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Abstract: Recently, ship detection in synthetic aperture radar (SAR) images has received extensive
attention. Most of the current ship detectors preset dense anchor boxes to achieve spatial alignment
with ground-truth (GT) objects. Then, the detector defines the positive and negative samples based on
the intersection-over-unit (IoU) between the anchors and GT objects. However, this label assignment
strategy confuses the learning process of the model to a certain extent and results in suboptimal
classification and regression results. In this paper, an adaptive sample assignment (ASA) strategy
is proposed to select high-quality positive samples according to the spatial alignment and the
knowledge learned from the regression and classification branches. Using our model, the selection
of positive and negative samples is more explicit, which achieves better detection performance. A
regression guided loss is proposed to further lead the detector to select well-classified and well-
regressed anchors as high-quality positive samples by introducing the regression performance as
a soft label in the calculation of the classification loss. In order to alleviate false alarms, a feature
aggregation enhancement pyramid network (FAEPN) is proposed to enhance multi-scale feature
representations and suppress the interference of background noise. Extensive experiments using the
SAR ship detection dataset (SSDD) and high-resolution SAR images dataset (HRSID) demonstrate
the superiority of our proposed approach.

Keywords: synthetic aperture radar (SAR); ship detection; label assignment; convolutional neural
network (CNN)

1. Introduction

Synthetic aperature radar (SAR) is an active microwave sensor. Its all-day and all-
weather working characteristics mean that it has been used in various fields [1–7]. Among
these applications, ship detection has attracted more and more scholars’ attention because
of its great value in the military and civilian fields [8–13]. However, it is difficult to achieve
accurate ship detection due to the large variation in scales and the strong interference of
the complex backgrounds.

In the early years, researchers mainly used traditional detection methods to extract the
salient features of the ship targets manually according to the prior knowledge. Although
traditional methods have made much progress, there are still many problems such as
complex algorithm design, low detection efficiency and lack of generalization.

With the rapid development of deep learning, object detectors based on convolution
neural networks (CNNs) have achieved excellent detection performance, which extently
overcomes the shortcomings of traditional methods. Modern CNN-based object detectors
can be divided into two categories: one-stage and two-stage detectors. The detection
process of the two-stage detectors mainly consists of two steps: the model first generates
the candidate regions that potentially contain targets, and then uses classification and
regression sub-networks to classify and regress the targets in the candidate regions, such as
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Faster R-CNN [14], R-CNN [15]. Since the two-stage detectors contain the step of candidate
region generation, they usually have high detection accuracy but the detection speed is slow
and cannot achieve real-time detection. The one-stage detectors perform classification and
regression by one-step prediction, such as SSD [16], RetinaNet [17] and YOLO series [18–20].
Compared with the two-stage detectors, the detection accuracy of the one-stage detectors
is lower but the detection speed is higher, and allows the real-time detection.

In recent years, a variety of CNN-based methods have been widely introduced into
ship detection in SAR images and have achieved a level of high detection performance and
efficiency. Ke et al. [21] replaced the ordinary convolution with a deformable convolution
in the Faster R-CNN, which enables the model to better learn the geometric features of
the ship targets. In order to detect ship targets in complex backgrounds, Du et al. [22]
improved the feature extraction ability of the network by integrating salient features into
the SSD. Yu et al. [23] designed a more reasonable feature extraction and fusion method
to enhance the feature representations of ship targets. To improve the detection speed of
detectors, Chang et al. [24] replaced the ordinary convolution with depthwise separable
convolution to increase the detection speed of the model. To detect the multi-scale ship
targets more accurately, Wei et al. [25] designed a high-resolution feature pyramid network,
which makes full use of the semantic feature contained in the high-resolution feature map
to improve detection performance. Yu et al. [26] designed a novel two-way structure to
extract multi-scale context features efficiently.

However, for accurate ship detection, these methods first preset anchor boxes at
various scales and aspect ratios to achieve spatial alignment with multi-scale ship targets.
Anchor boxes whose intersection-over-union (IoU) with the ground-truth objects is greater
than the specified threshold (generally 0.5) are then defined as positive samples in the
training process. The rest of the anchor boxes are defined as negative samples. This process
is also known as label assignment.

Methods that use dense anchor boxes have several shortcomings in the ship detection
task of SAR images. Firstly, the distribution of ship targets in SAR images is relatively
sparse. Most of the preset dense anchor boxes will be defined as negative samples under
the IoU-based assignment guideline. As a result, the problem of an imbalance of positive
and negative samples will be more serious, which degrades the detection performance.
Secondly, the IoU values between the anchors and ground-truth boxes need to be calculated.
Extremely dense anchor boxes not only increase the number of parameters of the model
but also greatly increase the computational cost. Thirdly, a fixed set of scale and aspect
ratio parameters of the anchor boxes are usually only suitable for a specific data set. If the
current data set is replaced, the scale and aspect ratio parameters need to be recalculated,
which makes the detector sensitive to the data sets. Our proposed method achieves more
accurate classification and regression performance only using one anchor box.

