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Abstract: Hyperspectral Remote Rensing Image (HRSI) classification based on Convolution Neural
Network (CNN) has become one of the hot topics in the field of remote sensing. However, the high
dimensional information and limited training samples are prone to the Hughes phenomenon for
hyperspectral remote sensing images. Meanwhile, high-dimensional information processing also
consumes significant time and computing power, or the extracted features may not be representative,
resulting in unsatisfactory classification efficiency and accuracy. To solve these problems, an attention
mechanism and depthwise separable convolution are introduced to the three-dimensional convolu-
tional neural network (3DCNN). Thus, 3DCNN-AM and 3DCNN-AM-DSC are proposed for HRSI
classification. Firstly, three hyperspectral datasets (Indian pines, University of Pavia and University
of Houston) are used to analyze the patchsize and dataset allocation ratio (Training set: Validation
set: Test Set) in the performance of 3DCNN and 3DCNN-AM. Secondly, in order to improve work
efficiency, principal component analysis (PCA) and autoencoder (AE) dimension reduction methods
are applied to reduce data dimensionality, and maximize the classification accuracy of the 3DCNN,
but it will still take time. Furthermore, the HRSI classification model 3DCNN-AM and 3DCNN-AM-
DSC are applied to classify with the three classic HRSI datasets. Lastly, the classification accuracy
index and time consumption are evaluated. The results indicate that 3DCNN-AM could improve
classification accuracy and reduce computing time with the dimension reduction dataset, and the
3DCNN-AM-DSC model can reduce the training time by a maximum of 91.77% without greatly
reducing the classification accuracy. The results of the three classic hyperspectral datasets illustrate
that 3DCNN-AM-DSC can improve the classification performance and reduce the time required for
model training. It may be a new way to tackle hyperspectral datasets in HRSl classification tasks
without dimensionality reduction.

Keywords: hyperspectral remote sensing image classification; attention mechanism; depthwise sepa-
rable convolution; three-dimensional convolutional neural network; dimension reduction algorithm

1. Introduction

Hyperspectral remote sensing images (HRSI) have attracted the attention of researchers
because of their rich spatial and spectral information [1]. They have been applied widely in
the field of atmospheric exploration [2], space remote sensing [3], earth resources census,
military reconnaissance [4], environmental monitoring [5], agriculture [6], marine [7] and
so on [8]. Hyperspectral classification technology is an important approach to extract
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thematic information and monitor the dynamic changes of the earth [9–11]. In particular,
recently the classification of HRSI based on deep learning has become one of the hot topics
in the field of remote sensing. And convolutional neural network (CNN) [12,13] is the
typical representative model, which has achieved high-precision and high-efficiency in
HRSI classification. However, high dimensional information of HRSI and limited training
samples are prone to the Hughes phenomenon. Meanwhile, high-dimensional information
processing also consumes a lot of time and computing power, or the extracted features
are not representative, resulting in unsatisfactory classification efficiency and accuracy. In
order to solve these problems, it is necessary to consider more effective data compression
methods, feature extraction and screening methods for HRSI classification.

At the beginning of the 21st century, with the development of science and technology,
the performance of computers is gradually enhanced. Machine learning [14–18] is used for
HRSI classification, and methods based on hybrid schemes are widely used. It integrates
more than two schemes into the HRSI classification research, especially the combination of
dimension reduction method and machine learning method. To solve the high-dimensional
disaster of hyperspectral information, both dimensionality reduction methods (such as
PCA, LDA, AE, etc.) [19] and sparse representation methods [20] can be applied to HRSI
classification. The former is dimensionally reduced and then combined with methods such
as machine learning for classification, and the latter is represented by a linear combination
of elements in the dictionary for HRSI classification. For example, Chen proposed an
HRSI classification algorithm based on Principal Component Analysis (PCA) and Support
Vector Machine (SVM), which significantly improved the classification accuracy, but lacked
a discussion of time consumption [21,22]. Dinc et al. proposed the random forest (RF)
algorithm and K-FKT transformation to classify HRSI, and obtained about 84% overall
classification accuracy [23]. Subsequently, with the rise of deep learning, the strong feature
extraction ability and dimension reduction methods of combined deep learning proposed
a series of methods that can be used for HRSI classification. Hinton [24,25] proposed the
theory of deep learning, which can mine deep semantic information in data by learning
raw data using multilayer neural networks. Tien-Heng Hsieh explored the classification
performance of 1D/2D CNN combined with PCA for HRSI, and solved the problem of label
misclassification by increasing the input vector to improve its classification accuracy [26].
In addition, three-dimensional convolution neural network (3DCNN) using both spectral
and spatial information was proposed to extract the joint features for HRSI classification
tasks. Chen et al. applied 3DCNN to the task of hyperspectral image classification for
the first time, and by extracting the joint spatial-spectral, a better feature map and a good
classification accuracy was obtained [27]. Shi used a super-pixel segmentation method
to get preliminary classification results before extracting features from 3DCNN, which
enabled 3DCNN to better extract deep features in images, thus improving classification
accuracy [28]. Liu et al. adopted a classification model based on 3DCNN without prepro-
cessing, that is the hyperspectral images are directly input into the 3DCNN [29]. However,
without dimension reduction, it takes a lot of computing time. Palsson et al. [30] reduced
the band dimension of the HRSI before extracting features using a 3DCNN [30], but this
method caused the image data to lose the band continuity, which affected the classification
accuracy. There are many mature neural network structures, and these excellent struc-
ture models play an important role in image processing [31], target detection [32,33], and
assistant diagnosis [34].

Attention mechanisms (AM) are widely used in image and speech recognition, natural
language processing [35], and other different types of deep learning tasks, and it is con-
sidered one of the worthiest of attention and provides an in-depth understanding of deep
learning technology [36]. Heeyoul Choi et al. applied AM to the field of neural machine
translation (NMT), and AM has become the most advanced recording method [37]. An
attention mechanism in a neural network, mimicking the selective attention mechanism
of human beings, greatly increases the ability of visual information processing, especially
efficiency and accuracy [38]. What is more, its core purpose is to quickly select high-value
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information from a large amount of disordered information under limited attention re-
sources [39]. In fact, it is a mechanism for allocating computing resources, and the evenly
allocated resources are adjusted according to different weights, that is, the important parts
have a larger weight. In recent years, AM, by virtue of its ability to capture detailed in-
formation, has gradually become a hot topic in hyperspectral classification applications.
Although these deep learning algorithms have achieved good results, there is still a large
room for improvement [40].

Deepwise detachable convolution was proposed by Laurent Sifre and has since been
widely used and developed [41,42]. Hoang et al. applied depthwise separable convolutions
to the field of human pose estimation, replacing the vanilla convolutions with depthwise
separable convolutions to reduce the model size, FLOPs and inference time [43]. Lu et al.
used deep separable convolution to achieve low power consumption and high recogni-
tion accuracy in the field of keyword recognition [44]. From the previous studies on the
application of depthwise separable convolution (DSC), we find that it can reduce the time
consumption as much as possible while ensuring the accuracy [45]. On the other hand,
the bands of hyperspectral imagery have more information. There is a lot of information
redundancy between multiple bands, and it will consume too much time to classify them
directly [46]. Therefore, the introduction of DSC may help to greatly reduce the time
consumption while guaranteeing the accuracy of HRSI classification [47].

