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Abstract: Effectively using rich spatial and spectral information is the core issue of hyperspectral
image (HSI) classification. The recently proposed Diverse Region-based Convolutional Neural
Network (DRCNN) achieves good results by weighted averaging the features extracted from several
predefined regions, thus exploring the use of spatial consistency to some extent. However, such
feature-wise spatial regional consistency enhancement does not effectively address the issue of wrong
classifications at the edge of regions, especially when the edge is winding and rough. To improve
the feature-wise approach, Data-wise spAtial regioNal Consistency re-Enhancement (“DANCE”) is
proposed. Firstly, the HSIs are decomposed once using the Spectral Graph Wavelet (SGW) to enhance
the intra-class correlation. Then, the image components in different frequency domains obtained
from the weight map are filtered using a Gaussian filter to “debur” the non-smooth region edge.
Next, the reconstructed image is obtained based on all filtered frequency domain components using
inverse SGW transform. Finally, a DRCNN is used for further feature extraction and classification.
Experimental results show that the proposed method achieves the goal of pixel level re-enhancement
with image spatial consistency, and can effectively improve not only the performance of the DRCNN,
but also that of other feature-wise approaches.

Keywords: hyperspectral image classification; spatial regional consistency; SGWT; Gaussian filtering

1. Introduction

In recent years, hyperspectral imaging and application have attracted great attention
in the field of earth remote sensing. HSI classification is the basic task of hyperspectral
data analysis and application [1–4]. The spatial regional consistency characteristics [5] of
the image should be considered during the process of HSI since some correlations exist
between the ground objects in the HSI. Moreover, the problem of background interference
widely exists in the existing public HSI data [6], which also makes it difficult to accurately
identify and classify ground objects. In summary, it is very important to make full use of
the rich spatial consistency information [7] and improve the quality of HSIs [8].

The research on spatial consistency has attracted increasing attention as a result of
the development of remote sensing classification techniques. The spatial consistency of
an image can be simply defined as every small window having similarity with the other
windows in the same image, especially the adjacent windows [9]. Therefore, the correlation
between a pixel and its neighboring pixels should be considered during feature extraction.
In addition, usually, similar objects tend to be distributed in a block, that is, pixels belonging
to the same class are usually close to each other. Therefore, the spatial consistency in HSI is
firstly used to enhance the quality of HSI. Based on the Gibbs algorithm, Rand et al. [10]
regard HSI as a set of high-dimensional vectors related to spectral information, and divide
a large set into several subsets of vectors according to spatial similarity. The spatial
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consistency of spectral information at each site is enhanced by facilitating subsequent
spectral mixing analysis (SMA) of HSI. Yue et al. [11] combine multiple similar pixels
adjacent in the spatial domain into one block to realize the pixel reduction in HSI according
to the spectral angle. Secondly, spatial consistency is also used for feature extraction of
HSIs. The spatial correlation features of HSIs can be obtained by using Spectral Graph
Wavelet Transform (SGWT) [12], which fully considers the relationship between each pixel
and its adjacent pixels. Nadia et al. [13] use SGWT to extract texture information of a HSI
as secondary features in HSI classification. In addition, SGW can also be seen as a filter,
which can be used to extract the multi-scale characteristics of an image. The SGW [14] is
used as the convolution kernel to construct a Graph Wavelet Neural Network (GWNN),
which is used to classify the nodes of the graph. Dong et al. [15] decomposes the vibration
signal by using SGW to obtain its multi-scale characteristics, and converts the results into
path graphs at multiple levels. The above spatial consistency enhancement methods are
mainly based on hyperspectral raw data (data-wise).

Chen [16] applied deep learning to HSI classification for the first time and achieved
good results. Convolutional Neural Networks (CNNs) in hyperspectral image classification
tasks [17–20] use convolutional kernels to traverse the whole image and extract valuable
features. In the process of convolution, the spatial consistency of the image has been
considered. The recently proposed DRCNN [21] divides an image block into multiple
regions, which are sent into different CNN models instead of only a single CNN model. The
classification process is more consistent using the regional consistency assumption in the
spatial domain since multiple feature extractions and weighted averages are performed in
DRCNN. Overall, the advantage of DRCNN is that it strengthens the spatial consistency of
the feature-wise approach and increases the number of samples by multi-region operation.
However, it has some limitations. Firstly, DRCNN ignores the spatial consistency at the
data-wise (pixel) level since the correlation between the pixels in an HSI is considered
less. Secondly, the operation of multiple convolutions will lead to the loss of image edge
information, which will cause the problem of edge point misclassification. Furthermore, to
remove the noise of HSIs, the denoising effects of commonly used filters such as the bilateral
filter [22], trilateral filter [23], and Gaussian filter have been compared. The Gaussian filter
is selected in this paper since it can remove Gaussian noise and smooth the edges of
images. In particular, the Gaussian filter can greatly simplify the noise variance estimation
and analysis [24]. Therefore, a Data-wise spAtial regioNal Consistency re-Enhancement
(DANCE) method is proposed in this paper to further improve the spatial consistency.
Based on the above analysis, DANCE can overcome the shortcomings of the DRCNN in
terms of spatial consistency in data-wise approaches to some extent.