We found that the original label assignment strategy based on the IoU between the
anchor boxes and the ground-truth boxes cannot guarantee whether an anchor box is an
accurate positive sample. As shown in Figure 1, the IoU value between the anchor box
(water green bounding box) and the ground-truth box (red bounding box) is 0.34. According
to the original label assignment strategy, the IoU is less than the specified threshold, thereby
the anchor box was not be assigned as a positive sample. However, the detection result
corresponding to the anchor box (yellow bounding box with score of 1.00) performs with
excellent classification confidence and location accuracy. The anchor box has the potential
to become a positive sample and should be defined as a positive sample participating in
the training process. Therefore, we suggest that the original label assignment strategy that
only considers the IoU values between anchors and ground-truth boxes has drawbacks for
defining positive and negative samples.

In the SAR images, the ship targets usually have different scattering properties from
their surrounding background areas. However, certain areas of the inshore scenes have
similar scattering power distributions to the ship targets. This phenomenon makes the
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detector misidentify these areas as ship targets, resulting in false alarms, as shown in
Figure 2.

Figure 1. Visualization of the detection result of the original label assignment strategy. The red
bounding box denotes the ground-truth object. The water green bounding box denotes the anchor
box used to predict the ground-truth object. The yellow bounding box denotes the detection result
corresponding to the anchor box.

According to the ground-truth objects (a) and the detection results (b) in Figure 2,
the ground-truth objects (red bounding boxes) and the false alarm areas (orange ellipses)
are found to have a similar scattering intensity. We believe that the reason for the false
alarm phenomenon is that the ship targets and the false alarm areas have similar semantic
representations at the feature scale, which makes it difficult to achieve accurate detection of
ship targets.

Figure 2. Visualization of the false alarm phenomena of the detector. (a) The ground-truth objects in
SAR images. (b) Detection results of the model. The red bounding boxes denote the ground-truth
objects. The yellow bounding boxes denote the detection results. The orange ellipses denote the
false alarms.
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Based on our analysis of the above problems, we propose a novel adaptive sample
assignment (ASA) strategy to achieve high-quality training samples selection and improve
the performance of the classification and regression. Firstly, we only generate one square
anchor box on each cell of the feature maps, which greatly reduces the number of anchor
boxes and computational overheads. Next, we preliminarily construct a candidate sample
set for each ground-truth object to filter out anchor boxes which are at an inappropriate
spatial scale. The candidate sample set could then adaptively filter the false candidates
using knowledge learned from the regression and classification branches in the detector to
ensure that only high-quality positive samples participate in the training process.

In addition, a regression guided loss function is proposed to further lead the detec-
tor to select well-classified and well-regressed samples as high-quality positive samples
by introducing the regression performance of candidate samples as a soft label into the
calculation of classification loss.

To alleviate the false alarm problems, we propose a feature aggregation enhancement
pyramid network (FAEPN) to suppress the interference of noise and enhance the salient
features of ship targets in complex backgrounds. FAEPN first uses the feature aggregation
module to integrate multi-scale semantic information. Next, the integrated feature is fed
into a fine-grained tuning module for further refinement. Considering that the feature
pyramid structure is beneficial for the detector to detect multi-scale ships, we use the rebuild
module to restore the hierarchical semantic features. Finally, the level fusion module is used
to eliminate the feature aliasing problem caused by interpolation and pooling operations to
achieve the enhancement of hierarchical features.

The experimental results for the SAR ship detection dataset (SSDD) and high-resolution
SAR images dataset (HRSID) show that our proposed method achieves better detection
performance compared to other detectors, proving the effectiveness of our method.

The contributions of this article can be summarized as follows:

1. A novel adaptive sample assignment (ASA) strategy is proposed to select high-quality
positive samples based on the spatial alignment and the knowledge learned from the
classification and regression branches of the network, which improves the classifica-
tion and location performance.

2. A regression guided loss function is adopted to further guide the selection process
of the model for high-quality positive samples by introducing a soft label in the
classification loss function.

3. In order to alleviate the false alarm problems, a feature aggregation enhancement
pyramid network (FAEPN) is proposed to enhance the salient features of the ship
targets and suppress the noise interference from the complex backgrounds.

The rest of this paper is organized as follows. Section 2 presents the details of our
proposed method. Section 3 shows the ablation experiments of our proposed method and
the performance for different datasets. Section 4 discusses some problems arising from the
detection results. Section 5 concludes the paper.

2. The Proposed Method

The overall structure of our proposed method is shown in Figure 3. The backbone
of the network is ResNet-50 [27]. Firstly, we use FPN [28] to create hierarchical features.
Then, we use a proposed feature aggregation enhancement pyramid network (FAEPN)
to improve the salient features of ship targets and suppress the background noise by
aggregating, refining, reconstructing and fusing multi-scale features. Next, the proposed
adaptive sample assignment (ASA) strategy is used to select high-quality positive samples
in the training process. Moreover, the regression guided loss is proposed to further lead the
model to select well-classified and well-regressed samples as high-quality positive samples.
The following sections introduce the components in detail.
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Figure 3. The overall structure of our model.

2.1. Adaptive Sample Assignment Strategy

Most of the current object detectors preset dense anchor boxes with various scales and
aspect ratios in order to improve the detection performance. However, a large number of
anchor boxes are redundant due to the sparse distribution of ships in the SAR images. As
discussed in the introduction, redundant anchor boxes are defined as negative samples,
which makes the imbalance of positive and negative samples more serious, and cause
additional computational overheads. It has been proved in previous work that the la-
bel assignment strategy based on the IoU between the anchors and ground-truth boxes
cannot provide the model with accurate positive samples, which constrains the model
performance [29–33].

