and Ranging
(Lidar) datasets. In the wake of a disaster such as an earthquake, a timely and detailed map is a critical
reference for disaster teams in order to plan and perform rescue and evacuation missions. Recent
studies have shown that, instead of being used individually, optical and Lidar data can potentially
be fused to obtain greater detail. In this study, we explore this fusion potential, which incorporates
deep learning. The overall framework involves a novel End-to-End convolutional neural network
(CNN) that performs building damage detection. Specifically, our building damage detection network
(BDD-Net) utilizes three deep feature streams (through a multi-scale residual depth-wise convolution
block) that are fused at different levels of the network. This is unlike other fusion networks that
only perform fusion at the first and the last levels. The performance of BDD-Net is evaluated under
three different phases, using optical and Lidar datasets for the 2010 Haiti Earthquake. The three
main phases are: (1) data preprocessing and building footprint extraction based on building vector
maps, (2) sample data preparation and data augmentation, and (3) model optimization and building
damage map generation. The results of building damage detection in two scenarios show that fusing
the optical and Lidar datasets significantly improves building damage map generation, with an
overall accuracy (OA) greater than 88%.

Keywords: high resolution satellite imagery; earthquake; Lidar; convolutional neural network (CNN);
building damage map

1. Introduction

The Earth is always under threat by natural disasters such as wildfires, floods, and
earthquakes. These disasters can cause a lot of damage in their wakes, which could cross
regions. Earthquakes are a natural disaster that has the most impact on human settlements,
particularly in urban areas [1]. Therefore, monitoring and assessing damage levels is vital
in urban areas in order to understand this type of disaster [2].

Buildings make up a large portion of urban areas, and it is crucial that damaged
buildings be properly indicated after earthquakes [3]. In past decades, remote sensing
played a key role in providing wide coverage surface data at minimal cost and time.
Due to this, RS data is used in many applications such as change detection [4], forest
monitoring [5], soil monitoring [6], and crop mapping [7]. Another important application is
damage detection and assessment, which makes use of RS datasets such as Light Detection
and Ranging (Lidar) [8], nightlights datasets [9], multispectral datasets, Synthetic Aperture
Radar (SAR) [3,10], and optical very high-resolution imagery [2,11]. Although these data
types can be used for damage assessment, they have limitations:
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1. SAR imagery has high backscatter in built-up areas and suffers from low temporal and
spatial resolution. Furthermore, it is difficult to interpret and detect similar objects.

2. Nightlights data are deployed in rapid damage assessment scenarios. They suffer,
however, from low spatial resolution. Furthermore, nightlight can be affected by
external factors that increase the potential for false alarms and missing detections.

3. Multispectral data have high spectral and temporal resolutions that can help detect
damaged areas. Such datasets are also of low spatial resolution, which makes damage
detection for individual buildings difficult.

4. Optical VHR (very high resolution) data form the most common type of dataset for
building damage detection that facilitates interpreting and processing damaged areas.
One of the common issues with this kind of data is that only the roofs of damaged
buildings can be detected. Shadows are also said to affect assessment results.

5. Lidar data are utilized widely in building damage assessment. The major limitation
of these data is that they are difficult to interpret.

It is worth noting that optical and Lidar data have their own strengths (and weak-
nesses) in different scenarios. This is summarized in Figure 1, where detection capabilities
of each dataset depend on the type of detection required. We foresee that fusing both types
of dataset can potentially mitigate the limitations of each. Hence, this research explores the
advantages of fusing optical VHR RS and Lidar datasets for mapping building damages.
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of shadow in optical imagery and Lidar. In (c,d), damaged buildings are only detectable by the op-
tical VHR dataset. In (e,f), the damaged building is only detectable via optical. In (g,h), the non-
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ture-level, and (3) the decision-level. In the literature, feature- and decision-level fusion 
are more commonly utilized for damage assessment [13]. 

As the name implies, pixel-level fusion combines/integrates both datasets at the 
pixel-level, which is known as pansharpening. The gist is to enhance the spatial resolution 
of the low-resolution dataset by combining the panchromatic dataset into a low spatial 
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mation-based methods. 

Feature-level fusion is widely used in classification, damage assessment, or change 
detection tasks. At this level, some type of feature is extracted from each modality, and 

Figure 1. Samples of challenging buildings for damage assessment. Sub-images (a,b) show the effect
of shadow in optical imagery and Lidar. In (c,d), damaged buildings are only detectable by the optical
VHR dataset. In (e,f), the damaged building is only detectable via optical. In (g,h), the non-damaged
building can be detected as such only in Lidar.

According to [12], fusion can take place at three levels: (1) the pixel-level, (2) the
feature-level, and (3) the decision-level. In the literature, feature- and decision-level fusion
are more commonly utilized for damage assessment [13].

