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Abstract: Recent studies have demonstrated that wideband microwave radiometers provide signifi-
cant potential for profiling important subsurface polar firn characteristics necessary to understand
the dynamics of the cryosphere and predict future changes in ice and snow coverage. Different
frequencies within the wide spectra of radiometers result in different electromagnetic propagation
losses and thus reveal characteristics at different depths in ice and snow. This paper, expanding
on those investigations, explores the utilization of the Global Precipitation Measurement (GPM)
constellation as a single wideband (6.93 GHz–91.655 GHz) spaceborne radiometer, covering the
entire microwave spectrum from C-band to W-band, to profile subsurface properties of the Antarctic
firn. Results of the initial analyses over Concordia and Vostok Stations in Antarctica indicate that
GPM brightness temperature measurements provide critical information regarding the subsurface
temperatures and physical properties of the firn from the surface down to several meters of depth.
Considering the high spatiotemporal coverage of polar-orbiting spaceborne radiometers, these results
are promising for future continent-level thermal and physical characterization of the Antarctic firn.

Keywords: cryosphere; global precipitation measurement; GPM; microwave radiometry; remote
sensing; polar firn

1. Introduction

Understanding the behavior of polar ice sheets and glaciers and predicting future
changes in their volume and masses are critical to characterize weather, climate, and the
water cycle on Earth [1,2]. Thus, measurements are collected in these distant parts of
our planet with the help of ground-based meteorological and research stations as well as
remote sensing instruments. Due to the extreme environmental conditions associated with
polar regions, airborne and spaceborne remote sensing are the most suitable techniques
for observing geophysical quantities of the cryosphere and monitoring their temporal
and spatial variations [3]. Among remote sensing instruments, satellite-based microwave
radiometers have many advantages. Firstly, their measurements are highly sensitive to
snow and ice properties such as temperature, density, and grain size; and secondly, they
provide data mostly independent of cloud conditions and solar illumination at least twice a
day over the entire Antarctic and Arctic regions, whereas in situ measurements are sparse,
challenging, and costly [4,5].

Recent studies in passive microwave remote sensing have suggested that the subsur-
face properties of polar ice layers can be profiled as a function of depth using wideband
radiometers by combining electromagnetic forward emission models with plausible models
of depth-dependent physical properties [6–8]. This is possible because electromagnetic
penetration depth changes with frequency in ice, and different frequency channels of wide-
band radiometers are sensitive to different depths. One example is the Ultrawideband
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Software-Defined Microwave Radiometer (UWBRAD), a 0.5 GHz to 2 GHz microwave
radiometer developed at Ohio State University. UWBRAD was deployed on an aircraft,
collected brightness temperature measurements over the Greenland Ice Sheet, and led
to accurate retrieval of internal temperature profiles from the shallow ice to the bedrock
using a Bayesian estimation framework with standard deviations less than 1 K even in
the presence of radio frequency interference [9,10]. Following in the footsteps of these
efforts and to inspire future radiometer designs to study the polar regions, this article
discusses the potential of microwave radiometry to characterize the Antarctic firn, the most
vulnerable portion of Earth’s largest ice sheet, by utilizing spaceborne radiometer measure-
ments available at higher frequencies across a wider spectrum. The Global Precipitation
Measurement (GPM) satellite constellation is employed as a single wideband, multifre-
quency (11 frequency channels at 6.93 GHz, 7.3 GHz, 10.65 GHz, 18.7 GHz, 19.35 GHz,
22.235 GHz, 23.8 GHz, 36.5 GHz, 37 GHz, 89 GHz, and 91.665 GHz) microwave radiometer
system to probe the firn in terms of its thermal and physical properties, such as internal
temperature, density, and grain size. These properties are important indicators for the
polar ice mass balance and climate [11–15], therefore their retrieval versus depth through
spaceborne microwave radiometry with high spatiotemporal coverage may significantly
advance polar studies. Estimation of geophysical parameters related to the firn density and
grain size using passive microwave remote sensing have been discussed previously, where
brightness temperatures at frequencies between 11 GHz and 37 GHz, i.e., from X-band to
Ka-band, were utilized [3,16–18]. Although brightness temperature simulations, with some
empirical adjustments, matched satellite measurements and retrievals were consistent with
in situ measurements in these studies, limited number of frequency channels as well as
the overall bandwidth hindered the vertical resolution and range of the retrievals. For
instance, although density and grain size variations with depth have been determined to
be the main factor in brightness temperature changes, these variations are defined by single
depth-independent factors validated within the top few meters of the firn. This article,
on the other hand, presents the first attempt in which the entire microwave spectrum
from C-band to W-band, with brightness temperature measurements at several frequencies
within this wide band, is utilized to be able to characterize such properties from the surface
to the deep firn, i.e., tens of meters down from the surface, with a finer vertical resolution
allowing changes in density and grain size variations versus depth.