Inspired by the above works, we propose an adaptive sample assignment (ASA)
strategy to assign the high-quality anchor boxes as positive samples. ASA strategy suggests
that if an anchor box is defined as a positive sample, two conditions need to be met. The
first is the spatial constraint condition: the larger the sample covering the ground-truth
object area, the more likely it might be a positive sample; The second is consistent prediction
condition: a sample with a higher classification score and better regression performance is
more likely to be a positive sample. During the training process, the samples that satisfy
these two conditions at the same time are defined as high-quality positive samples. The
algorithm is shown in Algorithm 1.

Specifically, we first construct a candidate sample set Agt for each ground-truth object
according to the spatial constraint condition, which quickly filters out the samples that do
not match the ground-truth object on the spatial scale. The spatial constraint condition
we define is that the center point of the anchor box falls in the area of the ground-truth
object and the IoU between the anchor box and the ground-truth box is greater than the
specific threshold T . We set T = 0.1 in our experiments. Next, the candidate sample set
filters the false candidate samples adaptively according to the knowledge learned from
the classification and regression heads, which ensures only high-quality positive samples
participate in the training process.

Formally, for a ground-truth object gt, given a sample j, which is in the candidate
sample set of this gt. Its classification score is scorej and the IoU between its prediction
box and the gt box is IoUj, we introduce the quality score (Q) to evaluate the quality of a
candidate sample, that is:

Qj = scoreφ
j × IoUλ

j (1)

where φ and λ are weighting factors, which are used to control the proportion of clas-
sification and regression results in the quality score. We set φ = 2 and λ = 1 in our
experiments.
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Algorithm 1: Adaptive Sample Assignment algorithm
Input: GT , A, T , K
GT is a set of ground-truth objects
A is a set of all anchors across all pyramid levels
T is the IoU threshold
K controls the number of the positive samples for each ground-truth object

Output: P , N
P is a set of positive samples
N is a set of negative samples
P ,N ← ∅
for every ground-truth gt ∈ GT do
Agt ← {i ∈ A : the center of anchor box i is in gt box and IoU(i, gt) >= T }
Qgt ← { j ∈ Agt : compute Qj by Equation (1) }
indices = argsort(Qgt) // Sort in descending order
P ← P ∪ indices[0 : K]

end for
N ← (A−P)
return P ,N

After obtaining the quality scores of all candidate samples of the gt, we sorted them in
descending order and take the first K candidate samples as high-quality positive samples
of the gt in the training process.

2.2. Regression Guided Loss

In order to further improve the model’s ability to select high-quality positive samples,
we designed a regression guided loss to guide the model’s selection process. We first
introduce a metric of the regression quality, called regression precision (rp). Considering
that the IoU values between the candidate samples and the ground-truth boxes and the IoU
values between the ground-truth boxes and the predicted boxes of the candidate samples,
we measure the regression precision using an effective combination of two types of IoU
values. Specifically, considering the different epochs of the model in the training process,
we designed the following metric to compute the regression precision for each instance:

rp = δ× exp(t− 1) + η × exp(t) + (1− δ) (2)

where η denotes the mean IoU value between the candidate samples and the corresponding
ground-truth. Using mean value can better reflect the degree of spatial matching between
the candidate samples and the ground-truth object. δ denotes the max IoU value between
the predicted boxes of the candidate samples and the corresponding ground-truth. Us-
ing max value can better describe the optimal regression effect of the prediction boxes.
t = epoch/totalepoch indicates the different stages of the training process.

To guide the model to select high-quality positive samples with excellent classification
and regression performance, we use rp as a soft label to replace the binary label in the
original Focal Loss [17]. We only assign rp to a set of positive samples, with others labeled as
0. We explicitly increased classification scores for the well-regressed samples and reduced
classification scores for the poorly-regressed samples. The classifier will output more
accurate classification results through introducing the regression precision of candidate
samples, which further guides the selection process of the high-quality positive samples.
The regression guided loss can be written as:

Lcls = −
1

Npos
(

Npos

∑
i=1

α(1− si)
γBCE(si, rp) +

Nneg

∑
j=1

(1− α)sγ
j BCE(sj, 0)) (3)
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where Npos and Nneg indicate the number of all positive and negative samples, respectively.
BCE denotes the binary cross entropy loss, α and γ are adjustment factors. We set α = 0.25,
γ = 2 in our experiments.

2.3. Feature Aggregation Enhancement Pyramid Network

There are many areas with very complex backgrounds in SAR images. Therefore,
enhancing the features of ship targets and suppressing background noise is particularly
important. In order to make low-level and high-level features complement each other,
FPN [28] constructed a top-down information propagation path to improve the detection
performance. However, Refs. [34–36] mentioned that the semantic gaps exist between
features at different scales, meanwhile the high-level semantic information would be
gradually diluted as the propagation progress. To achieve more effective fusion of different
scale feature information, we propose a feature aggregation module (FAM) that aggregates
different semantic features. Motivated by Cao et al. [37], who integrates global feature
representations via attention mechanism, we adopted global context block as the fine-
grained tuning module (FTM) to realize the refinement of the aggregated feature. For
the better detection performance of multi-scale ship targets, we used the rebuild module
(RBM) to reconstruct the hierarchical feature structure. We note that the interpolation
operations are used to construct the top-down information propagation path in the FPN and
generate the aggregated feature, meanwhile the pooling operations are used to reconstruct
the hierarchical features. Lin et al. [28] proposed that the multi-scale feature fusion
using interpolation may cause feature aliasing, which interferes with the classification
and regression process. Correspondingly, we consider that pooling operations may also
introduce a similar problem. Therefore, we propose a level fusion module (LFM) consisting
of the feature aggregation channel attention module (FACAM) and the feature refinement
channel attention module (FRCAM) to eliminate the effect of feature aliasing before multi-
scale feature fusion by the attention mechanism. The overall structure of the FAEPN is
shown in Figure 4.