Based on the above analysis, the 3DCNN model assisted by AM and DSC is proposed
to improve information screening ability and reduce time consumption, and three classic
hyperspectral datasets are used to analyze its performance. AM may filter out the charac-
teristics of high-value information, and DSC could reduce parameters to improve operation
efficiency in the classification process. Meanwhile, in order to reduce training time and
eliminate information redundancy, two low-dimensional algorithms and the DSC pruning
method are applied in the HRSI processing stage. The main contribution of the paper can
be divided into three aspects:

• A lightweight approach called DSC is introduced into HRSI classification to reduce
the time consumption. With fewer kernel moves, DSC could reduce the number of
parameters and the amount of computation. In our experiment, and DSC reduces the
training time by a maximum of 91.77% without significantly reducing the accuracy in
the HRSI classification task;

• A new method called 3DCNN-AM-DSC is proposed for hyperspectral images classi-
fication. It combines the ability of depth feature extraction, high-value information
selection and lightweight convolution, to extract various features with high-value
information, and to improve classification efficiency. The performance of the model is
evaluated with the three classic HRSI datasets;

• The influence of patchsize, the ratio of training samples to test samples, and classic
dimensionality reduction methods on the classification performance is illustrated.
Results show that appropriately increasing the patchsize and choosing an appropriate
dataset allocation ratio can improve the overall average accuracy, and the data pro-
cessed by dimensionality reduction and DSC reduce the sample size of model training,
greatly improving the efficiency of HRSI classification.

The remainder of this article is as follows. Section 2 briefly introduces the related
work and the proposed 3DCNN-AM and 3DCNN-AM-DSC methods. Then, three classic
HRSI datasets are described in detail, and the preprocessing process of the experiment is
provided in Section 3. Section 4 reports the extensive experimental results and analysis. The
strengths and limitations of the method proposed in this paper are discussed in Section 5,
followed by the conclusion of the paper in Section 6.

2. The Proposed 3DCNN-AM/3DCNN-AM-DSC Method

The HRSIs [48] are defined as spectral images with narrower spectrum and numerous
bands, which improve the spectral resolution and reflect more continuous spectral features
of the ground objects [49]. Hyperspectral image data are presented as a three-dimensional
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data cube structure combining two-dimensional spatial feature and one-dimensional spec-
tral characteristics, which determine the unique advantages of HRSI classification. For
HRSI, higher spectral resolution, more spectral bands, stronger correlation between bands
contribute abundant features, but they may result in redundant information.

2.1. Data Dimension Reduction

The three-dimensional structure of hyperspectral data is prone to information re-
dundancy in the spectral dimension, the dimensionality reduction of hyperspectral data
is added in the preprocessing stage. This operation ensures that enough information is
retained for in-depth learning, image feature extraction and classification, and reduces the
consumption of training / testing time. The essence of data dimensionality reduction is to
map data from the original high-dimensional space to the low-dimensional space, which
is divided into linear dimensionality reduction and nonlinear dimensionality reduction,
or supervised dimensionality reduction and unsupervised dimensionality reduction ac-
cording to the participation of labels [50]. Next, this paper will focus on two common
dimensionality reduction methods in HRSI classification: PCA and AE.

2.1.1. Principal Component Analysis

PCA [51] is one of the most important dimensionality reduction methods in HRSI
classification, which belongs to unsupervised dimensionality reduction. It only needs to
decompose the eigenvalues of the data to achieve the purpose of data compression and
elimination of redundancy, that is, dimensionality reduction. PCA maps the original n
features to a smaller number of m features, and each new feature is a linear combination of
old features. These linear combinations maximize the variance of samples and attempt to
make the new m features uncorrelated to each other.

2.1.2. Autoencoder

AE [52] is an unsupervised neural network model, which includes two parts: encoding
and decoding. The function of the encoding stage is to learn the implicit features of input
data, and the purpose of the decoding stage is to reconstruct the original input data by
using the learned new features. Because the neural network model can learn more effective
new features and achieve the function of feature extraction, the feature representation
ability of the data processed by AE is stronger. The data produced by AE has correlation,
and can only compress those data similar to the training data. A specific encoder is trained
through the input of a specified class to achieve the purpose of automatic learning from
data samples.

AE belongs to unsupervised learning, and its learning goal is to restore input without
providing labels. It can be regarded as a three-layer neural network structure: input layer,
hidden layer, and output layer. The input layer and output layer have the same data scale
size, and the structure diagram of AE is shown in Figure 1.

x z x’
f g

Encoding

Hidden  Layer

Output  LayerInput  Layer

Decoding

Figure 1. Structure diagram of AE.

The hidden layer feature output by the encoder, i.e., “coding feature”, can be regarded
as the characterization of the input data X. At the same time, the hidden layer feature is
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the feature obtained by encoder dimensionality reduction. Here, the data of the hidden
layer Z has lower dimensionality than the data of the input layer X and the output layer
X′, that is, |X| > |Z| < |X′| and |X| = |X′|. Calculate Z according to the mapping matrix
Z = f (X) from the input layer X to the hidden layer Z, and then calculate X′ according to
the mapping matrix X′ = g(Z) from the hidden layer Z to the output layer X′. The above
change process can be expressed by Equation (1).

f : Φ→ Γ

g : Γ→ Φ

f , g = arg min
f ,g
‖X− g[ f (X)]‖2,

(1)

where Φ represents the embedding input space (also as the output space), Γ represents the
size of the hidden space. Given input space X ∈ Φ and characteristic space Z ∈ Γ, the self
encoder solves the mapping f and g between the two space to minimize the reconstruction
error of the input feature.

2.2. Attention Mechanism

The essence of the AM technique is to quickly filter out valuable information from
a large amount of chaotic information by using limited attention resources, locating the
interest information and restraining the useless information, and presenting the final results
in the form of probability map or probabilistic characteristics vector [53]. The former acts
on the image data and the latter on the sequence information. In practical applications,
attention includes: (1) The soft attention refers to taking into account all the data without
setting filters, and calculating the attention weight for all the data; (2) The hard attention [54]
sets the filter, filters out some of the ineligible features after generating the attention weight,
and sets its attention weight value to 0. We used the spatial attention and soft attention
methods in this experiment.

The essential thoughts of AM are shown in Figure 2, the source domain is composed
of a series of key/value pairs of data. When an element in the given target domain is
queried, the weight coefficient of the parameters corresponding to each key value will be
obtained by calculating the similarity or correlation between the queried values and each
key value. Then, the corresponding values are weighted sum to gain the final attention
value [55]. The attention model is intended to alleviate these challenges by giving the
decoder access to the complete encoding input sequence h1, h2, h3, . . . , hj. The central
idea is to introduce attention weight µ into the input sequence to prioritize the set of
locations with relevant information to produce the next output. The attention module in the
architecture is responsible for automatically learning attention weight µij, which captures
the correlation between hj (encoder hidden state, called candidate state) and ki (decoder
hidden state, called query state). These attention weights are then used to construct the
context vector V, which is passed as input to the decoder. Therefore, the AM is obtained
by a weighted sum of elements in the source domain, and the query parameters and key
values are applied to calculate the weight coefficient of corresponding parameter values. In
other words, it can be roughly expressed as the following Equation (2).

fatt(Q, S) =
Lx

∑
i=1

Si(Q, Ki) ∗Vi, (2)

where Lx = ‖S‖ represents the length of the source domain, fatt represents the formula
of AM, Si is a calculation that can obtain the similarity or correlation between the query
value and each key value, Ki and Vi represent the i-th key value pairs, Q represents the
query value in the target. Conceptually, attention is often understood as selectively sifting
through a small amount of important information from a large amount of information
and focusing on it, ignoring most unimportant information. By calculating the weight
coefficient to achieve the purpose of focusing, the greater the weight, the more focused on
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its corresponding values. Namely, the weight represents the importance of information,
and the value is a measure of the amount of information.

Source Domain

Key 1

Key 2

Key n

Value 1

Value 2

Value n

𝒉𝟏 𝒉𝟐 … 𝒉j

𝒌𝟏 μ𝟏𝟏 μ𝟏𝟐 … μ𝟏𝒋

𝒌𝟐 μ𝟐𝟏 μ𝟐𝟐 … μ𝟐𝒋

… … … … …

𝒌i μ𝒊𝟏 μ𝒊𝟐 … μ𝒊𝒋

𝑽𝒏 = 𝝁𝒏𝟏𝒉𝟏 + 𝝁𝒏𝟐𝒉𝟐 +⋯+ 𝝁𝒏𝒋𝒉𝒋

Figure 2. The essential theory of attention mechanism.