The main contributions of this paper are as follows:

• To solve the misclassification problem of HSI image edge points, a novel and effective
DANCE method is proposed to enhance the spatial regional consistency of data-wise
approaches, which can promote the performance of some state-of-the-art methods.

• To better integrate the feature-wise and data-wise method, the structure of the DRCNN
model is optimized through experiments, which can comprehensively improve the
spatial regional consistency.

The remainder of this paper is organized as follows. The related basic knowledge is
introduced in Section 2. The proposed method is described in Section 3. The experiment
results and analysis are discussed in Section 4. The discussion is given in Section 5. The
conclusions are drawn in Section 6.

2. Preliminary
2.1. Characteristics of Weighted Graphs

A hyperspectral image can be regarded as an undirected weight graph G = (V, E, w),
where V is the vertex set, E is the edge set, w is the weight function between vertices and is
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not less than 0. Take an M×M image as an example; each pixel in an image has k neighbor
nodes Nk. The value of element ai,j in A is defined as:

ai,j =

{
w(i, j), i f j Nk(i)

0, otherwise
(1)

where 1 ≤ i, j ≤ M2. For a weight graph G, the degree of each vertex i is recorded as d(i),
which is equal to the sum of all weighted edges values of a vertex i. d(i) is defined as:

d(i) =
M2

∑
j=1

ai,j (2)

The matrix D is defined as:

Dij =

{
d(i), i f i = j
0, otherwise

(3)

Then the Laplace operator L of a graph G is defined as:

L = D−A (4)

where L is a real symmetric matrix, and the eigenvalues of L are defined as λl(l = 0, 1, ..., M2−1),
all of which are non-negative. The corresponding eigenvectors are Xl, which are mutually
orthogonal. The eigenvalues λl can be sorted to be 0 = λ0 < λ1 ≤ · · · ≤ λN−1, then:

Lχl = λlχl (5)

2.2. Graph Fourier Transform

The Fourier transform of a signal f is shown in Equation (6).

f̂ (ω) =
∫

f (x)e−jωxdx (6)

The inverse Fourier transform is given by:

f (x) =
1

2π

∫
f̂ (ω)ejωxdω (7)

where ejωx is the exponential eigenfunction. The Spectral Graph Fourier Transform (SGFT)
is obtained by replacing the set of eigenvectors ejωx with the graph eigenvectors χl , i.e., the
SGFT of a function f with the length L.

f̂ (l) = 〈 f ,χ`〉 =
L−1

∑
n=0

f (n)χ∗` (n) (8)

where 0 ≤ l, n ≤ L− 1. The inverse SGFT is given by:

f (n) =
L−1

∑
`=0

f̂ (l)χ`(n) (9)

2.3. Spectral Graph Wavelet Transform

The spectral wavelet kernel function g is similar to the wavelet kernel function in the
Fourier domain. Generally, g can be regarded as a bandpass filter satisfying g(0) = 0 and
lim

x→∞
g(x) = 0. Each Fourier mode of a given function f can be modulated by the wavelet

operator Tg = g(L):
∧

Tg f (l) = g(λl) f̂ (l) (10)
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Then the Fourier inverse transform is applied to Equation (10):

(Tg f )(m) =
M2−1

∑
`=0

g(λl) f̂ (l)χl(m) (11)

The wavelet operator on scale s is defined as Ts
g = g(sL), where Ts

g corresponds to the
wavelet operator ψ(s, ω) in a classical wavelet transform. Then the spectral graph wavelet
is obtained as shown in Equation (12):

ψs,n(m) =
L−1

∑
`=0

g(sλl)χ
∗
l (n)χl(m) (12)

Formally, the wavelet coefficients for a given function f are obtained by taking the
inner product of the wavelets:

W f (s, n) = 〈ψs,n, f 〉 (13)

Then the SGWT for a graph function f ∈ RL at vertex n and scale s is shown in
Equation (14):

W f (s, n) = (Tg f )(n) =
N−1

∑
l=0

g(sλl) f̂ (l)χl(n) (14)

3. Materials and Methods
3.1. Materials

In later experiments, three public hyperspectral datasets were selected, namely, include
Indian Pines data, Salinas-small data, and Pavia University data.

