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Abstract: Infrared imaging plays an important role in space-based early warning and anti-missile
guidance due to its particular imaging mechanism. However, the signal-to-noise ratio of the infrared
image is usually low and the target is moving, which makes most of the existing methods perform
inferiorly, especially in very complex scenes. To solve these difficulties, this paper proposes a
novel multi-frame spatial–temporal patch-tensor (MFSTPT) model for infrared dim and small target
detection from complex scenes. First, the method of simultaneous sampling in spatial and temporal
domains is adopted to make full use of the information between multi-frame images, establishing
an image-patch tensor model that makes the complex background more in line with the low-rank
assumption. Secondly, we propose utilizing the Laplace method to approximate the rank of the tensor,
which is more accurate. Third, to suppress strong interference and sparse noise, a prior weighted
saliency map is established through a weighted local structure tensor, and different weights are
assigned to the target and background. Using an alternating direction method of multipliers (ADMM)
to solve the model, we can accurately separate the background and target components and acquire
the detection results. Through qualitative and quantitative analysis, experimental results of multiple
real sequences verify the rationality and effectiveness of the proposed algorithm.

Keywords: infrared image sequences; dim and small target detection; complex background

1. Introduction

Infrared imaging is flexible, convenient and easy to conceal due to its unique imaging
mechanism. These advantages make infrared imaging of great significance in military
applications such as early warning, infrared precision strikes, and space-based debris de-
tection [1]. Among them, infrared dim and small target detection is the key step. Therefore,
modern military warfare puts forward higher requirements for infrared target detection.
However, the infrared target usually appears dim and small because of the long imaging
distance, lacking obvious features, especially in complex backgrounds [2]. Therefore, how
to detect the target effectively and accurately has become a hot topic for scholars from all
over the world. Although there is a sea of infrared target detection approaches, the existing
infrared target detection methods still face huge challenges, especially in the detection of
rapidly moving targets and complex backgrounds when the quality of the infrared image
is low.

1.1. Related Works

Generally speaking, infrared dim and small target detection methods can be divided
into two categories [3]: detect-before-track (DBT) and track-before-detect (TBD). As the
name suggests, DBT focuses on the information in a single frame, and its idea is to detect the
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target from each frame, thereby detecting the entire target. TBD focuses on the information
utilization between multiple frames. However, the TBD methods require the accumulation
of multiple frames, which have low timeliness, and require better hardware equipment, so
the practicability is relatively poor. At present, the DBT methods have higher computational
efficiency and stronger applicability, which is the focus of various countries.

Typical methods of TBD mainly include 3D matched filtering [4], that spatial–temporal
saliency model adaptive matched filtering [5], the spatial–temporal saliency model [6,7],
and so on. However, the background and target of the infrared image are not often static.
The rapid changes in the background and target make the accuracy of the detection method
based on the TBD idea relatively low. Moreover, the TBD method requires the accumulation
of multiple frames with low timeliness and demands better configuration, which gives
TBD insufficient practicability.

The idea of the popular DBT method is to detect the target from every frame and is
mainly divided into three categories [8]:

(1) The first kind of detection method is based on the assumption of background con-
sistency. This idea assumes that the background is consistent and the targets are
destructive pixels in the uniform background so that the target pixels can be ex-
tracted by filtering. Commonly used methods include Tophat filtering [9], maximum
mean filtering and maximum median filtering, etc. [10]. The principle of this kind of
method is relatively simple, but the robustness to noise is not strong, and the detection
performance is relatively poor.

(2) In order to improve the detection accuracy and robustness of traditional filtering
methods, scholars have combined human visual system (HVS) [11] to infrared dim
and small target detection. Chen and others [12] firstly utilized saliency feature
extraction and proposed the local contrast measure (LCM), which is used to calculate
the local contrast saliency map of each pixel and detect the small targets on the
saliency map. On this basis, many methods have been subsequently developed.
Han et al. [13] proposed an improved local contrast measure (ILCM) by changing
the method of taking the slider in LCM, which improved the detection performance.
Wei et al. [14] proposed a multiscale patch-based contrast measure (MPCM) under
the assumption that the background is uniform and the target is bright. Bai et al. [15]
proposed a detection method based on derivative entropy-based contrast measure
(DECM). Shi et al. [16] proposed a high-boost-based multiscale local contrast measure
(HB-MLCM) method based on high-boost-based contrast detection. Lu et al. [17]
proposed a new small target detection method based on multidirectional derivative-
based weighted contrast measures (MDWCM). Han et al. [18], who improved the
filtering window and introduced a three-layer filtering window, proposed a new
detection framework named multiscale tri-layer local contrast measure (TLLCM).
Hao et al. [19] considered the brightness characteristics of the target and proposed a
method based on multiple morphological profiles (MMP). Zhang et al. [20] detected
infrared targets by improving pixel growth using two-dimensional density-distance
space. HVS-based methods have been widely applied because they require less prior
information and the time consumption is low. However, these approaches are as
sensitive to noises as previous filtering methods and the detection results severely
depend on the choice of parameters, whose performances are poor, especially in the
face of complex backgrounds.

(3) To solve the difficulties in extracting the target features and the adaptability to the
scenes for previous algorithms, a method based on the low-rank and sparse decompo-
sition (LRSD) framework is proposed. Based on the characteristics of infrared images,
these methods avoid extracting the characteristics of the target itself. Instead, it makes
low-rank and sparse assumptions for the background and the target as a whole,
respectively, and models the image as consisting of noise, background, and target
components. Through the establishment of the objective function and the optimization
algorithm, the final detection result is obtained. Gao et al. [21] firstly proposed the



Remote Sens. 2022, 14, 2234 3 of 36

method of infrared patch image (IPI), which assumes that the background is low-
rank, and the target is sparse, using nuclear norm minimization (NNM) to replace
the rank function of the matrix. However, NNM has a problem of excessive target
shrinkage. To solve this problem, Dai et al. [22] introduced the concept of re-weighting
each patch and proposed a weighted infrared patch image (WIPI), using singular
value partial sum minimization [23] to approximate the image rank. By introducing
the γ norm to approximate the rank of the non-convex function and adding the L2,1
norm to reduce the false alarm of strong edges, the non-convex rank approximation
minimization (NRAM) model was proposed [24]. Zhang et al. [25] also used the LP
norm to approximate the rank and proposed NOLC model. Inspired by the total
variation (TV) norm, Wang et al. [26] improved the robustness of the algorithm in
non-uniform scenes by introducing the TV regularization term into the constructed
model. Rawat et al. [27] replaced NNM with partial sum minimization (PSM) of
singular values based on IPI and introduced the TV norm (TV-PSMSV) for infrared
target detection. In addition, some subspace learning models have also been applied
to the detection of small infrared targets, such as self-regularized weighted sparse
(SRWS) [28], the stable multi-subspace learning (SMSL) [29] method and so on, which
have also achieved good results.
To further improve the computational efficiency and the detection effect, Dai et al. [30]
introduced the theory of tensor into the low-rank sparse model by transforming
the matrix construction method [31,32], and proposed a reweighted infrared patch
tensor (RIPT) model. Because tensors can make better use of the structural informa-
tion between pixels, the research on tensors has since received extensive attention.
Zhang et al. [33] proposed an image-block model using the information between pic-
tures. Through adding the prior weight information of the corner and edges and using
the partial sum of tensor singular values to approximate the rank of the non-convex
function, partial sum of tensor nuclear norm (PSTNN) was proposed [34]. The PSTNN
model approximates the rank by preserving the summation of some singular values,
while the reservation is defined by a fixed energy ratio, which should be different
for different scenes so that the estimation of various images can be improved. Zhang
et al. [35]. proposed an edge and corner awareness-based spatial–temporal tensor
model (ECA-STT) by introducing an edge–corner awareness indicator and adding
a tensor-based non-convex tensor low-rank approximation (NTLA) regularization
term to the model. Liu [36] preserved more information in the spatial–temporal do-
main by giving different weights to the spatial TV norm and the temporal TV norm,
and thus proposed a new model, which shows a better performance in complex scenes.
Kong [37] used a Log operator to replace the L0 norm to approximate the rank of the
background, also adding the spatial–temporal TV norm and thus proposed infrared
small-target detection via non-convex tensor-fibered nuclear norm rank approximation
(LogTFNN).