2.3. Depthwise Separable Convolution

Depthwise separable convolution (DSC) is one of the two types of detachable con-
volution [56], which not only deals with the spatial dimension, but also with the depth
dimension (the number of channels). Therefore, more attributes extracted, more param-
eters can be reduced. DSC is a more common method in deep learning, which consists
of two steps, the first step is depthwise convolution, which convolutes the input image
without changing the depth. The second step is pointwise convolution, increasing the
number of channels in each image, and using the 1× 1 kernel function to enlarge the
depth. Essentially, deep detachable convolution is the decomposition of 3D convolution
kernels (decomposition on deep channel). Compared with standard 2D convolution, deep
detachable convolution requires less computational effort only accounting for 12% of that
of 2D convolution [57]. The detachable convolution has fewer kernel moves, reduces the
number of parameters required in the convolution, and reduces the amount of computation,
enabling the network to process more data in a shorter time. lt can improve efficiency
under the right circumstances, and can significantly improve efficiency without sacrificing
model performance, which makes it a very popular choice [58].

The network structure diagram of DSC is shown in Figure 3. It is assumed that a dataset
with M1×M2 and M3 pixels channels (shape is M1×M2×M3) is processed by depthwise
separable convolution. After the first convolution operation, the deep convolution is
completely in two dimensions. The number of convolution kernels is the same as with
number of channels in the upper layer, and channels correspond to the convolution kernels
one by one. A Cin-channel image is generated into Cout feature maps after operation.
One filter only contains a kernel with a size of K1 × K2 × K3. The size of the convolution
kernel in the second step is 1× 1× Cin, and Cin is the number of channels in the upper
layer. Therefore, the convolution operation here will make a weighted combination of the
map produced in the previous step to generate a new feature map. The time complexity
of deepwise detachable convolution can be calculated as M1 × M2 × M3 × K1 × K2 ×
K3 × Cin + M1 × M2 × M3 × Cin × Cout. Meanwhile, the time complexity of ordinary
convolution can be calculated as M1 ×M2 ×M3 × K1 × K2 × K3 × Cin × Cout. Therefore,
the time complexity of deepwise detachable convolution is 1

Cout
+ 1

K1×K2×K3
times that of

an ordinary convolution. In the case that Cout feature maps are obtained with the same
input, the number of parameters of the self-form convolution is about 1/3 of that of the
conventional convolution. Therefore, the number of layers of the neural network with
separable convolution can be done more deeply with the same number of parameters.
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Cin channel image
(M1 * M2 * M3)

Filters * K3
(K1 * K2 * K3)

Map * Cin
Filters * Cout
(1 * 1 * Cin)

Maps * Cout

Depthwise Convolution Pointwise Convolution

M1

M2

K1

K2
M3

K3

Figure 3. Structure diagram of depthwise separable convolution.

2.4. Classification Model

In some existing HRSI classification studies, 3DCNN is often used to obtain rich spatial-
spectral features in hyperspectral images, but there is still a large room for improvement in
classification accuracy and time consumption. At the same time, considering the importance
of AM in feature selection, the classification model integrating AM and 3DCNN can
improve the robustness and accuracy of individual features to a certain extent [59]. To
reduce the time consumption caused by 3DCNN, DSC is introduced into hyperspectral
images classification, and we called it 3DCNN-AM-DSC. The 3DCNN-AM/3DCNN-AM-
DSC classification models and data processing process designed in this article are shown in
Figure 4.

Output

Full 

connection

OutputMax-pooling

(2×2)

Input Patch AM Block

3DCNN-AM

Conv3d

(3×3 ×3)

Origin HRSI Data

Dimension reduction

AE

Input Layer

Encoding Layer

Decoding Layer

PCA

DSConv3dDSConv3d

Input Patch
Average

Pooling AM Block

3DCNN-AM-DSC

Global Average 

Pooling

DSConv3d

Conv3d

(3×3 ×3)

Conv3d

(3×3 ×3)

Max-pooling

(2×2)

Figure 4. Data processing flowchart for 3DCNN-AM and 3DCNN-AM-DSC.

At the preprocessing stage, the hyperspectral raw data are processed by conventional
remote sensing image processing such as data standardization, and the data dimension
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reduction method (PCA/AE) is used to reduce the data dimension. Specifically, we define
a sampling function, which first disrupts each category sample, and then assigns them
randomly in proportion. All training samples are stored in the training set, all validation
samples are placed in the validation set, and all test samples are stored in the test set. The
assignment of these samples is random and fully automatic, and no supervision is required.
Therefore, there is no overlap in these datasets. As hyperspectral images are rich in spectral
information, 1D convolution is used to extract spectral features, 2D convolution is applied
to extract spatial information, and 3D convolution is used to extract joint spectral-spatial
features.

In the 3DCNN-AM model structure, there are some convolution layers, max-pooling
layers and full connection layers that can be stacked alternately. The convolution layer
is the most important part of CNN. In each convolution layer, a learnable filter is input
for convolution operation to generate multi-features mapping. After several convolution
layers in the neural network, the max-pooling layer is inserted regularly to eliminate the
information redundancy in the image. Using max-pooling operation, the space size of
feature mapping is further reduced, and the training parameters and computation of neural
network are declined. Through max-pooling operation, the size of feature map tends to
shrink, and the extracted feature representation is more abstract. After the max-pooling
operation, the feature mapping of the upper layer is flattened, and then input into the
full connection (FC) layer. In traditional neural networks, the FC layer can reshape the
feature mapping into n-dimensional vectors to extract deeper and more abstract features. A
simple hidden layer is designed using lambda function to convert the data inherited by the
module. Then, stack the two branches data, extract the deep features of the data using 3D
convolution, and then process the input deep features through the multiply methods. The
effect is equivalent to the weight representation of the overall features, and the function of
this module is to further perform feature selection on the inherited data.

Unlike 3DCNN-AM, the convolution of 3DCNN-AM-DSC is replaced by DSC, the
first pooling layer is average pooling instead of max-pooling, and the second max pooling
is replaced with global average pooling. Average pooling considers more local information,
conducts average processing on datasets, could retain the invariance of features while
reducing parameters. The function of global average pooling is to evenly pool the whole
feature maps, and then input them into a softmax layer to obtain the scores of each cor-
responding category. For the traditional classification network, the parameters of full
connection account for a large proportion. Therefore, replacing the full connection layer
with global average pooling can greatly reduce network parameters and over-fitting phe-
nomenon. Each channel category of the output feature maps is given meaning, eliminating
the black-box operation of the fully connected layer.

2.5. Evaluation Indicators

Four evaluation indicators are considered in our experimental analysis, including
the overall accuracy (OA), the average accuracy (AA), the kappa coefficient (KC), and
K-fold cross-validation accuracy (CVAK) [60]. The confusion matrix can clearly represent
the number of correct classifications, the number of misclassifications and the total number
of categories for each object, respectively. However, the confusion matrix cannot directly
reflect the classification accuracy of the category, so various classification accuracy indi-
cators derived from the confusion matrix, among which OA, AA and KC are the most
widely used.

Overall classification accuracy (OA): refers to the proportion of correctly classified
category units to the total number of categories. It can be expressed using Equation (3):

OA =
∑i=C

i=1 Ni

∑i=C
i=1 Ni

× 100%, (3)
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where C represents the categories that the samples to be classified, Ni is the number of
samples to be classified in the class i sample, and the number of Ni samples that are properly
classified in the class i sample.

Average classification accuracy (AA): The average of the correct rate of classification
for all categories, reflecting the performance of individual classification. Its calculation is
shown in Equation (4).

AA =
∑i=C

i=1
Ni
Ni

C
× 100%. (4)

The KC presents the ratio that represents a reduction in errors between classification
and completely random classification, and is derived from confusion matrix using for
consistency testing. It could be calculated using Equation (5).