Figure 4. The overall structure of the FAEPN.

(1) Feature Aggregation Module: We feed the last three stages features extracted by
the backbone network into the FPN to generate {P3, P4, P5} and denote the input features
as {C3, C4, C5} according to the size of the feature maps. The entire process is the same as
in [28]:

Mi =

{
Conv1×1(Ci) + Up(Mi+1) i = 3, 4
Conv1×1(C5) i = 5

(4)

Pi = Conv3×3(Mi) i = 3, 4, 5 (5)
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where Conv1×1 and Conv3×3 denote the 1× 1 and 3× 3 convolutional layer, respectively.
Up denotes the bilinear interpolation with the upsampling factor of 2. Mi denotes the
integrated feature map produced by 1× 1 convolution and interpolation. In order to obtain
richer semantic feature information, two independent 3× 3 convolution layer are appended
on P5 and P6 to generate P6 and P7. This process can be formulated as follows:

P6 = Conv3×3_S2(P5)

P7 = Conv3×3_S2(P6)
(6)

where Conv3×3_S2 represents the 3× 3 convolution layer with the stride of 2.
In deep convolution neural networks, high-level feature maps contain richer contextual

information and more abstract feature representations, but lose many details for localization.
Compared with high-level feature maps, shallow feature maps contain relatively weak
semantic information, but retain more spatial location information. For the optimal balance
between semantic and spatial location information, we chose P3 as the intermediate stage
and resize the feature map of other levels to the same size as P3 with the interpolation
operation. The resized features were then fed together into the FAM to generate the
aggregated feature FA. The whole process can be described as:

FA = (
7

∑
i=4

Upsample(Pi) + P3)/5 (7)

(2) Fine-grained Tuning Module: In order to enhance the salient features of ship targets
and suppress noise interference, we adopt the global context block [37] as the fine-grained
tuning module to achieve refinement of the aggregated feature FA. The structure of the
fine-grained tuning module is shown in Figure 5.

Figure 5. Structure of the fine-grained tuning module.

Given aggregated feature FA, we constructed the refined feature FR as follows:

FC = SPR(FA)⊗ FA

FR = T(FC) + FA
(8)

where ⊗ denotes matrix multiplication. Firstly, the spatial position relationship map SPR
of the FA is obtained as follows:

SPR(FA) = ψ(Conv1×1(FA)) (9)

where Conv1×1 denotes the 1× 1 convolution layer and ψ denotes the softmax activation
function. Next, the feature map FC containing larger receptive field and global context
feature is obtained by multiplying the aggregated feature FA with the spatial position
relationship map SPR. Then, the feature FC is fed into the bottleneck transform network to
capture the channel-wise dependencies. The transformed feature is denoted as FT and the
whole pipeline can be formulated as:

FT = W1(β(σ(W0(FC)))) (10)



Remote Sens. 2022, 14, 2238 9 of 20

where W0 ∈ RC/r×C and W1 ∈ RC×C/r are the weights of 1× 1 convolution layer, which
are used to, respectively, reduce and restore the number of the feature channels and r
denotes the channel reduction ratio. σ represents the layer normalization and β represents
the ReLU activation function. Finally, the refined feature FR is obtained by element-wise
addition of the transformed feature FT and the aggregated feature FA.

(3) Rebuild Module: To achieve better detection performance for multi-scale ships, we
reconstruct the feature hierarchy through the refined feature using a max pooling operation.
The reconstructed hierarchical features have the same size as the hierarchical features of
the FPN. Hierarchical features are constructed as follows:

FR
i = Pool(FR) i = 3, 4, 5, 6, 7 (11)

(4) Level Fusion Module: We fused the reconstructed hierarchical features with the
hierarchical features of the FPN to further enhance the feature of each level. To alleviate the
feature aliasing problem caused by interpolation and pooling operations, we introduce the
feature aggregation channel attention module (FACAM) and feature refinement channel
attention module (FRCAM) to, respectively, get the channel-wise weight WA of the FA
and the channel-wise weight WR of the FR. The FACAM and the FRCAM have the same
structure, as shown in Figure 6.

Figure 6. Structure of the FACAM and the FRCAM.

We first extracted two different spatial semantic information of input feature by global
average pooling (GAP) and global max pooling (GMP). Next, the two spatial semantic
vectors are, respectively, fed into fully connected layers. Finally, the output feature results
are added by element-wise and sigmoid activation function is used to obtain the channel-
wise weight.

After getting the channel-wise weight results, we performed the channel weighting to
complete the final hierarchical feature fusion, the process can be described as follows:

FM
i = FR

i �WR + Pi �WA i = 3, 4, 5, 6, 7 (12)

where � denotes the element-wise multiplication.
Through our proposed feature aggregation enhancement pyramid network, the origi-

nal FPN hierarchical features were aggregated, refined, reconstructed and fused to further
enhance semantic features at different scales and effectively suppress the occurrence of
false alarms.