With the development of deep learning networks, some scholars have introduced
deep learning methods into infrared target detection. Dai et al. [38] added local contrast
to the network, embedding low-level information into high-level feature maps, and pro-
posed attentional local contrast networks (ALCnet) for infrared small-target detection.
Wang [39] built a model by generating an adversarial network for false alarms and missed
detections as well. To alleviate the problem of insufficient spatial information of target
objects, Qi et al. [40] proposed a single-stage small-object detection network (SODNet) to
detect small objects after integrating professional feature extraction and information fusion
technology. Due to the lack of infrared datasets [41] and the characteristics of images [36],
the development of deep learning in infrared target detection is relatively difficult.

1.2. Motivation

Through the related work, we can see that traditional IPT models usually apply the L1
norm to approximate the L0 norm, considering every singular value equally. The result
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obtained by this inaccurate approximation may be sub-optimal. Although some methods
in the rank approximation have been recently proposed, such as the sum of the singular
values in PSTNN or the approximation by Log operator in LogTFNN, the approximation
of the rank still needs to be improved. In this article, we propose a rank approximation
by Laplace operator. The proposed method has a more accurate approximation than other
methods. In addition, it can automatically assign different weights to each singular value.

On the other hand, the existing methods have good performance in dealing with
simple background situations, but cannot achieve good performance when the target
movement changes rapidly and the background has significant noises and highlighted
areas that will produce a lot of false alarms [42]. In these complex scenes, the traditional
sliding window sampling method of a single frame finds it difficult to meet the hypothetical
requirement of low rank for the background. Only considering the information of a single-
frame image for constructing the model, the algorithm cannot achieve good detection
results. Therefore, the use of spatial information and inter-frame information is necessary.

Moreover, noises and clutter edges can cause false alarms in detection results. Prior
weights used in RIPT ignore the features of the corners, which causes missing detections,
while the fixed prior weights used in PSTNN and LogTFNN are only applicable to some
scenes. In different images, the importance of the edge information and the corner point
information should be different. In order to solve this problem, we propose a new prior
weight calculation method.

Inspired by these perspectives, we proposed a multi-frame spatial–temporal patch-
tensor (MFSTPT) model for infrared small-target detection in complex scenes. The main
contributions of this article are as follows.

(1) Tensor construction exploits spatial and temporal information. We propose an ap-
proach to combine both spatial information and temporal information to construct the
tensor model. The constructed model satisfies the low-rank assumptions much better
and can also help to remove the false alarm clutters.

(2) Approximation of rank by the Laplace operator. The Laplace operator is introduced to
approximate the rank that has better performance than other methods in this paper. It
assigns different weights to each singular value, which helps us to obtain an accurate
background estimation.

(3) Weighted prior weights. We propose a method for computing prior weights by
weighting, which can give different weights to the corner information and edge
information. By adjusting the importance of two structures, it is better at dealing with
dim and small targets.

(4) We apply the tensor construction, the rank approximation and weighted prior weights
to the IPT model for infrared small-target detection, and the process of applying
alternating direction method of multipliers (ADMM) to solve the model are introduced
in detail. Experimental results verify the superior performance of our method.

The rest of the article is arranged as follows. The second section describes the math-
ematical symbols and formulas used in this paper, and the third section introduces the
proposed model, including the construction of local prior weights, the proposed sampling
method, and the introduction of Laplace approximation. The optimization process is ex-
plained in detail. The fourth part introduces the process of conducting experiments and
makes qualitative and quantitative evaluations. Finally, the discussions and conclusions
are illustrated in the fifth section and the last part, respectively.

2. Notations

For some symbols and theorems that will be used in this work, firstly, we will give
some specific explanations. The symbols involved are explained in Table 1.



Remote Sens. 2022, 14, 2234 5 of 36

Table 1. Mathematical symbols.

Notation Instruction

X/X/x/x Tensor/matrix/vector/scalar
Xn,m,k its (n, m, k)th element

X:,:,k or X(i)/X:,m,:/Xn,:,: k-th frontal/m-th lateral/n-th horizontal slice
Xi the i-th iteration of X
X(i) the mode-i unfolding matrix of X

‖X‖0
The zero norm of X is the number of

non-zero elements
‖X‖1 The sum of all non-zero elements in X

‖X ‖∗
The kernel norm of X is the sum of all singular

values in the matrix

‖X‖F

The Frobenius norm of X is the sum of the
squares of all values in the tensor and then the

square root
X = f f t(X, [], 3) Fourier transform of X
X = i f f t(X, [], 3) Inverse fourier transform of X

Theorem 1. Tensor singular value decomposition (t-SVD) algorithm.

The t-SVD [43] is not carried out in the original domain, like SVD. The properties of
the matrix are calculated in the Fourier transform domain [44]. Given a three-dimensional
tensor X ∈ Rn1∗n2∗n3, it can be broken down into:

X = U ∗ S ∗VT (1)

where U ∈ Rn1∗n1∗n3, V ∈ Rn2∗n2∗n3 are orthogonal tensors, that is UT ∗U = U ∗UT , V ∗
VT = VT ∗ V. S ∈ Rn1∗n2∗n3 is a diagonal tensor. Each frontal slice of S is an orthogonal
matrix as shown in Figure 1. The algorithm flow is in Algorithm 1.

Figure 1. Illustration of t-SVD.

Algorithm 1: Three-dimensional tensor decomposition by t-SVD. t-SVD of
3D tensors.

Input: X ∈ Rn1∗n2∗n3

Output: U, S, V after tensor decomposition
1. X = f f t(X, [], 3)
2. Count each front slice U, S, V through
for i =1, · · · , d(n3 + 1)/2e do

[U(i), S(i), V(i)
] = SVD(X(i)

)
end
for i = d(n3 + 1)/2e+ 1, · · · , n3 do

U(i)
= conj(U(n3−i+2)

);

S(i)
= (S(n3−i+2)

);

V(i)
= conj(V(n3−i+2)

);
end
3. Count U = i f f t(U, [], 3), S = i f f t(S, [], 3), V = i f f t(V, [], 3)
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Definition 1. As mentioned in PSTNN [25], the conjugate transpose of a tensor is defined as
follows [45]:

(XT)(1) = (X(1))T (2)

(XT)(l) = (X(n3+2−l))T l = 2, · · · , n3 (3)

3. Proposed Model
3.1. Image Patch Tensor (IPT) Model

Through the analysis of the characteristics, the infrared image can be modeled by three
parts, which are low-rank background components, sparse target components and additive
noise components [21,25]. The model of images can be expressed as:

fD = fT + fB + fN (4)

Among them, fT , fB, fN , fD represent target, background, noise component and origi-
nal infrared image, respectively. The IPI model makes full use of this feature, and its model
is expressed as

D = B + T +N (5)

where T ,B,N ,D represent the target, background, noise and the original infrared image.
This does not directly detect the small targets in infrared images, but constructs the image
patches by sliding a window of a certain size and divides the obtained patches into multiple
columns of the matrix. Due to the imaging mechanism of the infrared images, the pixels
in the background are very similar and thus the built matrix model is fully non-locally
correlated. Thereby, the background matrix can be considered as a low-rank component,
while brighter small targets occupy little pixels, which can be considered sparse. In this
way, the target detection problem is transformed into a robust principal component analysis
(RPCA) problem, which has been widely used since it was proposed [46,47].