3.1.1. Indian Pines Data

Indian Pines data are an image of the Indiana farm in the USA taken by the AVIRIS
imager, which is the first dataset used for HSI classification tasks. The wavelength range of
the AVIRIS spectral imager is 0.4 to 2.5 µm with a spatial resolution of about 20 m. A total
of 220 spectral bands are collected by the sensors. Since 20 bands cannot be reflected by
water, the remaining 200 bands were used for this study. The image size is 145 × 145. There
are 16 kinds of ground objects in the image. The numbers of sample points per class and
the numbers involved in the training set and the testing set are shown in Table 1. There is
a serious class imbalance in the Indian Pines data. Specifically, there are only 46, 28, and
20 samples in classes 1, 7, and 9, respectively. In addition, even the ratio of the sample
numbers between classes 9 and 11 is less than 1:100. Therefore, 25% of the samples were
taken as the training samples for classes 1, 7, and 9 for all of the experiments described in
Sections 3.2 and 4.

Table 1. The numbers of total, training, and testing samples for the Indian Pines data.

# Class Total Training Testing

1 Alfalfa 46 12 34
2 Corn-notill 1428 143 1285
3 Corn-mintill 830 83 747
4 Corn 237 24 213
5 Grass-pasture 483 48 435
6 Grass-trees 730 73 657
7 Grass-pasture-mowed 28 7 21
8 Hay-windrowed 478 48 430
9 Oats 20 5 15

10 Soybean-notill 1072 97 875
11 Soybean-mintill 2455 246 2209
12 Soybean-clean 593 59 534
13 Wheat 205 21 184
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Table 1. Cont.

# Class Total Training Testing

14 Woods 1265 127 1138
15 Building-grass-trees-drives 386 39 347
16 Stone-steel-towers 93 9 84
- Total 10,349 1041 9208

3.1.2. Salinas Data

The Salinas data are an image (512 × 217) of the Salinas Valley, CA, USA, captured by
the AVIRIS sensor, which contains 16 classes of ground objects with 224 bands. Since the
computation complexity is high using all samples, 9 classes of ground objects were taken
to verify the effectiveness of the proposed method. The spatial resolution of the Salinas
data reaches 3.7 m. Since bands 108–112, 154–167, and 224 cannot be reflected by water,
the remaining 204 bands were used for this study. The sample number of each class is
relatively balanced.

3.1.3. Pavia University Data

The Pavia University data are a top view image (610 × 340) of the University of Pavia,
Italy, acquired by the ROSIS-03 sensor. The wavelength range of the sensor is 0.43–0.86 µm
and the spatial resolution of the data is 1.3 m. A total of 103 spectra bands were selected in
this paper; the other 12 bands were removed since they are heavily influenced by noise.
There are 207,400 pixels in an image. Among them, only 42,776 pixels include ground object
information, and the remainder are background pixels.

3.2. Methods
3.2.1. Overview of the Classification Approach

The overall flowchart of the proposed method is shown in Figure 1. Two main stages
are included, i.e., DANCE and DRCNN classification. The HSI is first operated by DANCE
to obtain images with enhanced spatial consistency. The size of HSI is not changed in this
stage. Then, the preprocessed image is sent to the DRCNN to obtain the classification result.
The detailed processes are introduced in Sections 3.2.2 and 3.2.3.
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3.2.2. Data-wise spAtial regioNal Consistency re-Enhancement (DANCE)

The proposed DANCE method mainly includes five stages: blocking, SGW frequency
decomposition, filtering and SGW reconstruction, and splicing, as shown in Figure 1. First,
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the HSI is divided into some sub-image blocks. Then, each sub-image block is decomposed
to obtain its spectrum graph feature using the SGW. Thirdly, the Gaussian filter is used to
filter the block’s noise and smooth its edge. Fourth, the inverse SGW is used to reconstruct
the filtered sub-image block. Finally, all sub-image blocks are spliced to a preprocessed HSI.
The operations of SGW frequency decomposition, filtering, and SGW reconstruction are
described in detail below.