KC =
OA− pe

1− pe
, pe =

∑i=C
i−1 Ni Ni

(∑i=C
i−1 Ni)2

. (5)

K-fold cross-validation accuracy (CVAK) [61] can avoid the occurrence of over-learning
and under-learning, and its results are more convincing. The 10% of the total samples are
randomly selected as the validation set, and the remaining 90% are split into K sub-datasets.
One sub-dataset is reserved as testing data, and the other K− 1 sub-datasets are used for
training. Cross-validation is repeated K times, and each sub-sample is validated once to
obtain the validation accuracy VAi. A single estimate of CVAK is obtained by averaging the
results K times. The advantage of this method is that it repeatedly uses randomly generated
subsamples for training and verification, and the results are verified once each time. There
is no overlap between training and testing datasets, each sample of data is used as training
or testing, and cannot be used for both training and testing in one experiment. It could be
calculated using Equation (6).

CVAK =
∑i=K

i=1 VAi

K
× 100%. (6)

3. Datasets and Experimental Pretreatment
3.1. Datasets

Three classic HRSI datasets—Indian Pines (IP), University of Pavia (UP), and Uni-
versity of Houston (UH)—are applied in our research. The classification of hyperspectral
dataset is essentially the identification of the categories of objects represented by each cell
in space.

The Indian Pines (IP) dataset [62] is an AVIRIS hyperspectral remote sensing dataset
collected from a test site in Indian, USA, in June 1992 and contains 16 land species. The
spatial resolution is approximately 20 m, the space size is expressed as 145× 145 pixels,
the wavelength range is 0.4 ∼ 2.5 µm, and the spectral resolution is 10 nm. The original
dataset consisted of 220 spectral bands, removing 20 noise bands, leaving 200 spectral band
data for effective classification experiments. Figure 5a refers to the RGB false color image
and Figure 5b is the ground truth of the dataset. There are 16 classes of ground objects in
the IP dataset, and their categories and sample size are shown in Table 1. We can see that
the dataset is not balance, the class with the largest sample size has 2455 pixels, and the
smallest has 20 pixels, which may lead to poor generalization ability of the model, and
deep learning methods are prone to over fitting.
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(a) (b)

Figure 5. IP dataset (a) False RGB and (b) Ground Truth.

Table 1. Category and the sample size of the IP dataset.

Kinds Category The Sample Size

1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheats 205
14 Woods 1265
15 Buildings-Grass-Tree 386
16 Stone-Steel-Towers 93

total 10,249

The University of Pavia (UP) dataset [63] refers to a hyperspectral image taken in
2001 of the University campuses in Pavia, Italy, by an ROSIS sensor, containing 9 features.
The spatial resolution is 1.3 m, the size is 610× 340 pixels, and the spectral band range is
0.43 ∼ 0.86 µm. The original dataset consists of 115 spectral bands, after pre-processing,
103 valid bands are retained for effective classification experiments. Figure 6a represents
the RGB false color image of the dataset, and Figure 6b represents the distribution of the
real ground objects. Similarly, Table 2 gives the 9 categories and sample size of objects, the
sample size is abundant compared with that of the IP dataset. However, the sample size
of each category is not balance either, which requires the classification model with strong
generalization ability.
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(a) (b)

Figure 6. UP dataset (a) False RGB and (b) Ground Truth.

Table 2. Category and the sample size of the UP dataset.

Kinds Category The Sample Size

1 Asphalt 6631
2 Meadows 18,649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare Soil 5029
7 bitumen 1330
8 Self-blocking Bricks 3682
9 Shadows 947

total 42,776

The University of Houston (UH) dataset [64] was acquired by the ITRES CASI-1500
sensor in 2012. The spatial size is 349× 1905, and its spatial resolution is achieved at 2.5
m. There are 144 bands in the spectrum of 380 ∼ 1050 nm, covering 15 categories feature
types. The category with the most pixels is stressed grass, with 1254 pixels. The smallest
class is the water with 325 pixels. Their categories and sample size are shown in Table 3.
Spatial resolution was achieved at 2.5 m. Figure 7a refers to the RGB false color image and
Figure 7b is the corresponding ground truth value of the dataset.
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Figure 7. UH dataset (a) False RGB and (b) Ground Truth.
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Table 3. Category and the sample size of UH dataset.

Kinds Category The Sample Size

1 Healthy grass 1251
2 Stressed grass 1254
3 Synthetic grass 698
4 Trees 1244
5 Soil 1242
6 Water 325
7 Residential 1268
8 Commercial 1244
9 Road 1252
10 Highway 1227
11 Railway 1235
12 Parking Lot 1 1233
13 Parking Lot 2 469
14 Tennis Court 428
15 Running Track 660

total 15,030

3.2. Experimental Pretreatment

The experimental code runs on the following configuration: hardware devices include
Win10, lntel(R) Xeon(R) Silver 4210R CPU@2.40 GHz 2.39 GHz + 64.00 GB (with RAM),
NVIDIA GeForce RTX3070. The software devices include Python 3.7.4, Jupyter notebook,
and Tensorflow for the Keras framework backend.

Since the following experiments mainly focus on 3DCNN for classification, these three
datasets need to be preprocessed according to the requirements of 3DCNN. Limited to the
scope of the article, only the IP and UP datasets are discussed below.

The preprocessing of HRSIs can be carried out in the following steps. Firstly, the
HRSI datasets are processed through the conventional remote sensing image processing,
such as radiation correction, geometric correction, and de-noising. It can correct the
geometric deformation of image caused by unstable flight and scanning, eliminate the
influence of atmosphere and sensor, and complete image registration and stitching. Then,
these datasets are normalized, and training sample library is constructed by segmenting
the HRSI with object-oriented segmentation method. The image pixel value or energy
value is converted into reflectivity value, which is compared with the spectrum database
to complete reflectivity inversion. The object-oriented segmentation method is used to
construct the training sample database.

To examine the effect of patchsize and the allocation ratio of training/validation/test
set on classification results, the relevant classification experiments are now conducted based
on the data self-involved factors. Variables include adjacent patchsize and datasets alloca-
tion ratio (Training set: Validation set: Test Set). For different datasets, high-spectroscopic
remote sensing images classification experiments with different patchsize and different
ratios were carried out.

The classification experiment is carried out on the IP and UP datasets. During the
training, the relevant parameters are set in Table 4. The learning curve, which means
the accuracy and loss of the training and validation set are shown in Figure 8. Generally
speaking, the loss at the beginning of the training will be greatly reduced, indicating that
the learning rate is appropriate and that the gradient descent process takes place. Over
several epochs, the loss curve has stabilized and the change in loss is not as obvious as it
was at the beginning. For the IP dataset, 3DCNN-AM could obtain more stable accuracy
and loss in training phases. Nonetheless, for UP dataset, the property is not stable. During
the training phase, both of the accuracy and loss fluctuate violently at about the 30-th epoch,
and then tend to be stabilized. What is more, the following performance of the model for a
single dataset of 3DCNN-AM is more robust than that of 3DCNN.
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Table 4. Relevant parameters of datasets.

Parameter Indian Pines University of Pavia

Original image size 145 × 145 × 200 610 × 340 × 103
Total pixel number 21,025 207,400

Effective pixel 10,249 42,776
Initial setting patchsize 7 11
Training cycle epochs 200 100

Dataset allocation ratio 2:1:7 2:1:7
Learning rate LR 0.0001 0.0001

(a) (b)

(c) (d)

Figure 8. Training loss, validation loss, training accuracy and validation accuracy (learn curves) of
two HRSI datasets. (a) 3DCNN of the IP dataset, (b) 3DCNN-AM of the IP dataset, (c) 3DCNN of the
UP dataset, and (d) 3DCNN-AM of the UP dataset.

Next, data dimensionality reduction is carried out to map the data from the original
high-dimensional space to the low-dimensional space. Figure 9 are false color pictures, and
they show the dimensionality reduced images of the above two datasets after dimensional-
ity reduction by PCA and AE methods. Finally, the object-oriented segmentation method is
used to construct the training sample database, and the optimization model parameters are
trained according to the scale allocation of training data.
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(a) (b) (c)
(a)

(a) (b) (c)

(b) (d) (e) (f)(c)(d) (e) (f) (d)

Figure 9. The several maps after dimensionality reduction by PCA and AE methods. The first row
(a,b) is the IP dataset. The second row (c,d) is the dimension reduced image of the UP dataset.