One of the big shortcomings in the IPI model is that it destroys the local characteristics
between pixels [48]. In order to optimize the model, the image patch tensor (IPT) is
proposed. The assumption of this model is similar to the IPI model and is shown in
Equation (6):

D = B + T + N (6)

where D, B, T, N ∈ Rm∗n∗k describe the input image tensor, background tensor, target
tensor and noise tensor, respectively. According to the hypothesis, the target tensor is
a sparse tensor, which satisfies ‖T‖0 <A, where A is a constant determined by image
complexity and represents the degree of sparsity. At the same time, it is generally assumed
that the noise is additive Gaussian noise, which satisfies ‖N‖F < δ, and if δ > 0 we have
‖D− B− T‖F < δ. We make assumptions about the background as:

rank(B(1)) ≤ q1, rank(B(2)) ≤ q2, rank(B(3)) ≤ q3 (7)

where q1, q2, q3 are positive numbers related to the background, and rank(B(1)) represents
the number of non-zero singular values of matrix B(1). Figure 2a is the original background
image, and (b) is the three sets of singular values obtained by expanding the front slice,
horizontal slice, and side slice. No matter in which mode, the singular value drops very
fast, which verifies our hypothesis and we can draw the conclusion that the background
image is low-ranking. Moreover, the sparse nature of the target is obvious. Therefore,
the detection model can be described as:

min
B,T

rank(B) + λ‖T‖0

s.t. D = B + T + N
(8)

where λ is a trade-off factor. Solving the L0 norm is an NP-hard problem, and the L1 norm
is generally used instead [49].
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Figure 2. Illustration of the low-rank property of the unfolding matrices. (a) is the original background
image, and (b) is the three sets of singular values obtained by expanding the front slice, horizontal
slice, and side slice.

3.2. Information of Local Structure Tensor

Non-local correlation is robust to the entire background, but strong edges or some
bright corners will cause false alarms in the target image [37] because the sparsity of these
background residuals can be confused with the target. The structure tensor of each pixel
position in the image contains two eigenvalues, λ1 and λ2. When the pixel is located at
the corner area, λ1 ≥ λ2 � 0; when it is located at the edge area, λ1 � λ2 ≈ 0; when the
pixel is at the flat edge area, λ1 ≈ λ2 ≈ 0. The eigenvalues of the structure tensor can be
calculated by the following formulas [50]:

Jρ = Kρ ∗
(
∆Dρ ⊗ ∆Dρ

)
=

(
J11 J12
J21 J22

)
=

(
Kρ
∗ Ix

2 Kρ
∗ Ix Iy

Kρ
∗ Ix Iy Kρ

∗ Iy
2

)
(9)

λ1 = 1
2 (J11 + J22 +

√
(J22 − J11)

2 + 4J12
2)

λ2 = 1
2 (J11 + J22 −

√
(J22 − J11)

2 + 4J12
2)

(10)

where ∆ represents the gradient, Ix and Iy represent directional derivative, Kρ represents
the Gaussian kernel function with variance ρ, and ⊗ represents kronecker product. RIPT
uses Formula (11) as the prior weight:

E(x, y) = λ1− λ2 (11)

However, the problem with the prior weights used in RIPT is the trade-off relationship
between the size of the retained target and the false alarm, which is greatly affected by the
weight parameter. In addition, too much attention is paid to the edge prior information of
the background without considering the target, which results in the loss of the target. We
display the results obtained with different prior weights in Figure 3. The target position is
marked with a yellow box, and the background clutter is marked with a red box. The (1)
row shows the classic infrared small targets in complex and simple scenes. The (2)–(6)
rows are the saliency maps obtained by different calculation methods. The results obtained
according to Formula (11) are shown in the (2) row. It can be seen that not only is the target
position highlighted, but the clutter is also largely highlighted. In order to overcome this
shortcoming, the corner point index [51] is introduced as Formula (12) and the correspond-
ing results are shown in row (3). We can see from Figure 3 that the corner pixels are more
prominent, but the spot-like information in the background is also highlighted. Further-
more, the most direct thought is to use the calculation method of prior weight information
represented by the Formula (13), but this method can only have obvious prominent effects
on the target in a scene with a simple background, such as (Figure 3(b4)), which means
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the image is in column b and row (4) in Figure 3. Once the background is complicated,
its effect will become worse, as shown in (Figure 3(c4)). To comprehensively utilize the
information of corner points and edges and reduce the influence of edges, the method
used in PSTNN is shown as Formula (14), which abandons the difference between two
eigenvalues and directly utilizes the maximum value to represent the edge, as displayed in
row (5) in Figure 3. To a certain extent, the prior information obtained by Formula (14) can
indeed suppress the residual effect of the edge, while it also highlights the information that
is not the target, so it still needs to be improved.

Based on the above considerations, we believe that the indicators for edges and corners
correspond to different prior information in the image, so their importance should not be
treated equally [52]. Therefore, a weighted method is proposed to weigh the ratio of the
edges and corners, which are our feature indicators computed by Formula (15). If q = 1 is
fixed, when p > 1, we believe that the corner information is more important. When p < 1, we
believe that the edge information is more important. When p is equal to 2.5, the simulated
saliency map is acquired as shown in Figure 3 with n = p + q in our simulation. From the
last row in Figure 3, it can be seen that in a complex or simple background, this method has
two advantages over other methods: (1) the target information we need is highlighted and
(2) the background residual is greatly suppressed.

C(x, y) = wcs(x, y) =
det(ST(x, y))
tr(ST(x, y))

=
λ1 ∗ λ2
λ1 + λ2

(12)

W = C� E (13)

W(x, y) = max(λ1, λ2)� λ1 ∗ λ2
λ1 + λ2

(14)

Wc(x, y) = n√CpEq (15)

Among them, (x, y) represents the position of the pixel in the image, and � represents
Hadamard product. det refers to the determinant of the matrix. tr means the trace of the
matrix, and ST is the structure tensor. We normalize Formula (15) to the form of (16) as:

Wc =
Wc − wmin

wmax − wmin
(16)

Here, wmax, wmin represent the maximum and minimum values of Wc, respectively.
Solving the traditional L0 norm is an NP-hard problem, and using L1 norm instead is

a popular method because the L1 norm is the best convex approximation to the L0 norm,
and it is easier to solve. Therefore, for the sparsity of the target, referring to the methods
of other models [21,25,36,53], we use the L1 norm to measure. Therefore, our model is
updated to:

min
B,T

rank(B) + λ‖T‖1

s.t. D = B + T + N
(17)

The re-weighted L1 minimization scheme is adopted to solve the penalty problem of
different coefficients and shorten the convergence time, so that the sparsity enhancement
weight has been widely used in recent years [47,54,55]. The weight on sparsity is defined as:

Wcw
k+1 =

β∣∣Tk
∣∣+ γ

(18)

where β is a constant. γ is a small positive number to ensure normal operation [56]. k is the
number of iterations. Combined with (18), the weight established by our algorithm is:

WF = Wcw�Wcr (19)
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Wcr is the reciprocal of Wc. Then, the model turns into:

min
B,T

rank(B) + λ‖WF � T‖1

s.t. D = B + T + N
(20)

Figure 3. Different prior maps. Original images corresponding to the (1) row. Prior weight saliency
maps calculated by Formula (11) corresponding to the (2) row. Prior weight saliency maps calculated
by Formula (12) corresponding to the (3) row. Prior weight saliency maps calculated by Formula (13)
corresponding to the (4) row. Prior weight saliency maps calculated by Formula (14) corresponding
to the (5) row, and prior weight saliency maps of the proposed algorithm calculated by Formula (15).
Columns (a–c) are the prior weights obtained by different calculation methods for the same sequence
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3.3. Spatial–Temporal Low-Rank Tensor Construction

The traditional IPT model firstly obtains the input tensor by using sliders to sample the
image patch from each frame [30]. Then, the resulting multiple sliders are combined into a
three-dimensional tensor, which is the input of the model, as shown in Figure 4. Finally,
the model is optimized and solved by the corresponding algorithm. This sampling method
is suitable for the case of simple background, but when the background is complex, it is
no longer in line with the low-rank constraint well [57]. The disadvantage of this method
is that there are many background residuals in the final target image. In the infrared
images, dim and small targets move faster than the background, and the background
between adjacent frames can basically be considered stationary. Inspired by the multi-
frame sampling strategy mostly utilized in the field of detection from videos [46], we can
also make use of inter-frame information. By sampling adjacent frames, thereby, the tensor
will satisfy the low-rank assumption well and both temporal information and spatial
information are fully utilized.