3. Experiments
3.1. Datasets
3.1.1. SSDD

SSDD [38] is an open SAR ship detection dataset, which contains multi-scale SAR ships
in different sensors, polarization modes, image resolutions and scenes. In the SSDD dataset,
there are 1160 images and 2540 ships in total and the average image size is 500× 500.
The total dataset is divided into training set and test set, including 928 and 232 images,
respectively. The images are resized to 512× 512 in our experiments.

3.1.2. HRSID

HRSID [39] is a high-resolution SAR images dataset, which contains 5604 images
collected from Sentinel-1 and TerraSAR-X. The SAR ships in HRSID dataset are provided
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with HH, HV and VV polarization modes and various resolutions from 0.1 m to 3 m. We
follow the original reports in HRSID dataset to divide the entire dataset into training set
and test set as 13:7. The image sizes are 800× 800 in our experiments.

3.2. Experimental Details

We use the pretrained ResNet-50 on ImageNet to initialize the backbone network. We
use the feature pyramid of {PM

3 , PM
4 , PM

5 , PM
6 , PM

7 } to detect multi-scale ships. For each cell
of the feature maps, we only set one anchor to classify and regress targets. We conduct
ablation studies on the SSDD dataset.

Our model is trained with Adam optimizer and the batch size is set to 32 on Titan RTX
GPU. The initial learning rate is set to 10−4 and is divided by 10 at every decay step. The
total iterations of SSDD and HRSID are 2 k, 17 k, respectively.

3.3. Evaluation Metrics

We use PASCAL VOC object detection challenge [40] evaluation metrics including
precision (p), recall (r) and mean average precision (mAP) to evaluate the model detection
performance. Precision (p) and recall (r) can be defined as:

p =
TP

TP + FP
(13)

r =
TP

TP + FN
(14)

where TP, FP and FN denote the number of true positives, false positives and false
negatives, respectively.

The mean average precision (mAP) measures the comprehensive performance of a
detector by considering both precision and recall. The P(r) denotes the precision-recall
curve and mAP can be calculated as:

mAP =
∫ 1

0
P(r)× dr (15)

3.4. Ablation Study
3.4.1. Evaluation of Different Components

We conducted a component-wise experiment on the SSDD dataset to verify the contri-
bution of the proposed components. The experimental results are shown in Table 1. Since
we only set one anchor box on each cell of the feature maps, which makes the detection
of ground-truth objects restricted, our baseline model only achieves a precision of 75.5%
and mAP of 86.88%. Using the FAEPN module, the precision increased by 11.6% and the
mAP increased by 6.43%, indicating that the FAEPN module significantly improves the
feature representations of the ship targets by aggregating, refining, rebuilding and fusing
multi-scale semantic features and suppresses the background noise. The mAP increased by
6.23% and the precision increased by 10.54% using the ASA strategy, which indicates that
our label assignment strategy accurately provides the model with high-quality positive
samples, so that even one anchor box can achieve excellent performance. In addition, using
the ASA strategy and regression guided loss at the same time, the mAP and precision are
further improved, indicating that the regression guided loss we designed can further guide
the model to select high-quality positive samples. Finally, using all the proposed compo-
nents simultaneously, our final model reaches a precision of 88.54% with an increase of
13.04% and a mAP of 95.19% with an increase of 8.31%, demonstrating the effectiveness of
our proposed method. Subsequent sections will describe each of the proposed components
in detail.



Remote Sens. 2022, 14, 2238 11 of 20

Table 1. Effects of the proposed components on the SSDD dataset.

FAEPN ASA Regression Guided Loss mAP Precision Recall

× × × 86.88 75.5 89.74
X × × 93.31 87.1 94.3
× X × 93.11 86.04 94.29
× X X 93.39 86.73 94.31
X X X 95.19 88.54 95.94

The best results in the table are shown in bold.

3.4.2. Evaluation of Feature Aggregation Enhancement Pyramid Network

To verify the effectiveness of the proposed feature aggregation enhancement pyramid
network, we implemented some ablation experiments on the SSDD dataset. The experi-
mental results are shown in Table 2. The optimal performance is in the case of using a level
fusion module (LFM) and the channel reduction ratio of 1:8, achieving a mAP of 93.31%,
precision of 87.1% and recall of 94.3%. According to the experimental results, irrespec-
tive of which channel reduction ratio is used, the mAP, precision and recall are steadily
improved by using the level fusion module. Especially for the channel reduction ratio of
1:16, using the level fusion module achieves a 3.53% mAP and 3.48% recall improvement
compared to not using the level fusion module. The above results demonstrate that the
proposed level fusion module can effectively eliminate the feature aliasing problem caused
by interpolation and pooling operations.

Table 2. Analysis of the feature aggregation enhancement pyramid network on the SSDD dataset.

Ratio mAP Precision Recall
w/LFM w/o LFM ∆ w/LFM w/o LFM ∆ w/LFM w/o LFM ∆

1:4 92.73 92.19 0.54 84.56 84.07 0.49 94.29 93.92 0.37
1:8 93.31 92.46 0.85 87.1 85.54 1.56 94.3 93.91 0.39
1:16 90.31 86.78 3.53 82.53 81.09 1.44 92.28 88.8 3.48

The best results in the table are shown in bold.