The paper is structured as follows. Section 2 provides information about the models,
methods, and data sources used in this study by briefly summarizing the physical, thermal,
and electrical properties of the polar firn, the radiation model developed to simulate the
firn brightness temperatures to compare with satellite measurements, and the microwave
radiometers in the GPM constellation which could be employed for polar firn observations.
Section 3 presents the results of analyses focusing on Concordia and Vostok Stations in
Antarctica, including satellite measurements, radiation simulations, and retrieval studies.
Finally, Section 4 discusses the main conclusions of the study as well as future research plans.

2. Materials and Methods
2.1. Physical, Thermal, and Electrical Properties of the Polar Firn

The polar firn can be considered as a planar layered medium, as illustrated in Figure 1,
where each layer is described by its temperature, density, and grain size [19]. Sections 2.1.1–2.1.5
describe the depth-dependent models for these layer parameters used in this study.

2.1.1. Firn Density

The average firn density ρ(z) increases exponentially with depth and can be ex-
pressed as:

ρ(z) = ρ∞ − (ρ∞ − ρ0)ezβ kg/m3 (1)

where ρ0 = ρ(z = 0) is the near surface density, ρ∞ is the compacted ice density in deep
ice, z (a negative value) is depth, and β is a factor that controls the saturation rate of the
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density profiles. Finer scale density fluctuations due to internal layering, ρ̃(z), on the other
hand, can be described as correlated damped noise:

ρ̃(z) = ρn(z)ezα kg/m3, (2)

where α is the damping factor and ρn(z) is the correlated noise which can be modeled as a
Gaussian random process with a standard deviation, σdensity(z), and vertical correlation
length, l, as follows:

〈ρn(z), ρn
(
z′
)
〉 =

(
σdensity(z)

)2(
−
(
z− z′

)2/l2
)

(3)

where σdensity(z) may vary with depth in a random manner based on time-dependent snow
accumulation and compaction processes. As a result, the vertical density profile of the
polar firn, ρ(z), can be expressed as the sum of the average firn density and the fluctuations
due to layering [20]:

ρ(z) = ρ(z) + ρ̃(z) = ρ∞ − (ρ∞ − ρ0)ezβ + ρn(z)ezα kg/m3 (4)
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Figure 1. Vertical structure of layered polar firn. Each layer is defined by its length (l), temperature
(T), density (ρ), and snow grain radius (r). These parameters lead to unique complex permittivity (ε)
values for each layer.

2.1.2. Grain Size

Analyses of in situ grain size measurements in the Antarctic firn have revealed that
the depth-dependent ice grain radius can be described by the following model:

r(z) =
√

ro2 + z× gr mm (5)

where r(z) is the grain radius profile versus depth, ro is the grain radius at the surface
in millimeters, z is depth in meters, gr is the grain size gradient in square millimeters
per meter. In situ measurements have also demonstrated that the size of ice particles at
Concordia is almost double that of at Vostok, as shown in Figure 2 [21,22]. In this study,
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using linear regression fits to these measurements, grain radius profiles at Concordia and
Vostok Stations, locations of which can be seen in Figure 3, have been modeled as:

rconcordia(z) =
√
(0.5687)2 + z× (5.074× 10−3) mm (6)

rvostok(z) =
√
(10−3)

2 + z× (9.245× 10−4) mm (7)

respectively. However, it is important to note that the fit for Vostok Station is susceptible
to errors due to a lack of sufficient depth resolution in in situ measurements, notably for
shallower firn. Finally, these grain size profiles are multiplied by an empirical factor
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2.1.3. Firn Temperature

Monthly average physical temperature profiles measured at Concordia Station be-
tween 2006 and 2010 down to 21 m depth [16], shown in Figure 4, have been considered
as ground truth firn temperature data for this study. As shown in the figure, below 21 m,
deep ice has been accepted as isothermal with no seasonal temperature variations.
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2.1.4. Complex Permittivity

Complex permittivity of pure ice grains, εice, has been modeled for microwave fre-
quencies (1–200 GHz) in cold temperatures (<240 K) by Matzler and Wegmuller in [23] and
Matzler in [24] as a function of temperature and frequency:

εice = 3.1884 + 0.0091(T − 273) + i
(

α

fGHz
+ β fGHz

)
, (8)

where

α =

[
0.00504 + 0.0062

(
300
T
− 1
)]

e[−22.1( 300
T −1)],

β =
0.0207

T
e

335
T(

e
335
T − 1

)2 + 1.1610−11 fGHz
2 + e[−9.963+0.0372(T−273.16)],

T is the temperature in K, and fGHz is the frequency in GHz.
Figure 5 depicts the electromagnetic penetration depth, i.e., the distance in which the

radiation drops to 1/e of its initial value, in pure ice versus temperature and frequency
calculated using this complex permittivity model. As shown in the figure, electromagnetic
radiation can propagate longer distances in colder ice and at lower frequencies. At 240 K
and 1 GHz, for example, the penetration depth is higher than 100 m, whereas it drops to a
few tens of centimeters when the frequency increases to 100 GHz. Thus, although the polar
firn is not pure ice and internal layering and scattering may affect electromagnetic propaga-
tion, it can be accepted that the penetration depth varies significantly with frequency, so
wideband or multichannel radiometers can profile firn properties versus depth as different
frequencies in their operational spectrum are sensitive to different layers.