Figure 4. Traditional sliding window sampling method.

Inspired by using different frames [58], we propose a novel tensor construction method,
aiming at the detection of dim and small targets from complex infrared images. Firstly,
for the current slider of the current frame, we use n frames before and after, which means
to solve the current slider we utilize in total (2×n + 1) frames. Then, for each frame, we
treat the current patch as the center and acquire other neighborhood patches with distance
d. Finally, all of the sliders are ordered from top to bottom, left to right and front to back.
These sliders make up the tensor of the current slider for the current frame, as shown in
Figure 5. In this work, n is set to 2 and d takes 1. The image corresponding to the yellow
boxes in Figure 5 is the current frame and the yellow filled part is the current slider, and the
images with orange boxes are the adjacent frames. In Figure 5, a total of 45 block images are
obtained for the current center slider to form the tensor to be solved. Figure 6 demonstrates
the classical complex infrared backgrounds and on the right side is the singular value of
the corresponding images obtained by different sliding window methods. The blue line
is the classic sampling method, and the red line is ours. It can be seen that in a complex
background environment, the rank of the tensor obtained by making full use of the effective
information of space and time declines faster than that obtained by only using the spatial
non-local correlation. Therefore, the tensor model proposed in this work is better satisfied
with the constraint of low-rank background.
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Figure 5. The proposed tensor construction method by fully using spatial and temporal information.

Figure 6. Singular values of different methods for tensor construction. The (a) column shows classical
complex backgrounds, and on the (b) column are the results in descending order of singular values
by different methods. The blue line is the classical sliding window sampling method, and the red line
is the one proposed in this paper.

3.4. Rank Approximation Based on Laplace Operator

Measuring the rank of the background tensor is a critical problem. Recently, a tensor
rank approximation based on the Laplace operator has been applied to low-rank tensor
completion [59]. Tensor nuclear norm (TNN) [60] and sum of nuclear norm (SNN) [31]
assign the same weights to each singular value, leading to the problem that the targets
are being severely shrunk. Large singular values correspond to more detailed information
when representing the background in the image [61]. Although the SNN in PSTNN has
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made an improvement over the traditional approximation, it assigns the same weights
to the reserved singular values, and the preset parameter N is determined by a fixed
energy ratio, which is not suitable for different images. The Laplace operator not only can
automatically assign different weights to singular values [62], but also can achieve smaller
deviation than the Log operator when the singular value is relatively small, leading to a
more accurate approximation than the L0 norm. As shown in Figure 7, the black, yellow,
red and green curves refer to the L0 norm, L1 norm, Log operator and Laplace operator,
respectively. The Laplace function is defined as follows [59] and the green line displays the
approximation with ε = 1:

‖X‖ε =
n3

∑
k=1

n

∑
j=1

φ
(

σj

(
X̄ (k)

))
=

n3

∑
k=1

n

∑
j=1

(
1− e−σj(X̄ (k))/ε

) (21)

Here, φ(X ) = 1− e−σj(X )/ε, n = min(n1, n2), and ε is a positive constant. σj(X ) is the
singular value of the tensor slice.

It can be seen from Figure 7 that the Laplace patch tensor nuclear norm (LPTNN) based
on the Laplace operator is a more accurate measurement than other norms to approximate
the rank of the background tensor. Therefore, our model is updated to:

min
B,T
‖B‖LPTNN + λ‖WF � T‖1

s.t. D = B + T + N
(22)

Figure 7. Comparison of contributions of singular values to rank approximation measured by
different methods.

3.5. Model Optimization
Model to Be Solved

In this work, we apply ADMM to solve the established model [63] as well, thereby
obtaining the background and target components of the image. First, we write the problem
as an augmented Lagrangian function, that is:

Lµ(B, T, W, Y) = ‖B‖LPTNN + λ‖WF � T‖1 + 〈Y, B + T − D〉+ µ

2
‖B + T − D‖2

F (23)
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where Y is the Lagrange multiplier. µ is a trade-off factor greater than 0, and <• > represents
the inner product. The cross-multiplier method is to fix one of the variables and solve the
other variables; that is, the problem can be decomposed into two sub-problems:

Tk+1 = arg min
T

λ
∥∥∥Wk

F � T
∥∥∥

1
+

µk

2

∥∥∥∥∥Bk + T − D +
Yk

µk

∥∥∥∥∥
2

F

(24)

Bk+1 = arg min
B
‖B‖LPTNN +

µk

2

∥∥∥∥∥B + Tk+1 − D +
Yk

µk

∥∥∥∥∥
2

F

(25)

(1). To solve the problem specified in Equation (24), the soft threshold algorithm,
according to the reference [64], is utilized. When the problem is:

arg min
X

α‖X‖1 +
1
2‖X− Z‖2

F (26)

The solution can be obtained by thresholding the elements as (27)

Sτ(x) = sign(x) ∗max(|x| − τ, 0) (27)

Therefore, the sub-problem of background separation can be solved by [59]:

Tk+1 = S
λWk

F
µk

(D− Bk − Yk

µk ) (28)

(2). We then transform the problem of the background tensor into an optimization
problem as shown below:

arg min
X

‖X‖LPTNN + β
2 ‖X− Z‖2

F (29)

It can be seen from Algorithm 1 that the substituted non-convex rank of LPTNN is
the combination of all front slices along X(:,:,1...n3) in the Fourier transform domain, so the
optimization problem of (29) is transformed into the optimization problem of the sum of n3
matrices [59].

arg min
X(g)

n3

∑
i=1

φ(σi(X(g)
)) + β

2

∥∥∥X(g) − Z(g)
∥∥∥2

F
(30)

Here, X(g), Z(g) ∈ Rn1∗n2, g = 1, 2, · · · , n3. Equation (30) can be solved by the general-
ized weighted singular value threshold operator [65]:

X(g)
= U(g) ∗ D(g) ∗V(g)H

(31)

D ∆φ
β

(g)
= max((S(g)

(i, i)−
∆φ(σ

k,g
i )

β
), 0) (32)

Among them, Z(g)
= U(g) ∗ S(g) ∗V(g)H

and ∆φ(σ
k,g
i ) = 1

ε exp(−σ
k,g
i

ε ). X can be then
obtained by i f f t. So, the sub-problem (25) can be solved . The algorithm flow is shown in
Algorithm 2. Y and µ are updated as:

Yk+1 = Yk + µk(D− Bk+1 − Tk+1) (33)

µk+1 = ρµk (34)

Here, ρ is a positive constant. The process of the ADMM optimization solution is
shown in Algorithm 3.
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Algorithm 2: Optimization of problem (25).

Input: Zk = D− Tk+1 − Yk

µk ∈ Rn1∗n2∗n3, λ, µk

Output: Bk+1

1. Calculate Zk
= f f t(Zk, [], 3)

2. Compute each frontal slice B̄k+1 by
for i = 1, · · · , d(n3 + 1)/2e do
(1).

[
Ū(g), S̄(g), V̄(g)

]
= SVD

(
Z̄(g)

)
(2). Calculated by (32)

(3).
(

B̄k+1
)(g)

= Ū(g) ∗ D̄(g)
∆φ
β

∗ V̄(g)

end
for i = d(n3 + 1)/2e+ 1, · · · , n3 do
B̄k+1(g) = conj

(
B̄k+1(n3− g + 2)

)
end
3. Count Bk+1 = i f f t(Bk+1, [], 3)

Algorithm 3: Model optimization by ADMM algorithm.