(1) SGW Decomposition.

First, a weight map is calculated according to the distance between the pixels and their
neighbor nodes, and denoted as an adjacency matrix. The neighborhood nodes are selected
based on the minimum distance principle. Taking Nk = 4 as an example, the 4 nearest nodes
are selected as in Figure 2.
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Figure 2. The selection of neighborhood nodes.

The SGWT with scale s is carried out on the weight map, and the decomposed images
are obtained in four frequency bands, which are a low-frequency component LF and three
high-frequency components, HF1, HF2, and HF3, as shown in Figure 1.

(2) Gaussian Filtering.

Gaussian filtering is applied to the image components obtained in step (1). The
parameters of the Gaussian filter are determined by the experiments, which are described
in Section 4.1. Taking the image block of Pavia University as an example, the Gaussian
filtering results of four components, GLF, GHF1, GHF2, and GHF3, are shown in Figure 3
for d = 5, σ = 0.5. The low-frequency component mainly includes the coarse information of
the image according to Figure 3a. Furthermore, the edge information of the image is mainly
in the high-frequency components (Figure 3b–d). It is clear that the image is smoothed and
the noise is removed to a certain extent, which makes the processed image more consistent
with the true spatial domain distribution.
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(3) SGW Reconstruction.

The filtered components with different frequency bands are reconstructed by inverse
SGW to obtain the preprocessed hyperspectral feature map, as shown in Figure 4. The
reconstructed image using four frequency band images after Gaussian filtering is shown in
Figure 4a. Figure 4b shows the un-preprocessed image. For clear observation, two areas in
the two images are marked with red rectangle and enlarged as shown in Figure 4. It can
be seen that the preprocessed image using the DANCE method can improve the spatial
consistency in both flat regions and edges.
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To quantitatively evaluate the spatial consistency enhancement of DANCE, the regions
with the size of 5 × 5, 10 × 10, and 15 × 15 were randomly selected 10 times in the
processed HSI and the original HSI. The average Euclidean distances between all pixels in
these regions were calculated, as shown in Table 2. It can be seen that the average Euclidean
distance between pixels after DANCE is reduced, regardless of the size of the region, which
further verifies the enhancement of spatial consistency by DANCE.

Table 2. The average Euclidean distances with and without DANCE on the Indian Pines data.

# 5 × 5 10 × 10 15 × 15

without DANCE 1.0775 × 10−3 3.1700 × 10−3 8.8460 × 10−3

with DANCE 1.0571 × 10−3 1.4450 × 10−4 8.0556 × 10−3

3.2.3. Construction of the DRCNN

The remote sensing image classification performance using DRCNN [17] is effectively
improved by fully considering the feature-wise spatial consistency. Since the proposed
DANCE can provide the more spatial consistency information based on a data-wise ap-
proach, the preprocessed remote sensing image can be taken based on the preliminary
features, which are sent to the DRCNN to classify the ground objects. The structure of the
DRCNN is adjusted by experiments based on the preprocessed data. The preprocessed
image is divided into the K × K sub-block images. In general, K is odd. A sub-block image
is taken as a Global Region. Its left, right, top, bottom, and central regions are extracted
as the new features, which are trained using the different networks. For convenience, the
six selected regions are named GR (Global Region), RR (Right Region), LR (Left Region),
TR (Top Region), BR (Bottom Region), and CR (Central Region). The sizes of five of the
areas, with the exception of CR, can be determined by the window radius r. Thus, the size
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of GR (SGR) is (2 r + 1) × (2 r + 1). The size of LR and RR is set as (2 r + 1) × (r + 2). The
size of TR and BR is set as (r + 2) × (2 r + 1). Two series of experiments were performed to
determine the sizes of GR, RR, LR, TR, BR, and CR. The schematic diagram examples of
feature extraction with r = 3, 4, 5, 6 are shown in Figure 5. Each region can be taken as a GR.
Its TR, BR, LR, and RR are shown with different color rectangles.
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(1) The selection of r and the proportion of training set.