As the name implies, pixel-level fusion combines/integrates both datasets at the pixel-
level, which is known as pansharpening. The gist is to enhance the spatial resolution of the
low-resolution dataset by combining the panchromatic dataset into a low spatial resolution
dataset. This process can be applied using either linear or non-linear transformation-based
methods.

Feature-level fusion is widely used in classification, damage assessment, or change
detection tasks. At this level, some type of feature is extracted from each modality, and
then both are ‘stacked’ to form the final representation. The more popular features used
in RS work are: (1) spatial features, including texture features such as the Gray-level
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Co-occurrence Matrix (GLCM) [14] and the Gabor filter Gabor transformation [15], as
well as morphological attribute profiles (MAP) [16]; (2) spectral features obtained through
linear and non-linear transformations, such as Principle Component Analysis (PCA), the
Normalized Vegetation Index (NDVI), and (3) deep features, which are obtained through
Convolutional Neural Networks (CNN).

Decision-level fusion takes place when the results from more than one learning al-
gorithm are fused [12,17]. Two types of fusion exist: (1) hard fusion, where the final
classification result is determined through hard label majority voting, Borda count, and
Bayesian fusion [18]; and (2) soft fusion, where the final decision is based on the proba-
bility of obtaining results (p-value), with many methods proposed for this end, such as
fuzzy-fusion [19] or Dempster-Shafer (DS) fusion [20]. Since decision-level fusion requires
the results of various classifiers and possibly from multisource datasets, it can be time-
consuming. Furthermore, at least two classifiers need to be tuned, as well as the parameters
of the fusion algorithm.

Among the types of fusion methods, feature-level fusion can be more compatible
with Lidar and optical datasets. The feature-level fusion strategy has low complexity
in comparison to decision-level fusion. One of the disadvantages of traditional feature-
level fusion algorithms is the extraction of suitable features. Mainly, the building damage
mapping based on traditional feature-level fusion algorithms requires informative feature
generation and then feature selection, which is a time-consuming process. To this end, this
research utilizes the advantages of feature-level fusion for generating building damage
maps. The main purpose of this research is to take advantage of both Lidar and optical
datasets for earthquake-induced building damage maps in order to minimize the above-
mentioned challenges. Thus, a multi-stream deep feature extractor method based on the
CNN algorithm is proposed for building damage mapping using the post-earthquake fused
Lidar and optical data. In the proposed method, the extracted deep features for buildings
are integrated through a fusion strategy and imported into a Multilayer Perceptron (MLP)
classifier to make the final decision to detect damaged buildings.

The wide availability of RS datasets has led to the proposal of several damage assess-
ment methods and frameworks. For building damage mapping, the most common datasets
include SAR, Optical VHR, nightlight, Lidar, and multispectral datasets. For instance, Adri-
ano et al. [21] proposed a building damage multimodal detection framework by combining
SAR, optical, and multi-temporal datasets. U-Net architecture was used with two branches
to detect building damages. In the encoder phase of the architecture, they used the optical
and SAR datasets. The extracted deep features were fused at the pixel-level and used in the
decoder phase to generate the damage map. Additionally, Gokaraju et al. [22] proposed a
change detection framework for disaster damage assessment based on multi-sensor data
fusion. This study utilized an SAR dataset and multispectral and panchromatic datasets.
Specifically, several features such as multi-polarized radiometric and textural features were
extracted, then multi-variate conditional copula were utilized for binary classification to
generate binary damage mapping. In another work based on change detection, Trinder
and Salah [23] fused bi-temporal aerial and Lidar datasets. They basically performed
change detection using methods such as post-classification, image differencing, PCA, and
minimum noise fraction. In the end, a simple majority vote was used for damage map
generation. Finally, Hajeb et al. [24] proposed a damage building assessment framework
based on integrating post/pre-earthquake Lidar and SAR datasets. They firstly performed
texture feature extraction on the Lidar dataset, and then change was detected on the original
Lidar datasets and extracted features. A coherence map was later generated followed by
coherence change detection on SAR datasets. Finally, the damage map was generated
through an RF- and Support Vector Machine (SVM)-supervised classification.

The work in this paper is proposed based on the following motivations:

(1) Most of the previous works had the researchers determine the relevant features
manually.
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(2) Decision-level fusion methods can be difficult to implement and requires many con-
siderations. Additionally, the source data need to be classified at separate levels, and
then the results are only fused at the end. This might potentially lead to incorrect
initial classification, which in the end compromises the whole assessment task.

(3) Most previous frameworks employ “traditional” machine learning methods. However,
the performance of deep learning methods has been proven by many studies.