2.1.5. Effective Permittivity

Using the physical temperature, density, and grain size information described in the
previous subsections, effective complex permittivity of a firn layer at depth z, Ee f f (z), can
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be calculated as described in [25,26] by defining the effective complex permittivity without
scattering effects, Ee f f 0(z), as the solution of the following quadratic equation:

Ee f f 0(z)
2 + Ee f f 0(z)

(
εs − εb

3

(
1− 4v f (z)

)
− εb

)
− εb

εs − 1
3

(
1− v f (z)

)
= 0 (9)

where v f (z) is the fractional volume of scatterers (ice grains) at depth z, and εb and εs are di-
electric constants of the background (air) and scatterers (ice as described in Equation (8)), re-
spectively. If the scattering effects are included the complex permittivity, Ee f f (z), becomes:

Ee f f (z) = εb +
(
Ee f f 0(z)− εb

)[
1 + i

2
9
(k0r(z))3

√
Ee f f 0(z)(εs − εb) +

εs − εb
3Ee f f 0(z)

(
1− v f (z)

)5(
1 + 2v f (z)

)2

]
(10)

where k0 = 2π/λ is the wavenumber, λ is the wavelength, and r(z) is the radius of ice grains.
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Figure 5. Electromagnetic penetration depth (in meters) in pure ice versus temperature and frequency
below 100 GHz. Note the increase in penetration depth with lower frequencies and temperatures.

2.2. Radiation Model

A simple microwave radiation model has been developed, and the brightness tem-
peratures at the firn surface for frequency f , incidence angle θi, and polarization p,
TB(z = 0, f , θi, p) have been analytically calculated using the following zeroth-order radia-
tive transfer equation:

TB(z = 0, f , θi, p) =
∫ z=0

zdeep

[
z′=0

∏
z′=z

Γ
(
z′, θ

(
z′
)
, p
)]

κe( f , z) sec θ(z)T(z)e−
∫ z′=0

z′=z κe(z′ , f ) sec θ(z′)dz′dz (11)

where Γ(z′, θ(z′), p), θ(z′), and T(z) are the amplitude squared of the Fresnel transmission
coefficient at the ice layer interface at depth z′ for polarization p, the angle of incidence at
the ice layer interface at depth z′, and the physical firn temperature at depth z, respectively.
κe is the extinction coefficient. Notice that Equation (11) follows the expressions given
in [25–27] with improvements to consider the effects of incidence angle, polarization, and
internal reflections due to density fluctuations among ice layers. This equation can also be
written as:

TB(z = 0, f , θi, p) =
∫ z=0

zdeep

W( f , θ, p, z)T(z)dz (12)
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where

W( f , θ, p, z) =

[
z′=0

∏
z′=z

Γ
(
z′, θ

(
z′
)
, p
)]

κe( f , z) sec θ(z)e−
∫ z′=0

z′=z κe(z′ , f ) sec θ(z′)dz′ (13)

is the weight function for frequency f , incidence angle θ, and polarization p. The extinction
coefficient κe can be calculated here as the sum of scattering and absorption coefficients, κs
and κa, with the help of an existing microwave emission model called Microwave Emission
Model of Layered Snowpacks (MEMLS). MEMLS has been developed by Mätzler and
Wiesmann [27] across microwave frequencies from 5 GHz to 100 GHz. It is a radiative
transfer model which uses six-flux theory for describing multiple volume scattering and
absorption, including radiation trapping due to internal reflection and a combination
of coherent and incoherent superposition of reflections between layer interfaces. The
absorption coefficient of a layer at depth z can be computed using the effective complex
permittivity Ee f f as:

κa(z) = 4π ×
imag

(√
Ee f f (z)

)
λo

(14)

where λo is the wavelength in a vacuum. To determine the scattering coefficient, an
exponential correlation length, pec , which is related to the snow grain size r(z) should be
found. First, rmax, the maximum extension of the prevailing grain size r(z) in millimeters,
has been determined using the following equation [28] to reduce the variations in large
values of the observed firn grain radius:

r(z) = 1.5×
(

1− e(−1.5∗rmax)
)

(15)