A valid classification model called 3DCNN-AM applies to IP and UP datasets. AM
can improve the accuracy of feature classification, and 3DCNN can increase the richness
of spatial spectral features. Considering the importance of AM to feature selection, the
accuracy of classification decision-making of individual features can be improved. Based
on the prior knowledge of hyperspectral data, the comparative analysis model is sensitive
to the characteristics of each geo-scale category. The parameters for 3DCNN-AM are shown
in Table 5, it contains detail of the model depth, the convolution size, the total of features,
selection of the ReLu activation function, and Dropout.

Table 5. 3DCNN-AM network structure setting.

Dataset The Number of Layers The Convolution Size × Feature Number ReLU Down Sampling Dropout

Indian Pines
1 3 × 3 × 3 × 128 Yes 2 × 2 not
2 2 × 2 × 2 × 192 Yes 2 × 2 50%
3 3 × 3 × 3 × 256 Yes not 50%

University of Pavia
1 3 × 3 × 3 × 32 Yes 2 × 2 not
2 2 × 2 × 2 × 64 Yes 2 × 2 50%
3 3 × 3 × 3 × 128 Yes not 50%

4. Experimental Results
4.1. Results Without Dimensionality Reduction
4.1.1. Effects of Patchsize

The above experiments verify the effectiveness of the 3DCNN and AM in HRSI clas-
sification. Now we further choose different patchsizes for classification and comparison
experiments. The effects of different patchsizes of hyperspectral datasets in 3DCNN and
3DCNN-AM on classification are compared and analyzed. According to the classification
effect on the two network models, the optimal adjacent pixel block size suitable for a specific
dataset is found. The scale ratio of the original set dataset is 2:1:7. Considering the actual
running equipment conditions and the limitations of network model parameters, the patch-
size should be set as odd and its change range is between 7 and 13 (7 ≤ patchsize ≤ 13),
owing to the limited device. Otherwise, it is easy to exceed the server memory and leads
to operation failure. The experimental results of hyperspectral dataset classification with
different patchsize settings are shown in Table 6. From the table, we can see that for IP
dataset, the best performance is obtained when patchsize is set as 11 for both 3DCNN
and 3DCNN-AM, and the latter is slightly better than the former. For UP dataset, when
the patchsize is set as 9, 3DCNN model perform best, and when patchsize is set as 11,
3DCNN-AM got the best performance. This may indicate that the introduce of AM tends
to obtain better performance when the patchsize is set as 11.
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Table 6. Experimental results of hyperspectral datasets classification with different patchsize settings.
The bold font is the best value in the comparison experiment.

Indian Pines University of Pavia

3DCNN 3DCNN-AM 3DCNN 3DCNN-AM
Patchsize

OA(%) AA(%) Kappa OA(%) AA(%) KC OA(%) AA(%) Kappa OA(%) AA(%) KC

7 97.17 97.04 0.969 96.96 94.60 0.965 98.40 98.44 0.979 94.85 96.27 0.931
9 94.92 95.39 0.942 96.93 96.94 0.965 99.25 99.16 0.990 99.28 98.98 0.991

11 97.48 97.24 0.971 97.87 97.52 0.976 99.16 98.97 0.989 99.42 99.21 0.992

4.1.2. Effects of Dataset Allocation Ratio

Next, the experiment focuses on the impact of dataset allocation ratio of hyperspectral
datasets (Training set: Validation set: Test Set) on the classification accuracy. Initially
set patchsize = 7. Here, we mainly control that the allocation ratio of dataset for 2:1:7.
With the progress of the experiment, the proportion of training set increases by 10% each
time, and that of test set decreases by 10%. It should be noted that the distribution of
training/validation/test sample ratios does not overlap, that is, a sample can only belong
to one dataset in an experiment. Generally speaking, the more training data, the more
conducive to the optimization of the model. The experimental results are shown in Table 7.

Table 7. Experimental results of hyperspectral datasets classification with different proportion of
training samples. The bold font is the best value in the comparison experiment.

Indian Pines University of Pavia

Ratio
3DCNN 3DCNN-AM 3DCNN 3DCNN-AM

OA(%) AA(%) KC OA(%) AA(%) KC OA(%) AA(%) KC OA(%) AA(%) KC

2:1:7 96.04 96.27 0.955 96.44 94.92 0.960 98.83 98.46 0.985 99.64 99.49 0.995
3:1:6 97.51 97.77 0.972 97.40 96.72 0.970 98.46 98.41 0.980 97.76 97.46 0.970
4:1:5 96.91 96.91 0.965 97.66 96.68 0.973 99.57 99.51 0.994 99.08 99.14 0.988
5:1:4 97.66 97.36 0.973 96.36 94.86 0.959 99.23 99.18 0.990 99.63 99.49 0.995

The result in Table 7 present that the indicators in the experimental results generally
show an upward trend with the increase of the proportion of training dataset. We discuss
the IP dataset in the experimental achievement from two directions. Firstly, the influence of
classification effect in different models is analyzed. For the 3DCNN model, the classification
result of 5:1:4 is the best, which is mainly reflected in OA and KC, as shown in the Table 6.
If AA index is considered, the effect of 3:1:6 group is the better, which is 97.77%. For
3DCNN-AM model, with the increase of training data, the classification indexes of the first
three groups of experiments show an upward trend, especially in the 4:1:5 group, OA and
KC are the highest, and OA is 97.66%, reaching the overall accuracy performance of the
5:1:4 experiment of the optimal 3DCNN group. The corresponding KC is also equal to
the coefficient of this group. Meanwhile, the best allocation ratio for AA is 3:1:6 for both
3DCNN and 3DCNN-AM. We also find that as the proportion of training samples increases,
the evaluation metric decreases.

Then, the performances of 3DCNN and 3DCNN-AM for the UP dataset are discussed
in our experiments. For 3DCNN model, the classification indexes of 4:1:5 group are
higher than those of the other three groups, and OA, AA and KC is 99.57%, 99.51%, and
0.994, respectively. In the classification control experiment on 3DCNN-AM model, the
classification indexes of 2:1:7 group is highest than other three groups, and OA, AA and KC
ups to 99.64%, 99.49%, and 0.995, respectively. This result is similar to that of the IP dataset.
Because of the introduction of AM, 3DCNN-AM method can reduce the dependence on
the training sample size to a certain extent.
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In the above two groups of experiments, AM was introduced and the 3DCNN-AM
model was established for HRSI classification. On the premise of given network model
and its parameters, classification experiments based on patchsize of different adjacent
pixel block sizes and different allocation ratio are carried out on the Indian pines and
University of Pavia. The above experiments show that the patchsize and the allocation
ratio of datasets have a certain impact on the hyperspectral classification effect. In terms
of patchsize, the classification indexes of the IP dataset are improved with the increase
of patchsize of training data, and for 3DCNN and 3DCNN-AM under a single group of
patchsize. According to the analysis of AM classification effect, the latter shows better
classification effect. However, the UP dataset is not the same with that the larger the
patchsize, the better the classification effect. In terms of the allocation ratio of dataset, the
indicators in the experimental results of the IP dataset generally show an upward trend
with the increase of the proportion of training datasets. The UP datasets are better when the
proportion of training datasets is 4:1:5, and it is better when the allocation ratio of datasets
is set as 2:1:7 after using 3DCNN-AM. On the whole, for limited data samples, 3DCNN-AM
is conducive to improve the classification accuracy of HRSI classification.

4.2. Results with Dimensionality Reduction

In order to analyze the effects of different dimensionality reduction methods (PCA
and AE) and DSC pruning methods on hyperspectral data classification, 3DCNN and
3DCNN-AM were applied to conduct experiments, respectively. At the same time, a
comparative experiment is performed with the support vector machine (SVM) classifier.
DSC can significantly reduce the parameters involved in the calculation. The PCA operation
selects 99.90% of the effective information for classification experiments. AE can not only
reduce the dimension of high-dimensional data, but also remove the influence of noise in
the dataset. In order to ensure that the number of bands is as consistent as possible, PCA
and AE are used in the comparison of dimensionality reduction methods.