Some visualization detection results are shown in Figure 7. The red bounding boxes
denote the ground-truth objects and the yellow bounding boxes denote the detection results.
It shows that the baseline model will identify areas with strong scattering power in the land
background as the ship targets (see the second column in Figure 7). In contrast, the baseline
model with FAEPN module can alleviate the interference of noise during the detection
process and achieve more accurate detection (see the third column in Figure 7). Notably,
even if the region with similar geometric shapes and strong scattering power in the offshore
scenes, our proposed FAEPN module also can accurately distinguish the background noise
from the ships, which further proves the effectiveness of the FAEPN. (see the second and
third columns of the third row in Figure 7).

3.4.3. Evaluation of Adaptive Sample Assignment

To explore the contribution of the ASA strategy, we implemented the element-based
ablation experiments, with the experimental results shown in Table 3. In order to ensure
that each ground-truth object has a certain number of high-quality positive samples during
the training process, we roughly set three sets of K values: 25, 30 and 35 to verify the
robustness of the model to the parameter K. Next, we investigate the impact of different
values of φ and λ on model detection performance, where φ and λ are used to control the
proportion of classification score and regression accuracy in the quality score.

The experimental results show that the mAP varies from 92.2% to 93.2% when different
K values are set, indicating that the performance of the model is not sensitive to the
parameter K. To achieve an optimal balance between the precision and recall, we conduct
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a rough search for the parameters φ and λ for every different K to explore the relationships
among K, φ and λ. Finally we set K = 30, φ = 2 and λ = 1 in our experiments.

Figure 7. Visualization detection results of the model with and without FAEPN. (a) Ground-truth
objects. (b) Detection results of the baseline. (c) Detection results of the baseline with FAEPN.
The red bounding boxes denote the ground-truth objects. The yellow bounding boxes denote the
detection results.

Table 3. Analysis of adaptive sample assignment on the SSDD dataset.

ID K φ λ mAP Precision Recall

1

25

1 1 93.04 82.64 94.66
2 2 1 92.81 83.7 94.27
3 2 2 92.99 82.66 94.84
4 4 2 92.84 83.84 94.29

5

30

1 1 92.69 84.83 94.11
6 2 1 93.11 86.04 94.29
7 2 2 92.67 84.08 93.93
8 4 2 92.97 85.89 94.29

9

35

1 1 92.42 81.83 93.9
10 2 1 92.21 82.52 93.92
11 2 2 92.47 82.1 93.94
12 4 2 92.88 86.74 93.91

The best results in the table are shown in bold.
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3.4.4. Evaluation of Regression Guided Loss

To verify the effectiveness of our proposed regression guided loss, we carried out the
comparative experiments based on the parameter settings of K = 30, φ = 2 and λ = 1. The
experimental results are shown in Table 4. The experimental results show that the model
has further improved the mAP, precision and recall by replacing the focal loss function
with the proposed regression guided loss function. This suggests that it is critical to use
the regression performance as the soft label to train the classification branch, which makes
the classifier pay more attention to learning the samples with excellent classification and
regression performance.

Table 4. Analysis of regression guided loss on the SSDD dataset.

Regression Guided Loss mAP Precision Recall

× 93.11 86.04 94.29
X 93.39 86.73 94.31

The best results in the table are shown in bold.

3.5. Main Results and Analysis
3.5.1. Results for the SSDD Dataset

The confusion matrix of our proposed method in the entire, inshore and offshore
scenes of the SSDD dataset is shown in Table 5, where TP, FN, FP and TN means the
true positives, false negatives, false positives and true negatives, respectively. Since the
true negatives are not used for the evaluation of detection metrics, we set the TN term
as * in the confusion matrix. From the results of the confusion matrix, we can find that
our proposed method has the excellent performance in both inshore and offshore scenes.
Additionally, our proposed method can detect the ship targets accurately and has less false
alarm problems. The detection results of different methods on the SSDD dataset are shown
in Table 6. Anchor Number denotes the number of anchors at each cell of the feature maps.
Our ASAFE, Faster R-CNN, Double-Head R-CNN, PANet and RetinaNet reaches a mAP of
95.19%, 90.01%, 91.17%, 91.73% and 86.37% in the entire scenes, respectively. The detection
results of the entire scenes show that our proposed method achieves the optimal detection
performance compared to other algorithms. It can be found from the detection results of
the inshore scenes that our ASAFE surpasses the second-best Faster R-CNN by 7.01% on
mAP. It indicates that benefiting from the proposed FAEPN module, our model effectively
suppresses the strong interference of background noise in the inshore scenes and achieves
the best detection performance. Additionally, it is worth noting that our method only sets
one square anchor box at each cell of the feature maps but achieves the excellent detection
results compared with the Faster R-CNN, Double-Head R-CNN, PANet and RetinaNet
with nine anchor boxes. Comparison results show that the number of the anchor boxes does
not improve the detection performance of the model. Instead, selecting the high-quality
positive samples in the training process is more important and also proves the effectiveness
of the proposed ASA strategy and the regression guided loss function.

Table 5. The confusion matrix of the SSDD dataset in the entire, inshore and offshore scenes.

Entire Scenes Inshore Scenes Offshore Scenes

TP = 521 FN = 22 TP = 139 FN = 33 TP = 367 FN = 4

FP = 67 TN = * FP = 45 TN = * FP = 8 TN = *

Since the true negatives are not used for the evaluation of detection metrics, we set the TN term as *.
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Table 6. Comparisons with different methods on the SSDD dataset.