Then, the exponential correlation length in millimeters can be derived from rmax
as follows:

pec =

{
a0 + a1ln(rmax)± ε f it i f rmax > rsmall

p0 ± ε0, otherwise
(16)

where a0 and a1 are two empirical fitting factors, and rsmall is the threshold for small grain
size. ε f it and ε0 represent the error and the uncertainty associated with the resulting fit,
respectively. This method was introduced in [29] by analyzing the microstructure of snow
samples from Weissflühjoch, Davos, Switzerland. In this study, the values for a0, a1, p0, r0,
ε f it, and ε0 were taken as 0.18 mm, 0.09 mm, 0.05 mm, 0.125 mm, 0.027 mm, and 0.017 mm,
respectively. Once pec is obtained, the scattering coefficient within a layer at depth z can be
calculated from snow physical properties [27,30] as follows:

κs(z) =

(
9.2pec

1mm
− 1.23ρ(z)

1gm/cm3 + 0.54

)2.5

×
(

f
50GHz

)2.5
(17)

where ρ(z) is the firn density as described in Equation (4) and f is the radiation frequency
in GHz.

Atmospheric Attenuation

The radiation model defined by Equation (11) outputs the surface brightness tem-
perature of the Antarctic firn, i.e., microwave radiation from the firn surface; however,
atmospheric contributions and losses are not taken into account. Thus, the Rec ITU-R
P.835-6 [31] expressions and data for reference standard atmospheres have been followed
for estimating the atmospheric attenuation and brightness temperatures to calculate the
top of the atmosphere brightness temperature, TBTOA , as:

TBTOA( f ) = TB(z = 0, f , θi, p)× K( f ) + TBATM ( f ) (18)
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where K( f ) is the atmospheric attenuation factor as a function of frequency and TBATM
is the atmospheric brightness temperature. The reference standard atmospheres have
been utilized to determine temperature, pressure, and humidity as a function of altitude
for calculating gaseous attenuations when local data are not available. To determine the
atmospheric attenuation around Concordia Station (75◦05′59” S 123◦19′56” E) in Antarctica,
the high latitude reference atmosphere defined for summer and winter seasons has been
used. Figure 6 demonstrates the atmospheric brightness temperatures and attenuation
factors used in this study to calculate the top of the atmosphere brightness temperatures
over the Antarctic firn versus frequency.

 

Figure 6.  (a) Atmospheric brightness  temperature and  (b) atmospheric attenuation 

factor versus frequency based on the high latitude reference atmosphere defined in 
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Figure 6. (a) Atmospheric brightness temperature and (b) atmospheric attenuation factor versus
frequency based on the high latitude reference atmosphere defined in Rec ITU-R P.835-6.

2.3. Global Precipitation Measurement Mission

The Global Precipitation Measurement (GPM) mission, shown in Figure 7, is an
international constellation-based mission designed to combine and improve precipitation
measurements from several operational microwave sensors. None of the GPM members
were built and launched specifically for the GPM mission. The individual satellites were
designed and deployed by their respective space agencies for their own weather programs,
but the international community, led by the National Aeronautics and Space Administration
(NASA) and the Japan Aerospace Exploration Agency (JAXA), decided to incorporate the
measurements from these satellites for consistent precipitation products with larger global
coverage [32,33].

Within the GPM constellation, Special Sensor Microwave Imager/Sounder (SSMIS)
on Defense Meteorological Satellite Program (DMSP) satellites F16, F17, F18, F19, and F20
(operated by NASA and the National Oceanic and Atmospheric Administration (NOAA))
and Advanced Microwave Scanning Radiometer-2 (AMSR2) on the Global Change Ob-
servation Mission-Water 1 (GCOM-W1) satellite (operated by JAXA) provide radiometric
measurements over the polar regions at frequencies below 100 GHz where the electromag-
netic penetration depth varies between tens of meters and a few centimeters, as shown in
Figure 5. Thus, measurements provided by these two sets of instruments are suitable for
the study of the polar firn and have been analyzed in this paper. The main characteristics
of the SSMIS and AMSR2 radiometers are summarized in Sections 2.3.1 and 2.3.2.

2.3.1. Special Sensor Microwave Imager/Sounder (SSMIS)

The Special Sensor Microwave Imager/Sounder (SSMIS) is a 24-channel microwave
radiometer with channel frequencies ranging from 19.35 GHz to 183 GHz [35]. It measures
brightness temperatures at a 53.1◦ incidence angle in horizontal and vertical polarizations
with sampling intervals varying from 12.5 km to 37.5 km (note that the 22.235 GHz channel
provides measurements only in vertical polarization).
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2.3.2. Advanced Microwave Scanning Radiometer-2 (AMSR2)

The Advanced Microwave Scanning Radiometer-2 (AMSR2) is a seven-frequency
radiometer which provides measurements at a fixed 55◦ incidence angle [36,37]. It measures
brightness temperatures in both vertical and horizontal polarizations at 6.9 GHz, 7.3 GHz,
10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89 GHz with spatial resolutions ranging
from 3 km × 5 km to 35 km × 62 km.