(4) Most feature-level fusion methods are applied in many steps and this is time-consuming.
(5) Most feature-level fusion methods are based on pre/post-event images, but it is diffi-

cult to obtain post-event imagery. Furthermore, multi-source datasets have improved
the performance of classification and damage detection significantly.

(6) Change detection-based damage assessment has shown promising results, but remov-
ing the effect of non-target changes (atmospheric condition, manufactured changes) is
the most challenging aspect. To this end, it is necessary to propose a novel algorithm
to minimize these challenges and improve the result of building damage detection.

Based on the reviewed studies, multi-source data can be integrated and used for
building damage mapping. Among different data sources, SAR imagery has many advan-
tages, such as operation in all weather conditions, and penetrating through clouds and
rain. However, it suffers from noise, can be difficult to interpret, and have low spatial and
spectral resolutions. Based on Figure 1, optical and Lidar are shown to be complementary
datasets for evaluating the damage to a building. Therefore, the fusion of these datasets
can seemingly improve the accuracy and quality of the resulting damage maps (provided
a suitable fusion strategy is employed). Choosing a suitable fusion strategy depends on
several factors, which will be explained in the next section.

This research proposes a new framework for building damage detection based on
deep learning. The proposed network, termed BBD-Net, is an end-to-end framework for
damage assessment. There is a total of three channels: two channels to extract deep features
from the optical and Lidar datasets, and the third channel is the fusion channel that fuses
the extracted deep features from the first and second channels. The main contribution of
this research is to: (1) present the novel end-to-end fusion framework for building damage
assessment by deep learning methods, (2) propose a framework that takes advantage of
residual multi-scale dilated kernel convolution and of depth-wise kernel coevolution, and
(3) evaluate the performance for each dataset and perform comparisons with BDD-Net.

2. Materials and Methods
2.1. Study Area and Image Acquisition

On 12 January 2010, at 4:53 p.m. local time, a magnitude 7.0 earthquake struck the
Republic of Haiti, with an epicenter located approximately 25 km south and west of the
capital city of Port-au-Prince (Figure 2a). According to the Government of Haiti, the
earthquake left more than 316,000 dead or missing; 300,000 injured; and over 1.3 million
homeless [25]. The post-earthquake optical RS data and aerial Lidar data of Port-au-Prince,
Haiti were used. The optical VHR dataset (Figure 2c) was captured by the World-View-II
sensor with 4 spectral bands (Red, Green, Blue, and NIR-Infrared) on 16 January 2010 with
a spatial resolution of 0.5 m. The Lidar dataset(Figure 2b) was collected between 21 January
and 27 January 2010 with a spatial resolution of 1 m. Since the extracted bounding box of
the buildings is used as the input patch, only removing debris from a damaged building
may cause a mismatch between the datasets. However, due to the short temporal difference
between the two datasets (around a week or 10 days), the high impact of the earthquake
on a large number of buildings, and the low resolution of the datasets concerning possible
debris removal, all the mismatches inside the building areas were ignored.
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Figure 2. The location of the study area. (a) Map of Port-au-Prince province in Haiti; (b) Post-
earthquake Lidar data; (c) Post-earthquake high-resolution data.

2.2. Ground Truth Data

In this research, the sample data was manually collected and divided into two classes:
(1) Damage and (2) Non-damage. This sample was used to train BDD-Net. The dataset
consists of 603 polygons; where 301 are from the Damaged class, and 302 polygons are
from the Intact class. The dataset is further divided into three parts: (1) Training (54%),
Validation (10%), and Testing (36%). Table 1 presents some samples for two Damage and
Non-damage classes.

Table 1. Details of the sample dataset only fusing for building damage mapping (unit is polygon).

Description Number of Polygons Percentage (%) Non-Damage Damage

Training 326 54 163 163

Validation 60 10 30 30

Testing 217 36 109 108

Whole 603 100 302 301

Table 2 presents the detailed description of random samples for both the Damage and
Non-damage classes. As can be seen, in some cases, the situation may not be detected
based on only one dataset.
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Table 2. A detailed description of different classes is available in the orthophoto image and Lidar.

Classes Post-Lidar Post-Orthophoto Description

Non-Damage
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Within this dataset, some buildings were employed for training and evaluation of the
proposed BDD-Net. The selected test area is 945 × 542 m2, which is illustrated in Figure 3.
The vector road maps were obtained from OSM, and the building vector map was created
manually based on visual analysis of the pre-event dataset.