Methods Anchor Number Entire Scenes Inshore Scenes Offshore Scenes
mAP P R mAP P R mAP P R

Faster R-CNN [14] 9 90.01 88.02 90.71 73.81 71.28 74.91 97.04 96.49 97.72
Double-Head R-CNN [41] 9 91.17 86.82 92.01 73.68 69.68 76.74 97.75 96.75 98.26

PANet [42] 9 91.73 87.43 92.19 73.04 70.37 77.32 97.64 96.19 97.98
RetinaNet [17] 9 86.37 85.12 88.09 70.35 69.04 72.09 96.08 95.07 96.95
ASAFE (ours) 1 95.19 88.54 95.94 80.82 75.66 81.01 98.78 97.87 98.89

The best results in the table are shown in bold.

Some visualized detection results are shown in Figure 8, where the first three columns
from left to right are inshore scenes and the forth column is an offshore scene. The red
bounding boxes denote the ground-truth objects and the green bounding boxes indicate
the detection results. Benefiting from the proposed ASA strategy, our method has more
excellent classification and regression performance compared to other methods (see the
first and forth columns in Figure 8). In the inshore scenes, Double-Head R-CNN, PANet
and RetinaNet all show interference by strong scattered areas on the land, resulting in false
detections (see the second, third and forth rows of the third column in Figure 8). Faster
R-CNN, Double-Head R-CNN, PANet and RetinaNet also have a certain degree of missed
detections in the inshore scenes (see the second column in Figure 8). Visualized detection
results show that all the methods get poor results in the inshore scenes, particularly for
densely arranged ship targets. Our method effectively suppresses the interference of
background noise and achieves the best performance with no false detections and less
missed detections than other methods.

The learning curve of our proposed method on the SSDD dataset is shown in Figure 9.
Sub-figure (a) indicates the relationship between classification loss, regression loss, total
loss and epoch. Sub-figure (b) indicates the relationship between the precision, recall, mAP
and epoch. According to the learning curve, it can be found that our proposed method
has a fast convergence speed, and achieves a precision and mAP of more than 0.8 within
30 epochs of iteration, which proves that our model has a good learning ability.

3.5.2. Results for the HRSID Dataset

The confusion matrix of our proposed method in the entire, inshore and offshore
scenes of the HRSID dataset is shown in Table 7. Based on the entire, inshore and offshore
results in the confusion matrix, it can be found that our algorithm has excellent precision
and recall on the HRSID dataset. Especially for the offshore scenes, our algorithm only
generates 40 false positives, which shows the effectiveness of our proposed method. The
detection results of different methods on the HRSID dataset are shown in Table 8. Our
ASAFE reaches the best detection performance among all methods with only one anchor
box and achieves a mAP of 85.18% in the entire scenes, a mAP of 68.91% in the inshore
scenes and a mAP of 96.92% in the offshore scenes, outperforming the second-best Double-
Head R-CNN algorithm with nine anchor boxes by 4.77% mAP in the entire scenes, 8.73%
mAP in the inshore scenes, and 0.94% mAP in the offshore scenes. The comparison results
show the superiority of our proposed method, and also verify once again that the selection
of high-quality samples can determine the detection performance of a detector more than
the number of anchor boxes. Additionally, we observe that Faster R-CNN, Double-Head R-
CNN and PANet have a similar performance for precision, recall and the mAP in the entire,
inshore and offshore scenes. In addition, there is a big gap between RetinaNet and other
algorithms in the detection performance of inshore scenes, which indicates that RetinaNet
is greatly affected by the complex backgrounds in inshore scenes. It is worth noting that in
the inshore scenes, our method outperforms other algorithms by a large margin on the mAP
and recall metrics, indicating that our proposed FAEPN module effectively suppresses the
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complex background noise in SAR images and enhances the salient features of ship targets
to improve the detection performance of the model.

Figure 8. Comparison detection results of different methods in the inshore and offshore scenes of the
SSDD dataset. (a) Detection results of the Faster R-CNN. (b) Detection results of the Double-Head
R-CNN. (c) Detection results of the PANet. (d) Detection results of the RetinaNet. (e) Detection results
of the ASAFE. Green bounding boxes denote the detection results. Red bounding boxes denote the
ground-truth objects.
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Figure 9. The learning curve on the SSDD dataset. (a) The relationship between classification
loss, regression loss, total loss and epoch. (b) The relationship between the precision, recall, mAP
and epoch.

Table 7. The confusion matrix of the HRSID dataset in the entire, inshore and offshore scenes.

Entire Scenes Inshore Scenes Offshore Scenes

TP = 5134 FN = 784 TP = 2044 FN = 797 TP = 2972 FN = 105

FP = 1017 TN = * FP = 808 TN = * FP = 40 TN = *

Since the true negatives are not used for the evaluation of detection metrics, we set the TN as *.

Table 8. Comparisons of different methods on the HRSID dataset.