2.3.3. Intercalibration of the GPM Constellation

The GPM Intersatellite Calibration Working Group (XCAL team) was established in
2007 within the NASA Precipitation Measurement Missions (PMM) science team and is
responsible for providing intercalibrated brightness temperature products for the GPM
constellation. This intercalibration process which merges the constellation sensors as a
single multifrequency radiometer involves several steps. First, the biases across the antenna
scan or along the satellite orbit are removed for each instrument. Then, channels from
different instruments at similar frequencies are compared, accounting for differences in
center frequencies, bandwidths, polarizations, and view angles using radiative transfer
models. For frequency channels where the atmosphere is semi-transparent, two-point
calibration adjustment is performed using overlapping measurements over oceans (cold
target) and high-emissivity vegetated lands (warm target). For frequencies insensitive
to the surface, only one-point adjustment is performed [38]. GPM Microwave Imager
(GMI), another instrument in the GPM constellation, is taken as a calibration reference for
these adjustments.

GPM intercalibrated brightness temperatures are produced by the XCAL team and
made publicly available on NASA Goddard Space Flight Center’s Precipitation Processing
System (PPS) website [39]. The datasets include SSMIS’s 19.35 GHz, 22.235 GHz, 37 GHz,
and 91.655 GHz channels as well as AMSR2′s 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and
89 GHz channels (see Figure 8). Thus, measurements performed by these channels can be
considered as multi-frequency observations by a single wideband spaceborne radiometer.
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3. Results
3.1. Analyses over Concordia and Vostok Stations in Antarctica

To demonstrate the potential of the GPM constellation as a wideband multi-frequency
spaceborne radiometer to characterize the Antarctic firn, an initial analysis has been con-
ducted, and the sensitivity of the SSMIS and AMSR2 intercalibrated multi-frequency
radiometer measurements to the thermal and physical properties of the polar firn layers
has been investigated at Concordia and Vostok Stations in Antarctica locations of which are
shown in Figure 3.

3.1.1. Satellite Measurements

Intercalibrated brightness temperature measurements of AMSR2 and SSMIS radiome-
ters as well as the 6.9 GHz and 7.3 GHz brightness temperature measurements of AMSR2
from January 2020 to June 2021 were collected and averaged monthly over two 0.25◦ × 0.25◦

latitude-longitude grids centered around Concordia (75◦05′59”S 123◦19′56”E) and Vostok
(78◦27′50”S 106◦50′15”E) Stations in Antarctica. Intercalibrated brightness temperatures
were obtained from the PPS website and the lowest two frequency channel measurements of
AMSR2 were downloaded from the Globe Portal System (G-Portal) of JAXA [40]. Monthly
averages and large grid cells were considered to reduce the impacts of different sensor
overpass times and spatial resolutions as well as intercalibration errors.

Figure 9 depicts the horizontally polarized brightness temperatures versus month,
with ranges of ±1 monthly standard deviations, over Concordia and Vostok Stations
between January 2020 and June 2021 at all above-mentioned AMSR2 and SSMIS frequencies
(except 22.235 GHz since only vertically polarized brightness temperatures are available
at this frequency). Figure 10 demonstrates the same brightness temperatures in vertical
polarization. It can be seen from the figures that at low frequencies, e.g., 6.9 GHz, 7.3 GHz,
and 10.65 GHz, the brightness temperatures do not vary significantly throughout the
year. At higher frequencies, e.g., 89 GHz and 91.65 GHz, on the other hand, the seasonal
variations can be as large as 35 K. As expected in the Southern Hemisphere, the maximum
brightness temperatures are observed in December–January and the lowest brightness
temperatures are measured between May and September. Moreover, due to the lower
reflection between ice and air in vertical polarization, vertically polarized brightness
temperatures are slightly higher than horizontally polarized brightness temperatures.
Finally, except at the two highest frequencies, measurements over Concordia Station have
been found to be warmer than those over Vostok Station in both polarizations.