As mentioned, the sample collected is crucial in order to train our supervised learning
algorithm [26]. The quality and quantity of training data play a key role in classification
results. One of the critically important evaluations of classifier methods is generalization.
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evaluating the network. Figure 3 illustrates the distribution of sample data (red and green)
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for two classes of Damage and Non-damage polygons. The yellow polygons were utilized
for evaluating the proposed BDD-Net.
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2.3. Methodology Applied

The flowchart of the BDD-Net for building damage mapping is illustrated in Figure 4.
BDD-Net consists of three main parts: (1) pre-processing, (2) training sample generation
and data augmentation, and (3) the training of CNN and building damage map generation.
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2.3.1. Image Pre-Processing

Images might contain some form of noise or unwanted visual properties. Therefore,
this step ensures the images fed into BDD-Net contain the least amount of irrelevant
information. Specifically, atmospheric correction and histogram equalization of the image
was performed. The image and its respective vector map was also accurately registered.
This research utilized the building vector map layer that is obtained by OSM. It is worth
noting that this vector layer needed to be registered with our datasets. The vector dataset
(building footprint) can be seen in Figure 3 as yellow, red, and green regions.

2.3.2. Data Augmentation

Due to a lack of training examples, most deep learning methods employ data augmen-
tation [27], which helps to artificially increase the number of training and validation sets.
In this work, the types of augmentation we applied were a combination of the following
(Table 3):

• Rotation (25◦, 35◦, 75◦, 85◦, 120◦, 145◦, 225◦, 265◦, 295◦, 310◦ and 330◦);
• Brightness adjustment by a scale of 0.01; and
• Zooming.

Table 3. Example of data augmentation.

Classes Original
Image Augmented Images

Function —–

Zoom,
Rotation,

Scale
Brightness

Rotation,
Scale

Brightness

Zoom,
Rotation,

Scale
Brightness

Zoom,
Rotation,

Scale
Brightness

Rotation,
Scale

Brightness

Zoom,
Rotation,

Scale
Brightness

Non-damage
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Table 3. Cont.

Classes Original
Image Augmented Images

Function —–

Zoom,
Rotation,

Scale
Brightness

Rotation,
Scale

Brightness

Zoom,
Rotation,

Scale
Brightness

Zoom,
Rotation,

Scale
Brightness

Rotation,
Scale

Brightness

Zoom,
Rotation,

Scale
Brightness

Damage
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2.3.3. Proposed Method

BDD-Net consists of three channels for deep feature extraction. The first channel
extracts deep features from the optical dataset. The second channel extracts deep features
from the original Lidar dataset. The third channel is the channel that fuses all deep
features from the first and second channels. Figure 5 presents the proposed architecture for
our building damage detection framework. As can be seen, three deep feature extractor
channels are included in five multi-scale/residual convolution layers with three pooling
layers to reduce the features’ spatial size. Then, a depth-wise convolution generates the
deep features. Finally, all deep features are concatenated and fed to a fully connected layer.
The main differences between the proposed architecture and other deep-learning-based
damage detection methods are (1) that the proposed multi-stream deep feature extractor
extracts from both Lidar and optical datasets (and fuses them), (2) that the feature fusion
level is applied to different levels (low and high levels) to improve the efficiency of damage
mapping, and (3) takes advantage of the depth-wise convolution for damage mapping of
the multiscale residual kernel convolution layers, which has better performance against
scale variations and decreases the number of network parameters that help to prevent
gradient vanishing.

The main task of the convolution layers is to extract high-level deep features from
the input images [28–30]. For a convolutional layer in the l-th layer, the computation is
expressed according to Equation (1) [31]

yl = g
(

wl xl−1
)
+ bl (1)

where x is the input from layer l− 1; g is the activation function; w is the weighted template;
and b is the bias vector.

In the 2D convolution layer, the output of the j-th feature map f in the i-th layer at the
spatial location (x, y) can be computed using Equation (2) [32]

f xy
i,j = g(bi,j + ∑m ∑Ri−1

r=0 ∑Si−1
s=0 Wr,s

i,j f (x+r)(y+s)
i−1,m ) (2)

where m is the feature cube connected to the current feature cube in the (i− 1)-th layer; W
is the (r, s)-th value of the kernel connected to the m-th feature cube in the preceding layer;
and R and S are the length and width of the convolution kernel size, respectively.
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This work utilized three different scenarios for deep feature extraction. Figure 6 shows
the different strategies for deep feature extraction.

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 20 
 

 

 𝑦 = 𝑔(𝑤𝑥ିଵ) + 𝑏 (1)

where 𝑥 is the input from layer 𝑙 − 1; g is the activation function; 𝑤 is the weighted tem-
plate; and 𝑏 is the bias vector. 