Input: D, WF, λ, µ0, ε

Output: Bk, Tk

Initialization: B0 = T0 = Y0 = 0, Wcw = 1, W0
F = Wcw �Wcr, µ0 = 1× 10−3,

ρ = 1.15, k = 0, tol = 10−6

While ‖Bk+1+Tk+1−D‖F
‖D‖F

> tol and
∥∥∥Tk+1

∥∥∥
0
6=
∥∥∥Tk

∥∥∥
0

update Tk+1 by Formula (28);
update Bk+1 by Algorithm 2;
update WF by Formula (19);
update Y by Formula (33);
update µ by Formula (34);
update k: k = k + 1;
end While

The post-processing performs threshold segmentation by setting the threshold as
mean + v*std, in which mean is the mean value of the whole image. std is the standard
deviation, and v is a constant.

3.6. Infrared Dim and Small-Target Detection Algorithm Based on Multi-Frame Spatial–Temporal
Patch-Tensor Decomposition

Figure 8 shows the whole process of the proposed method in this work.
The overall algorithm flow can be summarized as follows:

1. Prior weighted saliency map extraction. The saliency map is obtained by calculating
the prior weight between adjacent frames in the sequence by Formula (19);

2. Construct a tensor. Through the sliding window of i ∗ i, as shown in Figure 5, the slid-
ers are formed into a three-dimensional tensor X ∈ R(i∗i∗z) in order, and z is the
number of sliders obtained. Similarly, the above operations are performed on the
prior weighted saliency map, acquiring the prior weight WF ∈ R(i∗i∗z);

3. The input tensor is decomposed into a low-rank background tensor B and a sparse
target tensor T by the ADMM algorithm;

4. Tensor reconstruction. Contrary to the construction process, the obtained sparse
target tensor and low-rank background tensor are restored and reconstructed, and the
overlapping position is sized by a one-dimensional median filter;
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5. Image post-processing. The recovered sparse target image is processed by adaptive
thresholding to obtain the final target image.

Figure 8. Flowchart of the proposed method. a and b in the picture above are connected to a and b in
the picture below.

4. Experiments and Results

In this section, experiments are carried out based on the theory mentioned previously,
mainly including the description of data, the influence of different parameters, enhancement
degree of the target, detection accuracy, background suppression, and robustness to noise.
We give a detailed experimental process and compare the proposed algorithm with eleven
state-of-the-art approaches.

4.1. Evaluation Metrics

In order to evaluate the performance of our method, several typical indicators in the
field of infrared dim and small-target detection are employed, including:
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• Background suppression factor (BSF). The background inhibitory factor is a measure
of the prominence of the target and the inhibitory ability of the background. BSF is
defined as [66]:

BSF =
δin

δout
(35)

δin and δout represent the standard deviation of the whole background area of the
input image and the processed image, respectively.

• Signal-to-clutter ratio gain (SCRG) is a measure of the image before and after process-
ing to suppress the noise and clutter. It is related to signal clutter ratio (SCR). SCR is
defined as follows:

SCR =
|µt − µb|

σb
(36)

µt and µb represent the mean value of pixels in the target area and the surrounding
background area as shown in Figure 9. σb represents the variance in the background
neighborhood pixels around the target. SCRG is then defined as:

SCRG =
SCRout

SCRin
(37)

Among them, SCRin represents the SCR of the input image, and SCRout represents
the SCR of the processed image.

• The detection probability and false alarm rate are used to measure the performance of
the algorithm [36]. Detection probability is defined as:

Pd =
DT
AT

(38)

where DT represents the number of detected targets, and AT represents the number of
targets that exist in the image sequence. Moreover, the false alarm rate is described as:

Fa =
FP
NP

(39)

where FP represents the number of pixels in the false alarm area, and NP represents
the total number of pixels in the image sequence. Taking the detection probability
as the abscissa and false-alarm probability as the ordinate, we can draw the receiver
operation characteristic (ROC) curve and calculate the area between the curve and the
coordinate axis to obtain the value of area under curve (AUC).

• Contrast gain (CG) [67] is used to evaluate the ability to enhance the grayscale contrast
of the target and background. CG is calculated by:

CG =
CONout

CONin
(40)

where CONout is the contrast (CON) of the processed images, and CONin is the contrast
of the original images. The definition of the CON is:

CON = |µt − µb| (41)

where µt and µb are defined as above. Among these metrics, the larger the SCRG, BSF,
CG, and AUC, the better performance of the method is, and it should be noted that
SCRG and CG are calculated in the local area, while BSF is computed in the whole im-
age. Because the neighborhoods of the target that we use to evaluate the performance
are varied, it is reasonable to consider multiple indicators at the same time.
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Figure 9. A partial schematic diagram of the target area and the background area around the target.
Assuming that the target size is a ∗ b, then the size of the background area is (a + 2d) ∗ (b + 2d).

4.2. Dataset Description

The dataset is provided by the 25th Research Institute of the Second Research Institute
of China Aerospace Science and ATR Key Laboratory of the School of Electronic Sciences,
National Defense University of Science and Technology. This dataset consists of several
sequences with one or more fixed-wing unmanned aerial vehicles (UAVS) as targets, imaged
in various backgrounds such as the sky, ground, etc. We demonstrate some scenes in the
dataset and the target positions are marked with red boxes, as shown in Figure 10. To show
the target clearly, the target position is enlarged and displayed in the corner of the picture
and marked with a red square. It is worth mentioning that the SCR variances in (b) and
(i) are quite different. Moreover, we describe five typical scenes of the dataset in Table 2,
which include different backgrounds, different targets and different movements.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 10. The (a–o) corresponds to 15 real sequences used in the experiments.
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Table 2. An introduction to the representative 5 sequences.

DATA Total Number
of Frames Average SCR Data Introduction

DATA 1 (g) 399 6.01 From far to near, single target,
ground background

DATA 2 (h) 399 6.29 From near to far, single target,
ground background

DATA 3 (n) 399 2.98 Target by far and near, single target,
extended target, target maneuver,

ground background

DATA 4 (e) 399 1.09 Low signal-to-noise ratio, target from far to
near, single target, ground background

DATA 5 (o) 400 3.01 Single target, target maneuver, open
space background

4.3. Parameters Analysis

In Figure 11, we present the ROC curves of the results obtained with different parame-
ters in five sequences. Each row represents different parameters in the same sequence and
each column represents the results of the same parameter in different sequences.

The settings of various parameters in the model have a great impact on the perfor-
mances, including running time and environmental robustness. To ensure the accuracy
and validity of the experiment, we use the method of controlling variables. By analyzing
a parameter within a certain range, we control other variables to remain unchanged at
the same time. With various parameters, we can acquire different ROC curves and thus
evaluate the performances. Overall, it is worth noting that the results at this part may
not be the best. The parameters mainly include the size of the sliding window, the step
size of the sliding window, the compromise factor λ, and the penalty factor µ. In addition,
the value of the prior weight is determined by a preset experiment, which sets p = 1.5, q = 1,
and n = 2.5. This is also determined to select the adjacent two frames before and after and
build the tensor model.

The patch size will greatly affect the algorithm. If it is set too large, although the
sparsity of the target will be enhanced, some highly disturbing noises will be mistaken
for the target, and the motion information between frames will increase, resulting in more
non-target components being regarded as the target, which degrades the accuracy. If it is
set too small, the sparsity of the target will be greatly reduced, which will lead to more
sliding windows. In order to analyze the influence of this parameter, the patch size of the
five sequences is set from 20 to 70 in a step of 10. From the ROC curves shown as the first
column of Figure 11, it can be seen that too-large and too-small patch size will both lead to
inferior results, and the optimal results are obtained when the size is set to 60 × 60.