3.1.2. Radiation Simulations

In order to accurately interpret the measured AMSR2 and SSMIS brightness tempera-
tures shown in Figures 9 and 10, a simple simulation was conducted. Monthly averaged
physical temperature profiles measured at Concordia Station between 2006 and 2010 down
to 21 m depth [16] (shown in Figure 4), and firn density and grain size profiles (described in
Section 2.1) were considered in the simulation. Although they may not accurately reflect the
properties of the firn layers at Concordia and Vostok Stations in 2020 and 2021, these profiles
are consistent with the models described in Equations (4), (6), and (7) in Section 2.1. For
the density model in Equation (4), it was assumed that ρ∞ = 922 kg/m3, ρ0 = 336 kg/m3,
β = 0.017 m−1, ρn is a Gaussian random process with zero mean and standard deviation
which varies randomly with depth, and α = 0.02 m−1. Top of the atmosphere brightness
temperatures for Concordia and Vostok Stations were calculated using these parameters
using Equations (11) and (18), and to validate these simulations, calculated brightness
temperatures at AMSR2 and SSMIS frequencies and incidence angles were compared with
AMSR2 and SSMIS brightness temperature measurements.
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Figure 9. Horizontally polarized brightness temperatures measured by AMSR2 and SSMIS over 
(solid) Concordia and (dashed) Vostok Stations in Antarctica versus month between 2020 and 2021 
at frequencies (a) 6.9 GHz, 7.3 GHz, and 10.65 GHz; (b) 18.7 GHz, 19.35 GHz, and 23.8 GHz; (c) 36.5 
GHz and 37 GHz; and (d) 89 GHz and 91.65 GHz. The vertical lines demonstrate the ranges of ±1 
monthly standard deviations. Note that all measurements except those from the 6.9 GHz and 7.3 
GHz channels of AMSR2 are intercalibrated and the brightness temperatures were averaged over 
month and 0.25° × 0.25° grids. 

Figure 9. Horizontally polarized brightness temperatures measured by AMSR2 and SSMIS over
(solid) Concordia and (dashed) Vostok Stations in Antarctica versus month between 2020 and 2021 at
frequencies (a) 6.9 GHz, 7.3 GHz, and 10.65 GHz; (b) 18.7 GHz, 19.35 GHz, and 23.8 GHz; (c) 36.5 GHz
and 37 GHz; and (d) 89 GHz and 91.65 GHz. The vertical lines demonstrate the ranges of ±1 monthly
standard deviations. Note that all measurements except those from the 6.9 GHz and 7.3 GHz channels
of AMSR2 are intercalibrated and the brightness temperatures were averaged over month and
0.25◦ × 0.25◦ grids.

Figure 11 depicts the calculated top of the atmosphere horizontally polarized bright-
ness temperatures versus month and compares them with AMSR2 and SSMIS measure-
ments shown in Figures 9 and 10. As the in situ firn temperature measurements used for
the simulations (see Figure 4) were measured at Concordia Station, AMSR2 and SSMIS
observations are shown only for Concordia Station. Additonally, vertical polarization
simulations are not discussed here, but they demonstrate similar characteristics. It can
be seen in Figure 11 that overall brightness temperature trends are, in general, similar in
calculated and measured brightness temperatures. More specifically:

• At 6.9 GHz and 7.3 GHz, both simulated and measured brightness temperatures are
almost constant during the year as expected since they are mostly sensitive to layers
in isothermal deep firn, as the electromagnetic penetration depth is mostly larger
than 20 m and the temperature of layers below this depth does not experience any
significant seasonal variations, as shown in Figures 3 and 4. Furthermore, the bias
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between the simulations and the measurements is negligible, as their distribution
mostly overlaps throughout the year.

• Measured brightness temperatures exhibit 10–20 K seasonal variations at frequencies
between 10.65 GHz and 23.8 GHz where the annual mean brightness temperature and
the seasonal variations increase with frequency. Simulated brightness, on the other
hand, underestimates these seasonal variations. Additionally, at these frequencies,
biases up to 10 K have been observed in the annual mean brightness temperatures
between simulations and measurements. These two sources of error have led to biases
as large as 20 K, specifically at 18.7 GHz.

• Simulations and measurements at 36.5 GHz and 37 GHz agree well except in Antarctic
summer (from September to March), where again, the simulations fail to follow the
sharp increase in measured brightness temperatures, resulting biases up to ~10 K.

• Finally, measurements and simulations at the highest two frequencies, i.e., 89 GHz
and 91.65 GHz, which exhibit the largest seasonal variations (~35 K) mostly agree with
each other.

 

 

Figure  10. Vertically polarized brightness  temperatures measured by AMSR2  and 

SSMIS  over  (solid) Concordia  and  (dashed) Vostok  Stations  in Antarctica  versus 
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Figure 10. Vertically polarized brightness temperatures measured by AMSR2 and SSMIS over
(solid) Concordia and (dashed) Vostok Stations in Antarctica versus month between 2020 and 2021 at
frequencies (a) 6.9 GHz, 7.3 GHz, and 10.65 GHz; (b) 18.7 GHz, 19.35 GHz, and 23.8 GHz; (c) 36.5 GHz
and 37 GHz; and (d) 89 GHz and 91.65 GHz. The vertical lines demonstrate the ranges of ±1 monthly
standard deviations. Note that all measurements except those from the 6.9 GHz and 7.3 GHz channels
of AMSR2 are intercalibrated and the brightness temperatures were averaged over month and
0.25◦ × 0.25◦ grids.
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Figure 11. Horizontally measured polarized brightness temperatures over Concordia Station versus
simulations as described in Section 3.1.2 at frequencies (a) 6.9 GHz; (b) 7.3 GHz; (c) 10.65 GHz;
(d) 18.7 GHz; (e) 19.35 GHz; (f) 23.8 GHz; (g) 36.5 GHz; (h) 37 GHz; (i) 89 GHz, and (j) 91.65 GHz.
Note that simulations demonstrate similar seasonal trends with satellite measurements.