In the 2D convolution layer, the output of the 𝑗-th feature map 𝑓 in the 𝑖-th layer at 
the spatial location (𝑥, 𝑦) can be computed using Equation (2) [32] 𝑓,௫௬ = 𝑔(𝑏, + ∑    ∑  ோିଵୀ ∑  ௌିଵ௦ୀ 𝑊,,௦𝑓ିଵ,(௫ା)(௬ା௦))  (2)

where m is the feature cube connected to the current feature cube in the (𝑖 − 1)-th layer; 
W is the (𝑟, 𝑠)-th value of the kernel connected to the 𝑚-th feature cube in the preceding 
layer; and R and S are the length and width of the convolution kernel size, respectively. 

This work utilized three different scenarios for deep feature extraction. Figure 6 
shows the different strategies for deep feature extraction. 

 

 
(a) (b) 

Figure 6. (a) Mechanism of Multi-scale Block, (b) Mechanism of Multi-scale Residual Dilated Con-
volution Block. Convolution (Conv), Dilated-Convolution (D-Conv), Depth-wise convolution (DW-
Conv). 

As shown in Figure 6, the proposed method combines several strategies for deep fea-
ture extraction. The intuition behind each are explained in the following: 
(1) Residual blocks: These blocks allow the gradient to be directly back-propagated to 

earlier layers, which is especially useful for avoiding the problem of the vanishing or 
exploding gradient [33]. A graphical representation for this is shown in Figure 7. 

 
Figure 7. The mechanism of a sample residual block (adapted from Figure 2 in [33]). 

(2) Multi-scale blocks: The size of buildings on the ground will be affected after an 
earthquake. Multi-scale blocks, as explained in [34,35], increase  the robustness of the 
network against scale variations. The multi-scale block utilizes some of the 2D-stand-
ard convolution layers, while the kernel filter sizes are different. 

Figure 6. (a) Mechanism of Multi-scale Block, (b) Mechanism of Multi-scale Residual Dilated Convolu-
tion Block. Convolution (Conv), Dilated-Convolution (D-Conv), Depth-wise convolution (DW-Conv).

As shown in Figure 6, the proposed method combines several strategies for deep
feature extraction. The intuition behind each are explained in the following:

(1) Residual blocks: These blocks allow the gradient to be directly back-propagated to
earlier layers, which is especially useful for avoiding the problem of the vanishing or
exploding gradient [33]. A graphical representation for this is shown in Figure 7.
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Figure 7. The mechanism of a sample residual block (adapted from Figure 2 in [33]).

(2) Multi-scale blocks: The size of buildings on the ground will be affected after an
earthquake. Multi-scale blocks, as explained in [34,35], increase the robustness of
the network against scale variations. The multi-scale block utilizes some of the 2D-
standard convolution layers, while the kernel filter sizes are different.

(3) Dilated convolution: This improves the network’s performance by creating a larger
receptive field while preserving the same computation and memory costs as well as
resolution [36,37]. Mathematically, the 2D-dilated convolution can be defined based
on the following (Equation (3)) [38]

f xy
i,j = g(bi,j + ∑m ∑Ri−1

r=0 ∑Si−1
s=0 Wr,s

i,j f (x+r×d)(y+s×d)
i−1,m ) (3)

where d is the dilatation rate in the convolution layer. Figure 8 illustrates the mecha-
nism of dilated convolution at different rates.
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(4) Depth-wise convolution helps to prevent the growth of the network and the reduc-
tion of parameters [39]. Basically, two steps are involved: (1) A 2D convolution is
performed for each input feature (channel) to generate a 2D output feature map; then
(2) the output feature maps are concatenated to complete the output tensor. Figure 9
shows the main difference between depth-wise convolution and standard convolution
blocks graphically.

2.3.4. Fusion Strategy

All deep features for feature-level fusion are assigned to a stream. This stream com-
bines extracted deep features by convolution layers from Lidar and optical datasets. At
first, the extracted shallow deep features (from Lidar and Optic) from the first convolution
layers are transferred to the fusion stream as the input. These features are concatenated
and fed to a convolution layer in the fusion channel. Then, the output of the mentioned
convolution layer and outputs of second layers from optic and Lidar are stacked and are
investigated as input for the second convolution layer in the fusion channel. This process is
repeated for other convolution layers.
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2.3.5. Model Optimization

Several hyperparameters need to be set before training any deep learning model. In
this work, the optimization algorithm used is the Adam (Adaptive Moment Estimation)
optimizer. The performance of the training at each epoch is evaluated by a loss function.
Once the error is calculated, this it is adjusted in the whole network by Adam and all
weights are updated in a backpropagated manner. We have opted to use the Tversky loss
function, which is a generalization of the Dice score [40,41]. The Tversky index (TI) between
P (predicted-value) and G (truth-value) is defined as (Equation (4)) [40,41]

TI(P, G, α, β) =
|PG|

|PG|+ α|P/G|+ β|G/P| (4)

where α and β control the magnitude of penalties for false-positive and false-negative
pixels, respectively.