Another parameter is the sliding step. When the step is relatively small, the sparsity
of the target will be reduced as well as the utilization of inter-frame information, and the
generation of more slices will also increase the time of the algorithm. Conversely, if the
step is large, fewer slices will be generated, reducing the complexity of time consumption,
but also reducing the redundancy of the tensor. In order to analyze the effect, the sliding
step is set from 20 to 70 in a step of 10. At the same time, it should be noted that in order to
avoid missing the target, the sliding step cannot be larger than the patch size. It can be seen
from the second column of Figure 11 that when the sliding step is set to 60, we can achieve
superior performance.

The penalty factor µ also plays a decisive role in the performance of the algorithm.
This parameter controls the trade-off between the low-rank component and the sparse
component. The background components contained in the target image will be greatly
reduced, but the target will be shrunk, and the contrast of the target will be affected by
a relatively small µ. Although a large µ can make the target clearer and retain the target
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more completely, it will preserve more background residuals in the target image, declining
the detection ability. In order to find the best parameters, this paper uses µ = 5× 10−4,
µ = 7× 10−4, µ = 9× 10−4, µ = 1× 10−3, µ = 2× 10−3, µ = 3× 10−3, µ = 4× 10−3,
µ = 6 × 10−3, µ = 1 × 10−2 for experimental research. It can be seen from the third
column of Figure 11 that when µ is too large or too small, the performance is relatively poor,
and when µ = 1× 10−3, the low-rank and sparse components can achieve a better trade-off.

Figure 11. The ROC curves formed under different parameters. The first column is the influence of
the patch sizes. The second column is the influence of different sliding steps. The third column is the
influence of the penalty factor µ. The fourth column is the influence of the trade-off factor λ. Each
row represents different parameters in the same sequence.
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The compromise parameter λ has a great influence on the performance. When λ
is relatively large, in order to maintain the minimization criterion, the background com-
ponents remaining in the target are largely suppressed, but the contrast of the target is
reduced and the target is shrunk. When λ is relatively small, the target contrast will be
improved, but the background residual will also become larger. Therefore, it is crucial to
choose a suitable λ. Inspired by the predecessors [34,54], we set λ = L/

√
max(n1, n2) ∗ n3,

and change λ only by changing the L in this work. By setting L to 0.5, 0.7, 1, 1.5, 2, 2.5,
and 3.5, respectively, the fourth column of Figure 11 displays different results. We can
conclude that when L is too large or too small, the ideal experimental results cannot be
acquired while L = 1 achieves better performance. Therefore, L = 1 is selected to carry out
subsequent experiments.

4.4. Detection Capability for Different Scenarios

As shown in Figure 10, 15 infrared sequences cover different real environments such as
sky, ground, etc., as well as the targets with various motions, including moving from near
to far, from far to near and so on. Moreover, the distance to the target can be short-range
or long-range and the interference includes weak areas and strong areas. In addition to
the targets and backgrounds, images with different qualities are also covered via various
SCRs. The performance of an algorithm depends on its accuracy and robustness. Therefore,
the detection results of the proposed algorithm in Figure 10 are shown in Figure 12. Its
3D display is demonstrated in Figure 13. The position of the target is marked with a red
box. For clear demonstration, the result is enlarged and placed in the corner of the image,
and the background residual is marked with a green ellipse. Two facts can be seen from
our detection results: (1) The target is detected accurately in the 15 sequences; (2) the
background residual is almost completely suppressed, and even if it is present, it is very
weak, such as in Figure 12l,m .

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 12. Targets detected in 15 different sequences by the proposed method. (a–o) represent the
corresponding scenes in Figure 10.
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Figure 13. Three-dimensional displays of the detection results in Figure 12.

To illustrate the superiority of the proposed algorithm, two methods of recent years are
compared for 15 sequences. Figure 14 shows the detection results of PSTNN, and Figure 15
shows the corresponding 3d displays. Figure 16 shows the detection results of LogTFNN,
and Figure 17 shows the corresponding 3D displays. It can be seen from the results that
when facing dim and small targets in complex backgrounds such as (c), (d), (g), (j), (n) in
Figure 10, the detection results of these two methods are not very good, according to (c),
(d), (j), (g), (n) in Figure 14, and (c), (d), (j), (g), (n) in Figure 16. From the comparisons, we
can thereby believe that inaccurate selection of the prior weight will highlight the target
and interference at the same time, as shown in Figure 16h,o, resulting in the existence of
background residuals. In addition, the useful information of the inter-frame is ignored so
that PSTNN and LogTFNN can only adapt to the simple scenes and the detection accuracy
is decreased when the background is complex. However, the proposed algorithm in this
paper can be applied in various complex backgrounds and the performance is competitive.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 14. Targets detected in 15 different sequences by using PSTNN. (a–o) represent the corre-
sponding scenes in Figure 10.
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Figure 15. Three-dimensional displays of the detection results in Figure 14.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 16. Targets detected in 15 different sequences by using LogTFNN. (a–o) represent the corre-
sponding scenes in Figure 10.
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Figure 17. Three-dimensional displays of the detection results in Figure 16.

Robustness to Noise

Another indicator to evaluate the performance of the algorithm is the robustness to
noise. The 15 sequences have added noise with a mean value of 0 and a variance of 0.005
to obtain the data, as shown in Figure 18. The corresponding detection results are shown
in Figure 19. It can be clearly seen that the signal-to-noise ratio (SNR) of the image is
lower after adding the noise, and the contrast of the target is also affected, as shown in
Figure 18e,f,h. Some targets are even submerged in the background, such as Figure 18d.
Nevertheless, the proposed algorithm still can extract the targets accurately, except for
(d), although the target shape is affected. The data obtained by assigning Gaussian noise
with a mean value of 0 and a variance of 0.01 are shown in Figure 20. It can be seen that
the targets of all images have become ambiguous, and the contrast of the targets has been
greatly declined. The corresponding results are depicted in Figure 21, and we can see that
the targets in (d) and (j) are missing. The targets detected in (h) are not clear, while the
remaining images are relatively accurately detected. Although the shape does not exactly
match the real shape of the target, the results are acceptable for the problem of infrared dim
and small target detection. These results also illustrate that although the noise is added,
the targets still can be extracted accurately in complex scenes.

4.5. Comparison with Other Typical Methods

In order to clearly show the performance of the algorithm proposed in this paper,
we compare our approach with other eleven typical methods, and the obtained results
are shown in Figures 22–26. Eleven state-of-the-art methods are utilized for comparison,
and the experimental parameter settings of the methods are shown in Table 3. The eleven
methods include Top-Hat among the methods based on the background consistency as-
sumption. Among the HVS-based methods, LCM, HB-MLCM with better performance
and TLLCM in the past three years have been included. The most classic methods based on
low-rank sparse decomposition are matrix-based IPI and tensor-based RIPT. We also select
improved NRAM based on IPI. PSTNN, NOLC, ECA-STT, and LogTFNN improved based
on RIPT in the past three years are utilized as well.
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Figure 18. The original images added noise with mean 0 and variance 0.005. (a–o) represent the
corresponding scenes in Figure 10.

Figure 19. The detection results of the original images’ added noise with mean 0 and variance 0.005.
(a–o) represent the corresponding scenes in Figure 18.
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Figure 20. The original images’ added noise with mean 0 and variance 0.01. (a–o) represent the
corresponding scenes in Figure 10.

Figure 21. The detection results of the original images’ added noise with mean 0 and variance 0.01.
(a–o) represent the corresponding scenes in Figure 20.
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Table 3. Parameters of eleven state-of-the-art methods.