3.1.3. Retrieval Studies

To match the simulated top of the atmosphere brightness temperatures over Concordia
Station as shown in Figure 11, σdensity(z) and
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(z), density and grain size parameters defined
in Sections 2.1.1 and 2.1.2 were randomly varied in each layer with high resolution. This
can be considered as an initial step for retrieval studies for some of the important physical
properties of the Antarctic firn, namely density and grain size profiles. Figure 12 depicts the
variation of σdensity(z) and
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profiles as described in Equations (4) and (6), which have provided a good match between
the simulations and satellite measurements, as shown in Figure 11. The optimum σdensity(z)
and
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(z) profiles were selected by minimizing the root mean square errors between the
simulated and measured top of the atmosphere brightness temperatures across all the
frequency channels.
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(z); and (d) the resulting grain
radius profile, rconcordia(z), versus depth to match radiation simulations with spaceborne radiometer
measurements over Concordia Station as shown in Figure 11.

As seen in Figure 12, the retrieved density fluctuations are larger near the surface and
substantially decrease with depth. These thinner near-surface layers with high density
fluctuations vs. thicker layers with smoother density profiles, in general, agree with
previous in situ density profile measurements performed near Concordia Station [16]
except for the fact that larger fluctuations, ~200 kg/m3 peak-to-peak, were obtained in
this study compared to ~100 kg/m3 peak-to-peak fluctuations presented in [16]. The
retrieved grain radius profile also suggests larger grain radii, ~600 µm, than the in situ
data extrapolated to near surface as described in Section 2.1.2. However, these values
are consistent with previous near-surface grain size estimations at and around Concordia
Station [17], conforming with our results.
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Relative contributions of the firn layers at different depths to the surface brightness
temperatures in radiation simulations can be calculated through normalized weight func-
tions, Wn( f , θ, p, z), as follows:

Wn( f , θ, p, z) = W( f , θ, p, z)/
∫ z=0

zdeep

W( f , θ, p, z)dz (19)

where W( f , θ, p, z) is the weight function defined in Equation (13) in Section 2.2. Figure 13
demonstrates the normalized weight functions in horizontal polarization for AMSR2 and
SSMIS frequencies and incidence angles calculated assuming Antarctic winter conditions
(the June firn temperature profile in Figure 4 was used). Functions in summer conditions
and vertical polarization, in general, exhibit similar trends.
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Figure 13. Normalized weight functions versus depth at frequencies (a) 6.9 GHz, 7.3 GHz, and
10.65 GHz; (b) 18.7 GHz, 19.35 GHz, and 23.8 GHz; (c) 36.5 GHz and 37 GHz; and (d) 89 GHz and
91.65 GHz. Note that these functions were calculated using the density and grain size profiles shown
in Figure 12.

Figure 13 shows that as the frequency increases, contributions to the surface bright-
ness temperatures become restricted to the layers close to the surface, whereas at low
frequencies the contributions are significant even from deep layers. For instance, at 89 GHz
and 91.65 GHz, surface layers contribute almost 10 times more to the surface brightness
temperature than the layers at 50 cm depth. On the other hand, at 6.9 GHz, layers as deep
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as 100 m can substantially influence the surface brightness temperature. To quantitatively
describe the depths that characterize surface microwave emissions, a new parameter called
average firn depth of sensitivity—zavg( f , θ, p), a function of frequency, incidence angle, and
polarization—has been introduced in this study as follows:

0.5 =
∫ z=zavg( f ,θ,p)

zdeep

Wn( f , θ, p, z)dz (20)

Equation (20) indicates that the depth at which firn layers above and below the average
depth of sensitivity for a particular frequency are each responsible for half of the surface emis-
sions at that frequency. The average depths of sensitivity in horizontal polarization at AMSR2
and SSMIS frequencies and incidence angles have been calculated and shown in Figure 14.
The figure depicts that the average depths of sensitivities decrease from ~41 m to near surface
as frequency increases from 6.9 GHz to 91.65 GHz, confirming the potential of wideband
or multifrequency radiometry to probe different depths inside the firn. Note that, although
decreasing with frequency, these values are significantly smaller than the electromagnetic
penetration depths shown in Figure 5. It is expected that the physical properties of the firn
at the average depths of sensitivity, rather than electromagnetic penetration depths, exhibit
higher correlation with the microwave radiations at the associated frequencies.
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3.2. Outcomes