The overall training and validation process for BDD-Net is iterative, depending on the
number of epochs. It will keep learning until a stop condition is met, which in this case can
either be (1) the number of epochs, or (2) deviating from the error on the validation set.

2.3.6. Evaluating the Performance Metrics

One of the most important aspects is the assessment of the accuracy of results in two
parts: (1) accuracy assessment based on visual analysis (inspection) and comparison of
the result with reference data, and (2) accuracy assessment based on quality measurement
indices. This work deployed 5 of the most common assessment indices, including overall
accuracy, Recall, F1 Score, and Matthews Correlation Coefficient (MCC). More details of
these indices can be found in Tables 4 and 5.

Table 4. Confusion matrix for the Damage and Intact classes.

Predicted
Damage Non-Damage

Actual
Damage TP FN

Intact FP TN
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Table 5. The metrics used for the accuracy assessment of the building damage detection.

Accuracy Index Equation Description

Accuracy (TN+TP)
(TN+TP+FP+FN)

the ratio between the correctly
predicted instances and all the

instances in the dataset

Recall (TP)
(TP+FN)

a model able to find positives

Precision (TP)
(TP+FP)

about how precise your model
is out of those values

predicted positive, how many
of them are positive, or how
believable the model is when
it says an instance is a positive

F1 Score (2×TP)
(2×TN+FP+FN)

the harmonic mean of the
precision and the recall that is

independent of TN

Matthews Correlation
Coefficient (MCC)

(TN×TP)−(FN×FP)√
(FP+TP)×(FN+TP)×(TN+FN)

majority of positive data
instances and the majority of

negative data instances,

3. Results
3.1. Hyperparameter Setting

BDD-Net hyperparameters were set manually based on trial and error. The optimum
values for these parameters are as follows: the input patch-size for Lidar and optical data is
50× 50× 1, and 50× 50× 4, respectively; the number of Epochs = 2000; the weight initializer
is the Xavier initialization method [42], the number of neurons at the fully-connected (FC)
layer is 1500; the initial learning rate is 10−4; and the mini-batch size = 550.

3.2. Overall Performance

Three scenarios were considered and observed in this research. The first scenario is
building damage detection based on only the Lidar dataset. The second scenario is the use
of only the optical dataset, and the third scenario is using the fusion of optical and Lidar
datasets. The results of building damage assessment are evaluated in two parts (sample
data and test area).

The overall dataset is divided into three parts and the model optimization was con-
ducted based on the training and validation datasets. A separate testing dataset was
utilized for evaluating the model. The performance of the prosed BDM network was
evaluated based on 3,615 sample data points. The results of BDD are presented in Table 6.

Table 6. The numerical results from BDD-Net for the sample dataset.

Dataset TP TN FP FN Accuracy
(%)

Recall
(%)

Precision
(%)

F1-Score
(%) MCC

Lidar 1573 1531 281 230 85.86 87.24 84.84 86.03 0.718
Optical 1699 1479 333 104 87.91 94.23 83.61 88.60 0.764
Fusion 1714 1751 61 89 95.81 95.06 95.56 95.81 0.917

As can be seen, the BDD-Net shows good performance for all three datasets. The
fusion approach however, is clearly the best, with the highest scores for all metrics. When
only using Lidar or optical, the FP pixels dominate the FN pixels, while for the fusion
approach, the FN pixels have the upper hand over FP pixels. The MCC and F1-Score are
more important indices both TN and TP pixels were used. Additionally, the BDD-Net
provided high values of MCC and F1-scores that reflect the BDD-Net’s ability to detect
damaged buildings and non-damaged buildings as well. Figure 10 shows the visual results
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of building damage detection for the test areas. The results also indicate a good performance
of BDD-Net. Figure 10b presents the result of damage detection by the optical dataset.
The performance of BDD-Net in the detection of damaged buildings in the Lidar dataset
and fusion scenario (Figure 10a,c) seems better than when only considering the optical
dataset. There are some damaged buildings classified as intact buildings based on the
optical dataset. The fusion scenario provided the best performance in the detection of
non-damaged and damaged buildings.
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The numerical results of building damage detection are presented in Table 7. BDD-Net
correctly detected 43, 15, and 55 damaged buildings from 104 damaged buildings based
on Lidar, optical, and fusion scenarios, respectively. Among the 422 intact buildings, 375,
411, and 409 buildings were classified correctly by BDD-Net by deploying Lidar, optical,
and fusion, respectively. Generally, the BDD-Net using the fused dataset shows the best
performance. However, there is little difference in the detection of the non-damaged
buildings with the optical dataset and the fusion scenario (two building polygons), but the
optical scenario shows a significant difference for damaged buildings.