4.2.1. Comparison and Analysis of Classification Results of the IP Dataset

The original data specification of the IP dataset is 145× 145× 200, and the original
spectral dimension is 200. After dimension reduction, some spectral dimensions are re-
tained. PCA retained 108 spectral dimensions, and AE also retains 108 spectral dimensions.
The training cycle is set as 200, the batchsize is 8, and the learning rate is set as 0.0001.

The experimental results in Table 8 provide a lot of information. We can see that
the method we proposed 3DCNN-AM-DSC obtains a comparable result in OA, KC, and
training time compared with the classic dimension reduction methods. The 3DCNN-
AM-DSC method is improved in both OA and KC without preprocessing the data for
dimensionality reduction, and the time consumption is only 16.50% of the original without
DSC. The accuracy of the SVM classifier is lower than that of our proposed method. After
using the dimension reduction method, the result of 3DCNN with PCA model is more
accurate than that of the original method without dimension reduction, and its OA ups to
98.47%.

After the introduction of AM, the AA of the 3DCNN-AM (AE) method decreased
slightly, probably because the dimensionality reduction made the input features lose some
information. Moreover, the AE is a neural network, which means it may need more data to
train for high performance. When the data dimension is large, the introduction of AM does
not help to improve the accuracy, but it can slightly reduce the training time. When the
data are dimensionally reduced, the overall classification accuracy is improved compared
to most methods without dimension reduction. The 3DCNN-AM-DSC model is more time
efficient than all methods in terms of time consumption. As DSC reduces the redundancy
of information to a certain extent, lower the complexity between classes, and reduces the
processing time of data under the same model. The CVA5 of 3DCNN-AM-DSC of the IP
dataset is 94.63%, and that of 3DCNN-DSC is 94.61%.
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Table 8. Classification results of the Indian Pines (IP) dataset with different models. The highest
OA, AA and kappa are shown in bold. The shortest running time is marked in purple, and the most
efficient time (except SVM) is marked in red.

No Dimension Reduction AE PCA DSC
Category

SVM 3DCNN 3DCNN-AM 3DCNN 3DCNN-AM 3DCNN 3DCNN-AM 3DCNN 3DCNN-AM

Alfalfa 11.54 94.44 81.39 100.00 76.09 85.37 100.00 92.31 88.24
Corn-notill 80.32 95.65 97.07 89.12 97.60 98.77 98.04 91.22 97.16

Corn-mintill 69.78 97.53 95.24 96.78 97.83 96.42 97.42 97.41 99.31
Corn 54.87 95.89 83.77 95.49 98.06 95.35 93.64 97.59 89.32

Grass-pasture 88.71 95.54 97.67 99.70 95.54 99.13 98.85 98.41 98.91
Grass-trees 96.28 98.84 99.41 98.45 98.84 99.42 98.81 98.95 99.29

Grass-pasture-mowed 71.43 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Hay-windrowed 91.18 100.00 100.00 100.00 100.00 100.00 100.00 95.96 96.46

Oats 42.86 100.00 90.91 100.00 100.00 100.00 100.00 80.00 76.92
Soybean-notill 78.20 100.00 97.23 95.32 98.07 99.10 98.97 98.90 98.44

Soybean-mintill 90.01 99.64 98.34 98.72 97.12 97.67 98.47 97.86 96.78
Soybean-clean 65.99 90.18 96.02 82.07 89.59 94.47 98.58 89.62 93.17

Wheat 97.39 100.00 100.00 100.00 100.00 100.00 100.00 98.80 98.81
Woods 95.51 97.41 98.74 97.86 99.16 96.57 99.42 98.82 97.67

Buildings-Grass-Trees-Drives 65.57 95.44 91.58 94.07 86.17 100.00 94.70 99.33 90.59
Stone-Steel-Towers 54.17 95.83 86.25 97.14 95.38 94.52 100.00 89.74 82.50

OA(%) 83.29 96.30 95.60 95.47 96.74 97.80 98.47 96.46 96.68
AA(%) 72.11 95.76 94.78 96.55 95.59 97.30 98.62 95.31 93.97

Kappa × 100 80.83 95.76 95.00 94.84 96.28 97.49 98.25 95.96 96.21
Training time(s) 1812.83 1593.85 998.85 846.67 974.57 863.67 300.30 234.27

Test time(s) 15.05 61.86 51.83 39.98 33.91 40.83 34.40 0.40 0.21

The classification prediction effect of the IP dataset is shown in Figure 10. 3DCNN-AM-
DSC pays more attention to local details, and 3DCNN-AM with PCA has more advantages
in category edge and retention of small features. Although 3DCNN with AE method
reduces the data dimension, it also loses the external contour of ground objects, resulting
in more broken classification results in the classification results of 3DCNN-AM with AE.
Therefore, it can be summarized from the image classification map that the introduction
of AM can improve the extraction ability of small features to a certain extent and retain
the continuity of features. At the same time, the introduction of DSC can greatly reduce
the training and testing time of 3DCNN and 3DCNN-AM models, the map produced by
3DCNN-AM-DSC retains better continuity and integrity in the classification results , and
the training and testing process is less time-consuming.



Remote Sens. 2022, 14, 2215 18 of 27

Alfalfa

Corn-notill

Corn-mintill

Corn

Grass-pasture

Grass-trees

Grass-pasture-mowed

Hay-windrowed

Oats

Soybean-notill

Soybean-mintill

Soybean-clean

Wheats

Woods

Buildings-Grass-Tree

Stone-Steel-Towers

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Classification maps of the IP dataset. (a) 3DCNN (b) 3DCNN-AE (c) 3DCNN-PCA
(d) 3DCNN-DSC (e) 3DCNN-AM (f) 3DCNN-AM-AE (g) 3DCNN-AM-PCA (h) 3DCNN-AM-DSC.

4.2.2. Comparison and Analysis of Classification Results of the UP Dataset

After preprocessing, the spectral dimension of the UP hyperspectral dataset is 103.
Finally, PCA retains 60 spectral dimensions, and AE retains 60 spectral dimensions. Under
the condition that the retained data contains 99.9% valid information, and the results of the
experiment are shown in Table 9.

Table 9. Classification results of University of Pavia (UP) dataset with different models. The highest
OA, AA and kappa are shown in bold. The shortest running time is marked in purple, and the most
efficient time (except SVM) is marked in red.

No Dimension Reduction AE PCA DSC
Category

SVM 3DCNN 3DCNN-AM 3DCNN 3DCNN-AM 3DCNN 3DCNN-AM 3DCNN 3DCNN-AM

Asphalt 95.90 98.37 99.06 99.21 98.25 99.57 99.05 95.52 95.94
Meadows 98.79 99.88 99.88 98.95 99.41 99.88 99.95 99.80 99.92

Gravel 85.98 97.08 97.58 99.72 99.65 99.04 98.82 100.00 100.00
Trees 96.56 100.00 100.00 99.95 99.95 100.00 100.00 99.75 100.00

Painted metal sheets 99.24 100.00 100.00 99.78 99.78 99.25 100.00 99.82 100.00
Bare Soil 92.67 99.38 99.11 99.88 99.86 99.92 99.02 92.49 97.11
Bitumen 91.23 100.00 98.91 99.67 91.23 99.89 93.61 97.86 100.00

Self-Blocking Bricks 90.85 96.64 98.63 97.75 99.12 97.88 97.53 94.73 98.61
Shadows 100.00 99.39 99.69 100.00 99.85 99.84 99.09 99.73 100.00
OA(%) 95.98 98.96 98.66 99.17 99.05 99.61 99.21 97.65 98.83
AA(%) 94.58 98.33 99.11 99.44 98.57 99.47 98.56 97.75 99.06

Kappa × 100 94.66 98.62 98.23 98.90 98.74 99.49 98.96 96.90 98.45
Training time(s) 7152.31 8354.14 3996.70 4035.83 4042.93 4035.47 1913.00 2024.30

Test time(s) 32.43 371.79 490.92 207.41 210.32 210.49 201.99 8.60 2.26

Firstly, without dimension reduction, data changes are roughly the same as those of
the Indian Pines datasets except the AA accuracy of 3DCNN-AM. The lowest classification
accuracy is got by SVM classifier, which is 95.98%. Secondly, the 3DCNN-AM-DSC we
proposed greatly improves the operating efficiency compared with the previous 3DCNN
and 3DCNN-AM, whose training time is 7152.31 s and 8354.14 s respectively. Thirdly, the
accuracy of classification results does not change much after dimensionality reduction,
but the time consumption is reduced greatly. Compared with 3DCNN and 3DCNN-
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AM, 3DCNN-AM-DSC has the highest efficiency, followed by 3DCNN-AM with AE and
3DCNN-AM with PCA.