In the cross-validation experiments based on the Indian Pines data, Salinas-small data,
and Pavia University data, r was set to be 3, 4, 5, 6. The size of CR was set 3 × 3. The
proportion of training samples was taken as 3%, 5%, 10%, 13%, and 15%. The results of
the experiments are shown in Figure 6, where the different colored lines represent the
classification Overall Accuracies (OAs) with different r values.
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As can be seen from Figure 6, the best OA can be achieved with r = 6 on the Indian
Pines data and Salinas-small data. The OA is the best when r = 5 on the Pavia University
dataset. The OA is obviously good when using 15% of the training samples for these
data. Based on the above analysis and the time complexity, 10% of the data were set as the
training set, and the radius of the sub-block image was taken as 6. Therefore, the sizes of
the five windows are shown in Table 3.
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Table 3. The size of windows of DRCNN.

xR GR RR LR TR BR

Size 13 × 13 13 × 8 13 × 8 8 × 13 8 × 13

A share of 10% samples of the Indian Pines data were selected as the training set and
r = 6. The size of CR was set as 1 × 1, 3 × 3, and 5 × 5. The OA were obtained using
all features of the six regions, as shown in Figure 7. It can be seen that the classification
accuracy is the highest when the size of the CR is 3 × 3. Therefore, 3 × 3 was selected as
the size of the CR.
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4. Experiment Results and Analyses

The parameter selection experiment on Gaussian filter was designed first to achieve
the optimal performance of the proposed method. Then, multiple experiments were
performed to prove the effectiveness of DANCE and DANCE-DRCNN. The experimental
environment was MATLAB (R2019 a) and Python running on a workstation with a GeForce
RTX 2080 Ti GPU.

4.1. Parameters Selection of Gaussian Filter

The parameters of the Gaussian filter used for the four components extracted by SGWT
are important parameters in the DANCE method. A (2 k + 1) × (2 k + 1) discrete Gaussian
convolution kernel H is defined as:

Hi,j =
1

2πσ2 e−
(i−k−1)2+(j−k−1)2

2σ2 (15)

where 1 ≤ i, j ≤ (2k + 1), σ is the variance. Thus, the two parameters affecting the Gaussian
filter effectiveness are the dimensionality of the Gaussian convolution kernel d = 2 k + 1
and the variance σ. To determine the optimum values of these two parameters, d was
taken as 3, 5 and 7, and σ was set as 0.3, 0.5, and 0.7 respectively. Taking the Indian Pines
data processed by SGWT as an example, in which 25% of the samples were taken as the
training samples for classes 1, 7, and 9, and 10% of the samples for the other classes were
taken as training set, the DRCNN constructed in Section 3.2.2 was used for training and
classification. The classification results with various parameters are shown in Table 4.
According to Table 4, d was set to 5 and σ was set to 0.5 in this study.
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Table 4. Classification accuracy of different parameters in GF (%).

σ

d
Total Train Test

0.3 96.68 96.64 96.95
0.5 98.68 98.82 97.69
0.7 97.88 96.23 97.36

4.2. Results and Comparisons
4.2.1. Comparisons with DRCNN and Baselines

To further demonstrate the effectiveness of the proposed method, comparative exper-
iments between DANCE-DRCNN, DRCNN, and baselines were designed. The training
set proportion was set as 10%. Seven state-of-art approaches were selected. SVMMRF [25]
represents the traditional method, and combines an SVM classifier and a Radial Basis
Function (RBF). As an improvement to ResNet, A2S2K-ResNet [26] was also chosen for
comparison. The HSID-CNN method [27] was selected since it fuses multi-scale features
to remove noise. R-PCA-CNN [19] and Gabor-CNN [28] are all based on the method of
combining the classical preprocessing methods with CNN. SSRN [29] and 3D-CNN [20]
were compared with the proposed method since their classification results are relatively
good at present. The classification maps of the three datasets are shown in Figures 8–10.
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It can be seen that the Figures (a) in the three maps (Figures 8–10) represent the
ground truth of these data, and Figures (b–f) show the obtained classification maps using
SVMMRF [25], R-PCA-CNN [19], 3D-CNN [20], DRCNN [21], and the proposed method,
respectively. For clear observation, some of the image edges framed in the classification
map were enlarged, as shown in Figures (g) or (h), which correspond to the Figures (b–f) in
order from top to bottom. Illegible misclassification points are labeled with dashed circles.
Firstly, compared with SVMMRF, R-PCA-CNN, and 3D-CNN methods, the proposed
method can effectively remove the influence of Gaussian noise and enhance the continuity
of the classification maps. In addition, the misclassification rate of the edge points is greatly
reduced. For example, the edge misclassification of the Corn-mintill class in the Indian
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Pines data (the red area in Figure 8), the Grapes untrained class in the Salinas-small data
(the blackish green area in Figure 9), and the Gravel class in the Pavia University dataset
(the red area in Figure 10) is significantly corrected. Then, compared with DRCNN, the
misclassification rate of ground object edge reduces obviously when using the proposed
DANCE approach.
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The comparisons of the classification performance between the proposed method,
DRCNN, and baselines on the three datasets are shown in Tables 5–7, which list the accuracy
of each class, OA, and AA. It can be seen that the proposed method achieved the highest
accuracy in the three datasets. Compared with the traditional SVM classification method,
the OA using DANCE-DRCNN is improved by about 20% compared to the Indian Pines
data, and by about 8% compared to the Salinas-small data and Pavia University data. At
the same time, compared with other CNN methods, the proposed method improved the
OA to some extent. Moreover, several classes with low accuracy in DRCNN are improved
by the proposed method.
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Table 5. Comparison of the classification accuracy (%) among the proposed method, DRCNN, and
the baselines on the Indian Pines data.