Table 7. The numerical result from BDD-Net for the Test Area.

Dataset TP TN FP FN Accuracy
(%)

Recall
(%)

Precision
(%)

F1-Score
(%) MCC

Lidar 43 375 47 61 79.47 41.35 47.78 44.33 0.319
Optic 15 411 11 89 80.99 14.42 57.69 23.08 0.217

Fusion 55 409 13 49 88.21 80.88 52.88 63.95 0.591



Remote Sens. 2022, 14, 2214 15 of 20

Overall, the accuracy of BDD-Net for the test area is promising at 88.21%. The fusion
approach seems to outshine the single-modality approaches once again, confirming its
effectiveness. For all the other metrics, fusion was also better than the others. The MCC is
the most important measurement when assessing imbalanced datasets. The score obtained
for the fusion approach is 0.591, which indicates a good potential for overall building
damage classification.

3.3. Comparison with Other State-of-the-Art Methods

Recently, damage detection using multi-source data fusion has become a challenging
topic, and many research studies have been conducted for damage assessment in Haiti
or other earthquakes. Table 8 presents three sample damage detection methods based
on multi-source datasets for the same case study. Based on the presented results, many
methods have shown promise using some form of fusion strategy for building damage
mapping. We have compared BDD-Net with selected state-of-the-art fusion methods, and
accuracy was highest for BDD-Net. It should be noted that the case study is the same for
all methods, but different areas may have been selected from the whole area. Overall, as
indicated by the other methods compared in Table 8, the fusion strategy seems to be very
promising for damage detection.

Table 8. The comparison of numerical results from BDD is based on fusion strategies for the Haiti-
Earthquake.

Reference Fusion Strategy Dataset Case Study Accuracy (%)

[8] Decision level fusion Post-Event Optical/Lidar dataset Haiti-Earthquake 83
[43] Feature level fusion Post-event LiDAR, ancillary data Haiti-Earthquake 74
[44] CNN based Feature Fusion Post/Event Satellite imagery Haiti-Earthquake 87

BDD-Net CNN based Multi-Level Feature Fusion Post-Event Optical/Lidar dataset Haiti-Earthquake 88

Many research studies have utilized change detection algorithms and compared pre-
and post-event images for damage map creation. For example, Refs. [44–46] used the
WorldView 2 images acquired before and after the Haiti earthquake and reported various
accuracies ranging from 60 to 87%. Another case [44], which is a deep learning-based CNN
method, has provided an accuracy almost similar to the BDD-Net algorithm.

4. Discussion
4.1. Summary of Performance of BDD-Net in Different Scenarios

We have considered the problem of building damage detection (BDD) by taking a
single-modality approach (either using optical or Lidar data), or a fusion approach where
both modalities are considered simultaneously. As per the results in Tables 6 and 7, as well
as the visual results in Figure 10, single or fused modalities managed to produce accuracy
of over 80%. However, the highest accuracy, even in the test area, was achieved through the
fusion strategy. Also reflecting the effectiveness of fusion using BDD-Net is the MCC, which
is higher than 0.6. The justification for using the fusion strategy is further strengthened by
the fact that BDD-Net fails to detect damaged buildings when using optical alone (but is
able to detect non-damaged buildings).

4.2. Sample Data and Training Process

Training a supervised deep learning model normally requires huge amounts of quality
sample data to enable the model to optimally converge [47,48]. However, collecting and
labelling huge data samples can be time-consuming and labor intensive. Therefore, our
approach makes use of data augmentation, which is a process that adds artificial samples
to the training data via specific geometric transformations. In all, this utilized only 603
polygons for the training model; this size of sample data is considerably low.

Recently, some state-of-the-art methods based on semantic segmentation were utilized
for damage detection purposes. For example, Gupta and Shah [49] have proposed a
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building damage assessment framework (Rescuenet) based on pre/post-event optical high-
resolution datasets. These methods provided promising results in the damage generation
map, but they require too large a sample dataset for the training model. Collecting a
high amount of reference sample data for such a problem is very difficult. Furthermore,
the training of the semantic segmentation models such as deeplabv3+ [50], U-Net++ [51],
and Rethinking BiSeNet [52] requires more time. Additionally, these frameworks need
advanced processing tools for training the model and an optimization of hyperparameters.
Thus, BDD for small areas based on semantic segmentation methods is not affordable,
since the training process of the proposed BDD-Net takes under 4 h, while the semantic
segmentation methods require more time.