Methods Parameter Settings

Top-Hat [9] Structure size: square, size: 3 × 3
LCM [12] Window size: 3 × 3
HB-MLCM [16] Window size: 3 × 3, 5 × 5, 7 × 7, 9 × 9
TLLCM [18] Window size: 3 × 3
IPI [21] patch size: 50 × 50,sliding step: 10,λ = 1/

√
min(m, n), ε = 10−7

RIPT [30] patch size: 30 × 30,sliding step: 10,λ = 1/
√

min(m, n), ε = 10−7, h = 1
NRAM [24] patch size: 40× 40, step : 10, λ = 1/

√
min(m, n), µ0 =

3×
√

min(m, n), γ = 0.002, C = 3/
√

min(m, n), ε = 10−7

PSTNN [34] patch size: 40 × 40, step: 40, λ = 1/
√

min(m, n), ε =−7

NOLC [25] patch size: 30 × 30, Slide step: 10,λ = 1/
√

max(size(img)), p = 0.6
ECA-STT [35] β = 0.1, t = 3, λ1 = 0.009, λ2 = 5.0/

√
min(m, n)× t, λ3 = 100, ε = 10−7

LOGTNN [37] patch size: 40 × 40, step: 40,
λ = 0.4/

√
max(n1, n2) ∗ n3, β = 0.05, µ = 200

Proposed patch size: 60 × 60, step: 60, λ = 1/
√

max(n1, n2) ∗ n3

It can be seen from the results that the traditional TOPHAT method can highlight
the target to a certain extent. However, the strong interference part cannot be suppressed,
resulting in a poor final result. Although HVS-based methods such as LCM and HB-MLCM
do highlight the target, the background is also enhanced, and the shape of the target
is completely lost. After adding three layers of filter windows and improving the local
contrast, the results obtained by TLLCM have good results. Compared with the low-rank
sparse representation method, the performances of HVS-based methods are relatively
low, which is mainly due to the working principle that makes the methods sensitive to the
background, and the filter unit of a specific structure has very poor robustness to clutter. For
the earliest proposed IPI algorithm, except the first sequence without background residuals,
the backgrounds in all other cases are not approximated. Compared with the IPI algorithm,
NRAM has a more accurate approximation of the rank. It can separate the low-rank and
sparse components more accurately, and many background clutters are removed with
strong constraints of the edges. However, for the influence of other categories, the detection
performance of this method still needs to be improved, as shown in Figure 26. Similarly,
the Lp norm selected by NOLC to approximate the rank of the matrix, compared with the
sum of the general matrix kernel norm, can more accurately obtain the sparse components
and the low-rank components, but the performance is inferior in the face of complex
backgrounds, as shown in Figures 23 and 25. This is due to the way in which the image is
unfolded, which destroys the correlation of information in the image. Compared with other
types of methods, tensor-based algorithms have shown great advantages, such as RIPT,
PSTNN, ECA-STT and LogTFNN. These algorithms can effectively use the information in
the images to separate the target components. However, the simple use of single-frame
information and inaccurate calculation of rank result in low robustness to the complex and
changeable backgrounds, which still can be improved, as shown in the parts marked by
green ellipses in Figures 23, 24 and 26. Compared with all other methods, the proposed
approach can accurately detect the targets and suppress the background residuals to the
greatest extent, which means our method achieves superior performance both in detection
accuracy and the robustness of complex scenes.
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Figure 22. The detection results of data 1.

Figure 23. The detection results of data 2.
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Figure 24. The detection results of data 3.

Figure 25. The detection results of data 4.
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Figure 26. The detection results of data 5.

For the convenience of the presentation, this paper only releases the detection results
of 12 detection methods in these 5 sequences. In general, the detection performance of the
method based on the background consistency assumption is the worst. The method based
on HVS is the second, and the method based on the low-rank sparse model is the best.
Among the low-rank sparse models, the method of obtaining the matrix model is inferior to
the tensor model. Furthermore, the prior information saliency map adopted in this research
can highlight the target information more accurately and suppress the background better.
At the same time, the rank approximation by Laplace operator is closer to the real rank,
and can more accurately decompose the image. However, the superior performance of the
proposed method sacrifices the consuming time.

4.6. Quantitative Comparison of Eleven Methods

In previous sections, the proposed method is qualitatively compared with other
methods, and the superiority of this algorithm can be acquired. For the sake of scientific
rationality, the comparison results are quantitatively analyzed in this section. Seq1 to seq5
are data1 to data5 listed in Table 2. The measurement results of different indicators in
sequences 1 to 5 are listed in Tables 4 and 5. As mentioned before, the larger the evaluation
indicators in the table, the better performance the algorithm achieves. The best results are
marked in red for each metric, and the second best results are marked in green. The inf in
BSF means infinite; that is, in the target image, except for the area to be detected, the other
background areas are eliminated.

It can be clearly seen that the proposed method has achieved very significant advan-
tages in terms of BSF, which proves that the proposed method has the strongest ability to
suppress the background. In the first sequence, the PSTNN method achieves the second
best performance, which illustrates the rationality of using the sum of tensor partial nuclear
norm to approximate the rank of the tensor. Due to the utilization of information between
multi-frame images, the brightness of the separated target will be affected because the
targets move slowly and the patches have many overlapping pixels. Therefore, the SCRG
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in sequences 4 and 5 are not optimal, but it also achieves competitive results. The CG in
sequence 1, 2, 4, and 5 all reached the maximum, except for sequence 4. It is also proved
that the proposed method achieves superior performance.

Table 4. Measurements for twelve detection methods.

Methods Seq.1 Seq.2 Seq.3
BSF SCRG CG BSF SCRG CG BSF SCRG CG

TOPHAT 1.161 2.070 36.609 1.766 1.664 0.741 2.866 1.496 11.931
LCM 0.910 1.755 0.924 0.962 0.404 26.159 1.818 1.226 7.829

HB-MLCM 4.437 4.577 34.967 16.089 2.192 7.018 56.681 1.472 12.021
TLLCM 6.214 1.493 3.617 22.339 2.022 8.461 28.455 1.539 9.364

IPI 8.736 3.352 20.871 11.527 2.272 28.227 19.255 1.699 21.354
RIPT 7.452 4.714 89.268 11.124 2.537 56.258 12.982 2.343 18.282

NRAM 15.920 5.045 82.644 23.164 2.230 60.592 29.559 2.176 54.072
PSTNN 16.424 5.056 98.977 44.915 2.315 65.115 26.359 2.594 39.214
NOLC 11.942 4.970 81.366 16.596 2.457 57.563 18.563 2.116 27.737

ECA-STT 13.355 4.359 54.090 34.858 1.999 9.346 46.425 1.550 7.126
LogTFNN 8.961 4.395 66.518 16.596 2.117 52.880 32.031 2.160 69.964
Proposed 33.017 5.207 101.415 inf 3.156 72.488 134.267 2.262 64.312

Table 5. Measurements for twelve detection methods.

Methods Seq.4 Seq.5
BSF SCRG CG BSF SCRG CG

TOPHAT 2.026 1.806 26.217 3.310 1.544 7.131
LCM 1.473 0.775 15.414 1.630 0.546 21.853

HB-MLCM 36.361 2.177 1.016 10.049 1.887 15.365
TLLCM 30.425 2.240 6.940 27.922 1.995 23.396

IPI 26.342 2.287 0.647 14.562 1.693 4.035
RIPT 17.980 2.712 21.021 15.258 1.594 31.900

NRAM 68.585 2.828 48.054 22.962 1.791 38.960
PSTNN inf 3.304 78.458 24.206 1.956 45.227
NOLC 26.973 2.665 56.447 18.036 2.561 34.274

ECA-STT 136.212 2.382 19.495 30.791 1.968 34.779
LogTFNN inf 2.482 72.915 15.693 1.659 54.820
Proposed inf 2.981 78.793 134.572 1.994 55.687

In addition, the proposed method is compared with eleven other methods, and the
ROC curves of twelve methods in five sequences are obtained, which are placed in Figure 27,
and the values of the AUC are shown in Table 6.