Class SVMMRF HSID-CNN A2S2K-
RestNet

R-PCA-
CNN Gabor-CNN SSRN 3D-CNN DRCNN DANCE-

DRCNN

1 44.62 100.00 98.37 100.00 95.62 52.73 100.00 71.74 100.00
2 68.51 88.47 90.51 92.20 89.20 98.28 94.27 96.18 98.90
3 70.36 88.71 98.55 97.62 85.65 97.23 99.03 90.99 96.93
4 57.07 92.23 91.12 100.00 90.31 96.71 95.51 87.63 98.04
5 92.20 99.16 94.67 100.00 88.92 97.56 95.94 100.00 99.27
6 86.70 88.76 97.71 98.65 93.17 98.62 98.64 100.00 99.20
7 85.71 100.00 96.41 100.00 96.88 98.60 100.00 96.18 100.00
8 97.05 91.58 98.72 100.00 90.67 95.42 100.00 96.75 100.00
9 36.36 33.33 99.46 96.23 96.35 98.62 100.00 100.00 100.00

10 69.76 90.87 95.38 95.79 89.87 96.90 97.66 95.14 99.38
11 75.48 84.64 96.46 95.93 94.78 98.02 97.77 97.89 98.29
12 81.38 92.14 92.28 96.72 98.26 96.91 91.53 93.22 99.21
13 93.16 99.42 95.66 100.00 95.46 99.59 100.00 100.00 100.00
14 92.18 91.90 89.76 93.86 90.18 98.91 99.80 97.32 99.35
15 76.11 88.19 95.67 97.50 89.63 97.66 96.69 89.69 93.84
16 95.95 96.01 96.69 100.00 97.30 98.67 97.37 88.91 98.73

OA 78.54 88.80 97.31 96.97 95.75 97.71 97.27 96.15 98.61
AA 73.37 89.09 95.46 97.78 92.82 95.03 95.88 93.85 98.82
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Table 6. Comparison of the classification accuracy (%) among the proposed method, DRCNN, and
the baselines on the Salinas-small data.

Class SVMMRF HSID-CNN A2S2K-
RestNet

R-PCA-
CNN Gabor-CNN SSRN 3D-CNN DRCNN DANCE-

DRCNN

1 100.00 99.73 100.00 100.00 100.00 100.00 99.88 100 100.00
2 99.64 99.28 99.70 99.62 99.20 100.00 99.87 100 100.00
3 98.96 99.49 99.47 98.94 99.50 99.49 100.00 99.88 100.00
4 99.97 99.93 99.60 99.95 99.80 99.30 100.00 100.00 100.00
5 99.81 100.00 100.00 100.00 99.75 98.50 99.86 99.86 100.00
6 79.78 99.97 87.64 99.95 85.15 93.40 100.00 96.34 100.00
7 99.43 99.99 99.45 98.37 99.48 99.30 100.00 99.89 100.00
8 98.41 99.76 99.64 98.30 98.13 100.00 99.47 98.81 100.00
9 97.58 99.86 100.00 92.10 95.66 100.00 100.00 100.00 100.00

OA 92.72 99.83 98.32 99.27 97.46 98.28 99.97 99.91 100.00
AA 97.06 99.78 98.39 98.30 97.41 97.88 99.90 99.42 100.00

Table 7. Comparison of the classification accuracy (%) among the proposed method, DRCNN, and
the baselines on the Pavia University data.