4.3. Generalization of BDD-Net

This research evaluated the performance of BDD-Net in two scenarios: (1) evaluation
of sample date, (2) test areas. The buildings of the test area do not contribute to the training
of the model. The structure of buildings in test areas and collected sample areas differ
in some building parameters (size, color, and elevation). Figure 11 shows some sample
buildings that considerably differ in comparison to buildings in the sample data.
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Based on numerical and visual analysis, BDD-Net manages to perform well even for
the test areas. A fusion of optical and Lidar seems to be the best strategy, where a high OA
of more than 88% was reported. The good performance of BDD-Net on the test might be a
good indication that it will be able to generalize well on unseen data.

4.4. Feature Extraction

Feature- and decision-level fusions are the most common strategies when dealing with
multi-source remote sensing imagery. The BDD-Net framework is applied end-to-end and
generates deep features form three feature extractor channels. The BDD-Net can extract
deep features from both the Lidar and optical modalities, in addition to the third channel
focused on integrating expected features to obtain more details.
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The proposed BDD-Net employs hybrid robust deep-feature extractor convolution
layers based on dilated convolution, residual block, depth-wise convolution, and multi-
scale convolution layers. This advantage of the proposed method enables BDD-Net to
produce good results in damage map generation. Furthermore, the BDD-Net automati-
cally extracts and select the deep features by changing the hyperparameters, while many
researchers have used traditional features such as textural features based on the GLCM
matrix [53–56], or morphological attribute profiles [57], which are time-consuming, and the
optimal features are selected manually.

4.5. Fundamental Error

One of the most important challenges of classification based on multi-source imagery
is registration error. For instance, change detection-based methods require accurate registra-
tion. This is difficult to achieve since control points for matching are not easily discoverable
due to the content of data and the difference between resolutions. This can lead to a cascade
of issues as changes originating from the registration error can trickle down to the pixel-
based damage detection. BDD-Net can control this issue, and minimize the registration
error, by considering the building polygon in the decision making.

The height relief displacements are a fundamental error in the analysis of VHR satellite
imagery, which does not appear in the Lidar dataset. The effect of the height relief dis-
placements cannot be removed completely and may affect the results of building damage
mapping. The proposed framework can minimize the effect of the height relief displace-
ments comparison with pixel-to-pixel comparison methods, for as much as the proposed
framework focused on building footprints.

4.6. Data Resolution

The ground resolution of the available image and Lidar data was 0.5 m and 1 m,
respectively. However, the Lidar DSM with the same ground resolution as the image was
initially generated by dividing each DSM grid (pixel) into four pixels before importing
it to our framework. This simplified the implementation of the network. The size of the
available buildings in the selected test areas varied from 31 (m2) to 1880 (m2), equal to
124 (Pix2) to 7520 (Pix2), respectively, on the applied image, and 31 (Pix2) and 1880 (Pix2),
respectively, on the original Lidar DSM. It is worth mentioning that both the smallest and
the largest buildings were detected as damaged buildings by our algorithm. Although
a higher spatial resolution may provide more details about the buildings, it increases
the computation cost during the network training, since a larger building box should be
imported into the network to prevent information loss. However, input images with higher
resolution can be imported to the proposed framework by considering a scaling layer before
the input layer, which can be tested in the future studies.

4.7. Multi-Source Dataset

This study generated a damage map based on post-earthquake imagery. Most work in
the literature normally requires both pre- and post-event datasets. Furthermore, change
detection based on BDD methods [58,59] may extract changes originating from other factors,
which results in false-alarm pixels. In other words, the change pixels in the bi-temporal
dataset can be related to some foreign factors such as noise, atmospheric conditions, and
urban development. Thus, one of the advantages of utilizing a post-earthquake dataset in
BDD is to reduce false alarm pixels.

4.8. Future Work

We foresee that VHR SAR satellite imagery can also be utilized for BDD. For future
work, the optical remote sensing dataset can be integrated with VHR SAR satellite imagery.
Additionally, the proposed method focused on binary damage maps with multiple damage
assessment methods can help to find more building damages. Therefore, future work can
be focused on direct BDD generation in the multiple damage map levels.
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5. Conclusions

Building damage detection is an important task to be performed after natural disasters,
especially earthquakes. In this work, optical VHR RS imagery and Lidar form the basis
for a CNN to perform BDD. We explore using optical or Lidar as inputs independently, as
well as using both types of imagery as inputs in a fusion strategy. Experimental results
show that, in both the training and testing phase, the fusion of both modalities significantly
improved BDD results. The BDD-Net method can be applied as an end-to-end network
for damage detection. The result of damage detection shows that the BDD-Net has many
advantages, including: (1) high performance in the detection of damaged and non-damaged
buildings, (2) high generalization and the ability to investigate types of buildings, (3) a
high robustness of BDD-Net to variations of the size of building polygons due to taking
advantage of multi-scale block convolution, (4) requiring a small training dataset compared
to other state-of-the-art methods.
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