Methods Anchor Number Entire Scenes Inshore Scenes Offshore Scenes
mAP P R mAP P R mAP P R

Faster R-CNN [14] 9 79.35 80.03 80.43 59.07 71.04 62.27 96.12 97.58 96.29
Double-Head R-CNN [41] 9 80.41 81.55 81.45 60.18 70.13 64.62 95.98 97.46 96.04

PANet [42] 9 80.11 80.9 81.05 59.91 63.83 64.59 96.26 96.93 96.33
RetinaNet [17] 9 77.32 77.94 79.96 53.46 59.11 61.81 95.76 96.17 95.81
ASAFE (ours) 1 85.18 83.46 86.75 68.91 71.67 71.95 96.92 98.67 96.59

The best results in the table are shown in bold.

Figures 10 and 11 present the detection results of our method and other methods in
the inshore and offshore scenes of the HRSID dataset. The red bounding boxes denote the
ground-truth objects and the green bounding boxes denote the detection results. According
to the detection results in Figure 10, all methods have the problem of missed detections,
but Faster R-CNN, Double-Head R-CNN, PANet and RetinaNet are more serious. Some
detection results of Double-Head R-CNN and PANet have a poor regression performance.
Our method has better detection performance for extremely small ship targets. As shown
in Figure 11, RetinaNet has the worst performance of all methods. Although other methods
detect all ship targets, our method outperforms other methods in classification score and
regression accuracy, which illustrates that the proposed ASA strategy and regression
guided loss function improve the detection performance through providing the model with
well-classified and well-regressed samples during the training process.

The learning curve of our proposed method on the HRSID dataset is shown in
Figure 12. Sub-figure (a) indicates the relationship between classification loss, regression
loss, total loss and epoch. Sub-figure (b) indicates the relationship between the precision,
recall, mAP and epoch. We can find that although the loss curve has a large fluctuation,
which affects the learning effect of the model, the precision and mAP of about 0.8 are still
achieved at about 30 epochs. It shows that our model still has good learning ability on the
HRSID dataset and good generalizability.
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Figure 10. Comparison of detection results for different methods in the inshore scenes of the HRSID.
(a) Ground-truth objects. (b) Detection results of the Faster R-CNN. (c) Detection results of the
Double-Head R-CNN. (d) Detection results of the PANet. (e) Detection results of the RetinaNet.
(f) Detection results of the ASAFE. Green bounding boxes denote the detection results. Red bounding
boxes denote the ground-truth objects.

Figure 11. Comparison of detection results for different methods in the offshore scenes of the HRSID.
(a) Ground-truth objects. (b) Detection results of the Faster R-CNN. (c) Detection results of the
Double-Head R-CNN. (d) Detection results of the PANet. (e) Detection results of the RetinaNet.
(f) Detection results of the ASAFE. Green bounding boxes denote the detection results. Red bounding
boxes denote the ground-truth objects.
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Figure 12. The learning curve on the HRSID dataset. (a) The relationship between classification
loss, regression loss, total loss and epoch. (b) The relationship between the precision, recall, mAP
and epoch.

4. Discussion

The experimental results for the SSDD and HRSID datasets illustrate the excellent
performance of our proposed method. The extensive ablation experiments of the FAEPN,
ASA and Regression Guided Loss show that high-quality sample selection can improve
the detection performance and the aggregation, refinement, reconstruction and fusion of
multi-scale features can enhance the feature representations and suppress the interference
of background noise. As shown in Figures 8 and 10, our method does not perform well
when detecting densely arranged and extremely small scale ship targets. In the future, we
will consider how to design a more effective method for defining positive and negative
samples to improve the detection performance of the model in the case of small scale and
densely arranged ship targets.

5. Conclusions

In this article, we first analyze the shortcomings of the original label assignment strat-
egy based on the IoU between anchor boxes and ground-truth objects in SAR images and
propose the adaptive sample assignment (ASA) strategy. The ASA strategy generates only
one square anchor box on each cell of the feature maps, which reduces the parameters
and computational overheads of the model. Additionally, the detection performance of
the model is improved by selecting the high-quality positive samples during the training
process by the proposed spatial constraint condition and consistent prediction condition.
Specifically, spatial constraint condition is used to quickly filter out anchor boxes that do
not match the ground-truth objects at the spatial scale to construct the candidate sample
set. Consistent prediction condition adaptively filters the false candidate sample based
on the knowledge learned from the classification and regression branches. Moreover, the
regression guided loss function is proposed to further guide the selection process of the
high-quality positive samples by introducing regression performance of the samples as
a soft label into the classification loss function. We also propose the feature aggregation
enhancement pyramid network (FAEPN) to alleviate the false alarms by enhancing the
salient features of the ship targets and suppressing the interference of background noise.
FAEPN consists of Feature Aggregation Module (FAM), Fine-grained Tuning Module
(FTM), Rebuild Module (RBM) and Level Fusion Module (LFM). FAM is used to achieve
the aggregation of multi-scale feature information. FTM is proposed to achieve refinement
of feature map. RBM is used to reconstruct the feature hierarchy to achieve better detection
performance for multi-scale ship targets. Finally, LFM achieves multi-scale feature en-
hancement by alleviating the feature aliasing problem caused by interpolation and pooling
operations. Extensive experiments on the SSDD dataset and the HRSID dataset verify the
effectiveness of our proposed method. We reached a mAP of 95.19%, precision of 88.54%
and the recall of 95.94 on the SSDD dataset. On the HRSID dataset, we reached a mAP of
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85.18%, precision of 83.46% and the recall of 86.75%. The detection results on two datasets
outperform many other methods. In the future, we will design the more effective and
accurate label assignment strategy to achieve better performance in a case of small scale
and densely arranged ship targets.
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