Class SVMMRF HSID-CNN A2S2K-
RestNet

R-PCA-
CNN Gabor-CNN SSRN 3D-CNN DRCNN DANCE-

DRCNN

1 94.56 94.32 98.22 99.70 96.45 99.81 99.85 99.35 99.81
2 96.08 95.49 98.90 99.84 96.95 99.94 99.93 99.88 99.97
3 85.73 94.07 88.91 92.31 96.09 99.35 98.46 99.72 100.00
4 96.41 99.46 93.56 99.35 99.22 99.81 100.00 98.99 99.85
5 99.59 99.57 99.11 100.00 99.92 99.94 100.00 100.00 100.00
6 93.18 97.94 80.26 94.35 94.69 99.95 100.00 98.22 99.98
7 89.66 97.68 93.31 98.52 87.36 100.00 100.00 100.00 100.00
8 85.75 84.11 93.64 94.85 87.38 98.59 99.46 98.39 99.97
9 99.88 98.05 99.37 98.96 100.00 100.00 100.00 100.00 100.00

OA 92.18 94.97 95.23 97.54 95.67 99.77 99.82 99.58 99.92
AA 94.15 95.63 93.92 98.25 95.37 99.71 99.74 99.39 99.95

4.2.2. Ablation Experiments

According to the strategy described in Chapter 3, the HSI was firstly decomposed into
four components, Gaussian filtering was then used, and it was finally reconstructed. To
verify the effectiveness of the proposed approach, the HSI processed only by GF (GF-HSI),
the four components after GF (GLF, GHF1, GHF2, and GHF3), and the HSI after DANCE
were the inputs of DRCNN, respectively. The experimental results with different inputs are
shown in Table 8, which lists the accuracy of each class, OA, and Average Accuracy (AA).

Firstly, it can be seen that the classification accuracy of the approach using only GF is
lower than that of the proposed combination. This may be because the high-frequency and
low-frequency features of the HSI are filtered together when the global HSI is filtered using
the GF. Secondly, it can also be seen that the classification accuracy using GLF is higher
than that using three other components (GHF1, GHF2, and GHF3) because it represents
most of the image information. However, it is still lower than the DANCE method since
some edge information is lacking in the GLF. Finally, since GHF1, GHF2, and GHF3 only
represent the high-frequency components of the image (edge information), the results using
GHF1, GHF2, and GHF3 are lower in order. Specially, the edge information is not vital for
the classification of some large ground objects. In summary, the proposed DANCE method
fusing SGWT and GF has higher classification accuracy than any of the approaches using
only one of these methods.
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Table 8. Comparison of classification results (%) using DRCNN with different inputs on Indian Pines
data.

# GF-HSI GLF GHF1 GHF2 GHF3 DANCE

1 100.00 100.00 73.12 62.00 51.84 100.00
2 95.76 83.06 72.35 67.51 37.89 98.90
3 96.92 98.99 87.33 47.15 63.03 96.93
4 97.54 100.00 61.16 63.64 59.88 98.04
5 100.00 100.00 96.22 100.00 78.82 99.27
6 100.00 100.00 100 99.25 88.13 99.20
7 95.45 100.00 81.23 43.59 39.33 100.00
8 100.00 99.31 91.15 99.51 33.57 100.00
9 100.00 100.00 87.98 100.00 79.75 100.00

10 89.43 95.26 91.45 92.33 92.33 99.38
11 96.64 95.55 84.22 85.42 70.15 98.29
12 96.38 96.66 88.07 53.75 68.45 99.21
13 97.37 98.40 71.52 96.69 75.32 100.00
14 100.00 99.73 96.49 84.77 83.41 99.35
15 87.31 85.36 68.99 62.14 80.05 93.84
16 87.37 79.05 93.16 100.00 88.12 98.73

OA 96.13 94.52 86.59 78.61 69.15 98.61
AA 96.26 95.71 84.03 74.90 68.13 98.82

4.2.3. The Improvement with DANCE in Other Methods

To demonstrate the effectiveness of the proposed method for other feature-wise ap-
proaches, the data were first preprocessed using the DANCE method. Based on the
preprocessed data, all comparison methods used in Section 4.2.1 were performed to classify
the ground objects like the proposed method. The experimental results are shown in Table 9.
As can be seen from the results in Table 9, the DANCE method not only improves the
classification accuracy of DRCNN, but also that of the other methods. Thus, it was further
verified that the proposed DANCE method is an effective solution for the HSI classification.

Table 9. Comparison of the classification accuracy (%) among the proposed method and the baselines
on the Indian Pines data.