We also found that adding an AM module to the 3DCNN model requires additional
time. These indicate that DSC reduces the time consumed by AM, and there is a good
match between DSC and AM. Meanwhile, the overall accuracy of 3DCNN-AM-DSC is not
the highest, but gravel, trees, painted metal sheets, bitumen and Shadows are the highest
in individual classification accuracy, accounting for about 56% of all categories. In general,
for the UP dataset, 3DCNN-AM-DSC not only reduces the time consumption, but also
obtains a good accuracy performance in the extraction of a single category. The CVA5 of
3DCNN-AM-DSC of the UP dataset is 98.74% and that of 3DCNN-DSC is 98.45%.

The classification prediction effect of the UP dataset is shown in Figure 11. Similarly,
3DCNN-AM retains the continuity of features, which is more advantageous in the retention
of category margins and small features. There are only nine types of features with a larger
sample size in the UP dataset, and the spectral information of features is very different,
which makes it easier to be distinguished. However, with the reduction of data dimensions,
especially AE dimension reduction method, the OA, AA, and KC are higher, but the
corresponding classification result map is quite different from the actual object category,
which may indicate that AE dimensionality reduction leads to broken ground features.

Asphalt
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Painted metal sheets

Bare Soil

Bitumen

Self-Blocking Bricks

Shadows

(a) (b) (c) (d)
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Figure 11. Classification maps of the UP dataset. (a) 3DCNN (b) 3DCNN-AE (c) 3DCNN-PCA
(d) 3DCNN-DSC (e) 3DCNN-AM (f) 3DCNN-AM-AE (g) 3DCNN-AM-PCA (h) 3DCNN-AM-DSC.

4.2.3. Comparison and Analysis of Classification Results of UH Dataset

The spectral dimension of the UH hyperspectral dataset is 144 after preprocessing, and
after dimension reduction (PCA or AE), there are 78 spectral bands retained. The training
cycle is 100, the batchsize is 8, and the learning rate is 0.0001.

From the experimental results in Table 10, we find that 3DCNN-AM does not increase
but decreases in high dimensions. This may attribute to the non-representative nature
of AM shielding due to the high-dimensional information of the hyperspectral spectrum.
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Besides, the UH dataset may require sufficient parameters to support 3DCNN calculations.
However, the DSC pruning method reduces a large number of model parameters, making
the final classification accuracy of the DSC pruning method worse. In addition, after using
the dimension reduction method, the result of PCA dimension reduction is more accurate
than that of the original one in the 3DCNN model. The classification accuracy of 3DCNN
using principal component analysis is the highest at 99.60%. Moreover, DSC spends more
time than SVM but 92.00% less than 3DCNN method. At the same time, the accuracy of
classification is not greatly affected, only 2.68% higher than that of 3DCNN. The CVA5 of
3DCNN-AM-DSC of UH dataset is 94.21% and that of 3DCNN-DSC is 93.69%.

Table 10. Classification results of University of Houston (UH) dataset with different models. The
highest OA, AA and kappa are shown in bold. The shortest running time is marked in purple, and
the most efficient time (except SVM) is marked in red.

No Dimension Reduction AE PCA DSC
Category

SVM 3DCNN 3DCNN-AM 3DCNN 3DCNN-AM 3DCNN 3DCNN-AM 3DCNN 3DCNN-AM

Healthy grass 99.53 98.88 99.77 99.19 94.80 99.80 99.60 98.75 99.78
Stressed grass 99.40 81.95 79.69 99.61 99.04 100.00 99.67 93.47 95.35
Synthetic grass 99.42 100.00 100.00 100.00 100.00 100.00 99.57 97.88 100.00

Trees 98.89 98.98 99.38 99.02 100.00 99.61 99.60 98.80 99.17
Soil 97.92 99.80 99.80 99.19 99.59 100.00 99.67 98.96 98.58

Water 98.83 100.00 100.00 96.15 100.00 100.00 99.57 99.21 78.13
Residential 96.49 82.58 97.72 98.24 98.93 99.59 99.60 98.76 91.46
Commercial 0.96 100.00 98.18 85.17 94.13 99.80 99.67 98.09 97.34

Road 95.81 89.44 78.21 90.24 97.79 99.60 99.57 95.08 96.90
Highway 98.28 99.36 97.16 99.51 97.99 98.60 99.60 94.39 99.38
Railway 96.52 97.58 88.73 97.01 94.46 99.21 99.67 96.98 96.40

Parking Lot 1 94.96 97.97 98.44 97.46 99.35 99.16 99.57 96.67 98.11
Parking Lot 2 69.11 100.00 93.71 97.93 97.73 100.00 99.60 98.24 98.18
Tennis Court 99.53 90.21 96.15 100.00 100.00 100.00 99.67 98.31 94.59

Running Track 99.02 100.00 100.00 99.63 100.00 99.63 99.57 100.00 99.63
OA(%) 96.73 94.54 93.48 96.64 97.89 99.60 98.83 97.22 96.72
AA(%) 95.98 95.78 95.13 97.21 98.25 99.67 99.04 97.57 96.07

Kappa × 100 96.45 94.10 92.94 96.36 97.71 99.57 98.74 96.99 96.46
Training time(s) 1945.40 1671.65 1077.74 914.16 1093.74 933.77 160.11 245.68

Test time(s) 6.46 66.85 62.96 45.60 38.57 45.93 38.95 33.67 48.95

The classification prediction results of the UH dataset are shown in Figure 12. AE
method resulted in no ground prediction information on the right side. This may be due
to the loss of important data in the process of dimensionality reduction or the inability to
correctly predict the ground category, resulting in the loss of the external contour of the
ground object. The introduction of AM improves this, compensates some local information
after dimensionality reduction, and does better in detail. At the same time, the introduction
of DSC maintains the good continuity and integrity of the classification results.
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Figure 12. Classification maps of UH dataset. (a) 3DCNN (b) 3DCNN-AM (c) 3DCNN-AE (d) 3DCNN-
AM-AE (e) 3DCNN-PCA (f) 3DCNN-AM-PCA (g) 3DCNN-DSC (h) 3DCNN-AM-DSC.

5. Discussion

DSC is introduced to improve the efficiency of 3DCNN / 3DCNN-AM and the 3DCNN-
AM-DSC was proposed for classifying hyperspectral images, which can significantly reduce
the time consumption while maintaining comparable accuracy. We compared the clas-
sification performance of the three datasets according to different models (3DCNN and
3DCNN-AM) with DSC model and two dimensionality reduction methods (PCA and AE).
In the IP dataset, the classification results using 3DCNN-AM with PCA are better, and
3DCNN-AM-DSC requires less computation time to obtain comparable classification re-
sults. 3DCNN combined with PCA method obtains higher accuracy and 3DCNN-DSC gets
the best efficiency with the UP dataset. In the UH dataset, better classification results were
obtained using 3DCNN and PCA methods, and the 3DCNN-AM-DSC method took the
least amount of time. The results show that DSC is superior to traditional dimension reduc-
tion methods in time and obtains a certain degree of accuracy and applicability, although
the performance of AM varies according to the dataset. In addition, the classification effect
of SVM is closely related to the characteristics of the dataset itself [65], some datasets are
higher, while others are lower. The performance of our proposed method is basically similar
in the three datasets, all of which greatly improve the efficiency of HRSI classification and
obtain good classification accuracy.