It can be seen from the ROC curves and the corresponding AUC values that the
proposed method achieves the best performance. The anti-jamming abilities of the LCM
and HB-MLCM methods are very poor, and the results have large fluctuations. They use
filters, which find it particularly difficult to deal with objects submerged in the background,
such as sequence 1 and 5. When there is a very strong interference in the background, such
as in sequence 3, the performances of the other methods are inferior, while our algorithm
can accurately detect the target. It can be concluded from the data analysis that under
the same false-alarm rate, the proposed method has the highest probability of detection,
and under the same accuracy, the proposed method has the lowest false-alarm rate.
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Figure 27. ROC curves of the compared and proposed methods in different sequences.

Table 6. AUC of different methods.

Methods Seq.1 Seq.2 Seq.3 Seq.4 Seq.5

TOPHAT 0.0576 0.6162 0.1894 0.5597 0.6216
LCM 0.0179 0.0372 0.0162 0.0048 0.0280

HB-MLCM 0.0969 0.9012 0.2360 0.9709 0.3513
TLLCM 0.0502 0.7259 0.9241 0.9839 0.9006

IPI 0.9687 0.7817 0.4418 0.7609 0.8576
RIPT 0.9668 0.7518 0.2290 0.5082 0.6450

NRAM 0.9596 0.6091 0.2471 0.7530 0.8658
PSTNN 0.9818 0.7539 0.4552 0.7858 0.9021
NOLC 0.9678 0.7552 0.4214 0.7650 0.7487

ECA-STT 0.8631 0.6031 0.2883 0.8489 0.8545
LogTFNN 0.6373 0.6519 0.6214 0.7247 0.6299
Proposed 0.9828 0.9092 0.9605 0.9970 0.9999

4.7. Computation Time

Table 7 summarizes the time consumption of each method. Among the algorithms,
the filtering method takes the least time. NOLC is the least time-consuming among the
matrix-based methods, and PSTNN is the least time-consuming among the tensor-based
methods. When the size of the image to be processed is fixed, no matter how the complexity
of the background in the image changes, the time spent in the presented methods will not
fluctuate too much. The time spent by the proposed method is higher than other methods,
mainly caused by the tensor construction. The time cost can be reduced by multi-threading,
which should be improved in the future.

4.8. Validation Analysis

To enhance the persuasiveness of the superiority of the proposed algorithm, two sets
of comparative experiments are added. Since the parameters used in the experiments are
obtained by simulation analysis in the five sequences mentioned above, to enhance the
effectiveness of the algorithm and fully verify its robustness, the other two sequences are
detected with the same parameters. The obtained ROC curves are shown in Figure 28,
and the corresponding AUC value is shown in Table 8. Through the results, it can be con-
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cluded that the same parameters perform very well in the verified sequences, and the AUC
values measured by the filtering method are very small, which is also in line with the exper-
imental expectations, while the volatility of LogTFNN is relatively large. The performance
of other tensor-based methods is at a moderate level. For the relatively easy-to-detect se-
quence 7, most of the methods have relatively large AUC values. In this case, the proposed
method can still achieve the maximum value, which proves the efficiency and robustness
of the algorithm.

Table 7. Computation time of different methods.

Methods Seq.1 Seq.2 Seq.3 Seq.4 Seq.5

TOPHAT 0.0137 0.6162 0.1894 0.5597 0.6216
LCM 0.0636 0.0545 0.0463 0.0452 0.0491
HB-MLCM 0.0172 0.0174 0.0145 0.0157 0.0155
TLLCM 1.0336 1.0293 1.0761 1.0164 0.9962

IPI 5.5765 6.1107 6.3536 6.0694 6.1535
RIPT 1.6991 1.5782 1.5513 1.5445 1.5946
NRAM 8.2516 7.7308 7.4015 7.4239 8.4935
PSTNN 0.0937 0.1420 0.0943 0.0935 0.1005
NOLC 4.8856 5.225 2.8089 2.5513 6.3097
ECA-STT 3.0169 3.1745 2.9984 3.0237 3.0713

LogTFNN 4.5226 4.6316 4.5990 4.5665 4.4655
Proposed 17.7711 17.8345 16.0337 13.7015 14.6458

Figure 28. ROC curves of detection results in validation data.

Table 8. AUC of different methods.

Methods Seq.6 Seq.7

TOPHAT 0.8402 0.6381
LCM 0 0.2680

HB-MLCM 0.0528 0.4581
TLLCM 0.3354 0.9694

IPI 0.9706 0.9971
RIPT 0.9636 0.9974

NRAM 0.9787 0.9974
PSTNN 0.9734 0.9967
NOLC 0.9694 0.9974

ECA-STT 0.9148 0.9685
LogTFNN 0.3695 0.9838
Proposed 0.9928 0.9998

5. Discussion

With the development of modern military technology, infrared dim and small-target
detection technology has received more and more attention. The current detection methods
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have been greatly developed, but there is still a lot of space for further development.
The detection method based on the background consistency assumption is fast, while
the detection accuracy and robustness are poor. The method based on HVS requires less
prior information, and the accuracy is improved as well. However, when the background
is complex and changeable with submerged targets, the obtained detection results are
unsatisfactory. The LRSD-based approach improves the infrared dim and small-target
detection significantly. However, the earliest IPI model ignores the structural information
between pixels, thus leading to the enhancement by the IPT model, which introduces the
concept of a tensor that can make full use of the information among the image patches.

In the IPT model, most of the detection methods are based on the single frame, ignoring
the useful information between frames, especially when the target and background are
moving. In addition, in the traditional IPT model, such as inaccurate characterization of
the background rank, the problem of poor robustness still exists. To solve the existing
problem, we propose MFSTPT. Firstly, by modifying the tensor construction, the model
that conforms to the assumption of low-rank background is obtained. In addition, to reduce
the interference of noise and sparse edges, the prior saliency map is obtained by a novel
weighted method. Finally, the rank of the tensor is represented by the Laplace rank, which
can more accurately approximate the background. The model is optimized and solved by
ADMM. We use TOPHAT, LCM, HB-MLCM, TLLCM, IPI, RIPT, NRAM, PSTNN, NOLC,
ECA-STT and LOGTFNN as the comparison algorithms. It can be seen from Figures 22–26
and Figure 12 that the proposed method can detect the target more accurately while
suppressing the background to the maximum, qualitatively. Figures 19 and 21 conclude
that the proposed method is robust to noise. In the quantitative analysis, the SCRG, BSF,
and CG in Tables 4 and 5 conclude that the proposed method can well highlight the target
and suppress the background clutter. In Figure 27 and Table 6, the ROC curve of the
proposed method performs better, and the AUC is closer to 1. Figure 28 and Table 8 further
verify the superiority of the proposed method. In conclusion, the proposed method can
highlight and detect objects more accurately while suppressing the background better.
However, the trade-off between performance and time consumption also needs to be
improved with the development.

6. Conclusions

In order to solve the existing problems of infrared small-target detection, especially
the detection of moving targets in complex backgrounds, an improved IPT model, MFSTPT,
is proposed. For measuring low-rank properties of the background, the Laplace function
based on non-convex approximation is utilized. To suppress the interference of the edges
and highlighted areas, novel weighted prior information is introduced. Moreover, a new
tensor model is constructed by the simultaneous sliding window in space and time to
satisfy the assumption of low-rank background. The established model is then solved by
the ADMM algorithm, and experiments are carried out in different sequences. According
to the results, it can be concluded that, except for the expense of consuming time, the de-
tection accuracy and background suppression have been greatly improved, as well as the
robustness to the environment.
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