OA SVMMRF HSID-
CNN

A2S2K-
RestNet

R-PCA-
CNN

Gabor-
CNN SSRN 3D-CNN DRCNN

without DANCE 78.54 88.80 97.31 96.97 95.75 97.71 97.27 96.15
with DANCE 81.67 90.12 98.29 97.35 96.82 97.91 98.13 98.61

5. Discussion
5.1. The Selection of the Input Size in DANCE

Before the use of DANCE, an HSI is divided into many blocks having the same size;
then, the undirected graphs of blocks are obtained by spectral graph theory. Therefore,
the size of blocks determines how many pixels are used simultaneously for spatial consis-
tency, which can affect the performance of DANCE. Based on the analysis, the selection
experiments of the sub-block size in DANCE were designed. To generate a node graph of
every HSI block, the sub-block size must be an integer. Thus, the input size of Indian Pines
data was set to 145 × 145, 29 × 29, and 5 × 5. The image after the use of DANCE is sent to
the DRCNN for classification, and the results are shown in Table 10. Smaller blocks mean
more iterations, which in turn affects the running time. Therefore, the running time with
different image block sizes is also shown in Table 10.
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Table 10. Comparison of the different sub-block sizes on the Indian Pines data.

# 145 × 145 29 × 29 5 × 5

OA (%) 98.59 98.61 97.57
AA (%) 97.21 98.82 96.22

running time of DANCE 58.44 ± 2.26 s 368.38 ± 3.62 s 4601.54 ± 9.21 s

It can be seen that the best classification results are obtained when the size of the HSI
block is set to 29 × 29. Compared with the size of 145 × 145, the smaller image block only
contains the information of spatial consistency with its neighborhoods, which is better
than the result of computing all pixel points together. In addition, when the size is set to
5 × 5, the more iterations lead to huge computation complexity. Therefore, the input size
in DANCE was selected as 29 × 29 on Indian Pines data.

In summary, the selection of the image block size needs to consider both the classifi-
cation performance and the running time. According to the above experimental results,
it is clear that good performance can be achieved when the middle block size is selected
in all possible sizes. Therefore, the sub-block sizes were set to 128 × 37 and 122 × 85 for
Salinas-small data and Pavia University data, respectively. However, for different data,
further study of the evaluation criteria for the optimum sub-block size is still necessary.

5.2. The Computation Cost of DANCE

To evaluate the computation cost of DANCE, the Indian Pines data were taken as an
example. The HSI was first divided into blocks with the size of 29 × 29, and passed into
DANCE ten times. The computational costs are shown in Table 11, which includes the
averages and variances of disk usage, CPU usage, and the running time.

Table 11. Computational cost of DANCE on the Indian Pines data.

Disk Usage CPU Usage Running Time

1236 ± 23.4 MB 36.12 ± 1.4% 368.38 ± 3.62 s

It can be seen that the proposed DANCE does not greatly increase the burden of image
processing. However, the running time is still not short, and thus needs to be optimized in
future research.

6. Conclusions

Motivated by the DRCNN method using feature-wise spatial regional consistency,
a method named Data-wise spAtial regioNal Consistency re-Enhancement (DANCE) is
proposed, which fully considers the relationship between pixels and combines the SGWT
with Gaussian filtering. Then, DRCNN is used to realize the HSI classification. Experimen-
tal results show the proposed DANCE method can effectively enhance the spatial regional
consistency of images based on a data-wise approach. It can be seen in Section 4.2.1 that
the proposed method performs better than other baselines and DRCNN. Firstly, compared
with other baselines, the proposed method makes full use of the spatial consistency of both
the data-wise and feature-wise approaches. For both the middle and edge areas of the
ground objects, the misclassification points are evidently reduced. Then, compared with
DRCNN, DANCE improves the quality of HSIs by enhancing the spatial consistency of the
data-wise approach and removing the Gaussian noise. In particular, it can be seen that the
accuracy of edge points is improved in the classification maps. The disadvantage is that
DANCE increases computational cost compared with only DRCNN.

Some additional work should be further researched. Firstly, the result of six regions
in the DRCNN is adopted by the contact strategy. Therefore, the central region does not
achieve the role of re-correcting the misclassified points. This issue should also be given
further attention in future work. Regarding another aspect, the proposed method does not
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consider the spectral correlations between different bands, which leads to the problem of
redundancy with longer training time and larger storage space. The above two issues were
not addressed in this study. In the future, we will conduct further research.
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