From the perspective of overall classification performance, 3DCNN with PCA/3DCNN-
AM with PCA can achieve better classification results. However, 3DCNN-DSC/3DCNN-
AM-DSC can achieve relatively high time efficiency while taking into account the classifi-
cation accuracy. 3DCNN with PCA can obtain high accuracy in the UP and UH datasets,
and the corresponding time consumption is 4253.49 s and 1139.67 s, respectively. Similarly,
3DCNN-AM with PCA obtains the best classification accuracy on the IP dataset, and the
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required time is 898.07 s. 3DCNN-DSC can achieve the best time efficiency in the UP
and UH datasets, with corresponding classification accuracies of 97.65% and 97.22%, time
efficiency increased by 77.10% and 91.77%, and their classification accuracies are 1.96%
and 2.38% lower than the best ones, respectively. 3DCNN-AM-DSC can obtain the best
time efficiency in the IP dataset, the corresponding classification accuracy is 96.68%, the
time efficiency is increased by 87.08%, and the classification accuracy is reduced by 1.79%
compared with the best one. In these three datasets, the time efficiency of 3DCNN-AM-DSC
is improved by at least 75.77% and at most by 87.37%. Similarly, the time efficiency of
3DCNN-DSC is improved by at least 77.10% and at most by 91.77%. The introduction of
DSC can reduce the time consumption by maximum of 91.77%, and the accuracy can be
reduced by 2.38% compared with other methods.

In order to compare the obtained results with those of other researchers (refs), we
limit our discussion to the authors’ papers using the Indian Pines dataset and identify the
same classification of ground objects as ours. The comparison results are shown in Table 11.
Due to the difference in batch size and allocation ratio, most of the work focuses on the
improvement of OA and the reduction of time consumption. In this study, when using the
IP dataset and the 3DCNN-AM-DSC model, an OA of 96.68% and a time consumption of
234.48 s were obtained.

Table 11. Comparison of the obtained results with those reported in the literature.

Author Methods OA(%) Kappa × 100 Train Time(s) Test Time(s)

[10]

CNN 76,91 73.50 141.00 8.98
SSRN 92.95 91.99 574.20 10.18

FDSSC 93.95 93.10 258.60 13.65
CSMS-SSRN 95.58 95.58 586.80 19.06

[12]

SAE-LR 93.98 93.13 / /
DBN-LR 95.91 95.34 / /
2DCNN 95.97 95.40 / /
3DCNN 99.07 98.93 / /

[21]
PCA 76.07 / / /
LLE 75.98 / / /

PCA-SVM 99.73 / / /

[26] 1DCNN 83.40 / 1080.00
2DCNN 91.50 / 1020.00

[27] 3DRBF-SVM 92.42 94.83 327.00
3DCNN-LR 97.56 97.02 1675.20

[66] SpecAttenNet 92.22 91.10 / /
[67] HIS-BERT 98.77 / 432.00 0.45

[68]

DRN 97.12 97.69 993.70 5.74
HybridSN 91.21 97.77 289.80 2.43

DFFN 97.63 98,68 5927.40 29.08
SFE-SCNN 98.93 98.44 440.40 3.66

[69] SLRC 98.86 98.70 739.93

[70] SVM 79.79 76.88 / /
MSS-GF 97.58 97.24 / /

[71] SDSC-AI 97.43 96.31 471.61

Our results
3DCNN 96.30 95.76 1812.83 61.86

3DCNN-AM 95.60 95.00 1593.85 51.83
3DCNN-AM-DSC 96.68 96.21 234.27 0.21

In a study by Lu et al. [10], CSMS-SSRN uses an attention mechanism to enhance
the expressiveness of image features from both channel and spatial domains. Thus, the
classification accuracy is improved, and 95.58% OA and 605.86s time consumption are
obtained. This experiment compares models such as CNN, SSRN, and FDSSC, and can
obtain better classification accuracy than them. The network structure of CSMS-SSRN is
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more complex, so it takes more time to achieve higher accuracy. In the experiments of
Li et al. [12], 3DCNN as well as three other (SAE, DBN and 2DCNN) models were tested
for deep learning classification. 3DCNN obtains 99.07% accuracy, outperforming the other
three methods, but lacks the discussion of time consumption. Chen et al. [21] also carried
out similar classification and proposed HRSI classification method based on PCA and SVM.
Compared with traditional PCA and LLE and other dimensionality reduction methods, the
accuracy of PCA-SVM is as high as 99.73%, and there is also a lack of discussion on time.

Several versions of convolution have been developed by Hsieh and Kiang et al. [26] to
address possible misclassification between similar labels by augmenting the input vector.
The 2DCNN accuracy of the principal component is relatively high, 91.05%, and the time is
1020.00 s. To solve the HSI-FE and classification problems with limited training samples,
Chen et al. [27] proposed a 3DCNN-LR model. Compared with the 3DRBF-SVM model,
3DCNN-LR improves OA by 5.14%, but at the same time increases the time consumption
by about 5 times. Mou and Zhu et al. [66] used a spectral attention module and obtained an
OA of 92.22%. Nor did they compare time consumption. However, it will consume a lot of
time to directly process the original data without dimensionality reduction or DSC pruning.
He et al. [67] used the bidirectional encoder of the BERT transformer in the experiment,
and the method obtained 98.77% high accuracy and 432s time consumption. Compared
with our proposed 3DCNN-AM-DSC, sparse representation-based methods such as the
literature [68–71], they also obtain good classification accuracy, but the dataset takes a lot of
time to realize the representation coefficients of intra- and inter-class samples. Compared
with SLRC (98.86%), MSS-GF (97.58%) and SDSC-AI (96.3%) methods, 3DCNN-AM-DSC
can reduce OA by at least 0.94%, but with lower time consumption. Overall, the maximum
accuracy difference between 3DCNN-AM-DSC and these methods is 2.18%, and in terms of
time efficiency, 3DCNN-AM-DSC is very competitive. Experiments show that with 5-layer
convolution 3DCNN-AM-DSC achieves comparable results to complex neural networks,
very infomative simple neural networks, and sparse representation-based models on HRSI
classification tasks [72].

In addition, the classification performance of different classifiers depends on the
different number of training samples and patchsize in each class. The class-specific and
overall classification accuracy obtained by different types of features, the proposed strategy
can significantly improve the classification performance even if the size of training samples
and patchsize in each class are different.

6. Conclusions

A method called 3DCNN-AM-DSC is proposed for HRSI classification and prediction.
Specifically, AM is introduced into the HRSI classification task to ensure a good representa-
tion of the learned features. Furthermore, DSC is introduced into the HRSI classification
task to reduce convolution parameters and improve computational efficiency. The experi-
mental results demonstrate the superiority of the proposed method compared to several
state-of-the-art HRSI classification methods. The 3DCNN-AM-DSC method provides an
alternative for dimensionality reduction for hyperspectral classification. That is, it is not
necessary to reduce the dimension, but to reduce the model parameters through DSC,
which can also greatly improve the time efficiency and reduce the amount of calculation
while keeping the accuracy slightly reduced. Compared with the traditional dimensionality
reduction method, our method is more time efficient and simpler to process, and will not
damage the continuity of the ground objects in the original image.

However, it should be noted that while 3DCNN-AM-DSC perform boost in reducing
time consumption and keeping comparable classification accuracy, it is still limited to
working well in unbalanced sample size of HRSI. In the follow-up, we will further focus
on the case of unbalanced sample size, consider other features selection and screening
strategies, which can be combined with other light weight convolution, pruning technology
and neural network search technology, to effectively improve the classification accuracy
and reduce time consumption of HRSI. Meanwhile, meta-learning will be used to improve
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the generalization ability of the trained model and reduce the negative transfer of the model
between different types of hyperspectral data, thereby reducing the long-term large-scale
training pressure of the model and improving the time efficiency.
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