In Section 2.2, a simple microwave emission model has been introduced and validated
by comparing simulated brightness temperatures with AMSR2 and SSMIS measurements
intercalibrated within the GPM constellation across a wide frequency range from 6.9 GHz
and 91.65 GHz. Although the seasonal trends in the simulated and measured brightness
temperatures mostly agree with each other, errors and biases may exist between them
mostly at frequencies between 10.65 GHz and 37 GHz. Considering the fact that the
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simulation results agree well with the measurements at the lowest frequencies—i.e., 6.9 GHz
and 7.3 GHz—and the highest—i.e., 89 GHz and 91.65 GHz—which reflect the properties
of the deep ice and near surface, we conclude that the sources of these errors are likely
related to the spatial and temporal variations in the physical temperature, density, and
grain size of the firn layers between ~0.2 m and ~15.1 m (average depths of sensitivity
associated with frequencies from 10.65 GHz and 37 GHz) not being accurately represented
by the physical models used for these firn properties. Note that these models have been
developed mainly based on the local in situ measurements near Concordia Station whereas
the satellite footprints cover areas as large as tens of kilometers in radius. High accuracy
in simulations at the highest frequencies, on the other hand, eliminates the probability of
large biases due to atmospheric conditions.

Using the validated microwave radiation model, a new parameter called the average
firn depth of sensitivity, a metric which quantifies the depth where the firn properties sig-
nificantly influence the surface brightness temperatures, has been introduced as a function
of frequency. It has been demonstrated that the average depth of sensitivity decreases with
frequency, thus enabling wideband or multi-frequency microwave radiometry to probe the
Antarctic firn from the surface to deep isothermal ice. Regarding the AMSR2 and SSMIS
measurements, the probing range has been found from the surface to ~40 m depth.

Considering the electrical properties of the firn and the microwave radiation model, it
is obvious that firn density and grain size profiles have a significant impact on the surface
brightness temperatures; thus, they can be estimated using the radiometer measurements.
For instance, firn density fluctuations discussed in Section 2.1.1 determine the reflection and
transmission of electromagnetic radiation among firn layers, which in turn influence surface
brightness temperatures. Higher density fluctuations result in more internal reflections,
thus less surface emission and lower brightness temperatures. This phenomenon may
explain the brightness temperature differences between Concordia and Vostok Stations
shown in Figures 9 and 10 where the brightness temperatures over Concordia Station are
higher than those over Vostok Station, especially at intermediate and high frequencies.
Considering that the differences are smaller in vertical polarization, which is less susceptible
to internal reflections [41], larger density fluctuations were expected at Vostok Station near
the surface. In Section 3.1.3, a simple retrieval study for these profiles has been discussed
for Concordia Station. To mimic the measurements over Vostok Station, another retrieval
study has been performed. Assuming that physical temperature profiles are similar at
Vostok and Concordia Stations, a density profile, described by the σdensity values versus
depth shown in Figure 15—which, as expected, was higher near the surface—has been
retrieved. As seen in Figure 16, the retrieved density profile provides a relatively good
match between the simulated brightness temperatures and satellite measurements over
Vostok Station, except the biases at the intermediate frequencies, reasons for which have
been discussed previously. Note that the overall differences between the simulated and
measured brightness temperatures are larger for Vostok Station than those for Concordia
Station. We suppose that the reason for these larger errors is the lack of in situ data for
Vostok Station, as firn properties in this study are modeled mainly based on the Concordia
measurements, such as internal firn temperatures, given in Figure 4. Nevertheless, the
Vostok results are still important to demonstrate that the brightness temperatures can be
modified by varying the firn density profiles to reflect the changes similar to the ones
observed between the two stations and such variations in density profiles can be retrieved
using satellite measurements.

Physical temperature of the firn is another major factor determining the surface bright-
ness temperature and can be probed at different depths using microwave radiometry. This
can be demonstrated by investigating the correlations between the brightness temperatures
measured by the GPM radiometers and the physical temperatures of the Antarctic firn at av-
erage depths of sensitivity associated with the GPM frequencies. Figure 17 illustrates these
correlations at Concordia Station. The correlations have been demonstrated by co-plotting
the deviations of the measured brightness and physical temperatures around their annual
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mean. As mentioned previously, deep firn is isothermal; thus, no significant variations in
brightness temperatures at 6.9 GHz, 7.3 GHz, and 10.65 GHz have been observed. Similarly,
physical firn temperatures at 41.4 m, 37 m, and 15.1 m depths, i.e., average depths of
sensitivity for 6.9 GHz, 7.3 GHz, and 10.65 GHz, follow a constant pattern throughout the
year, showing a high correlation. On the other hand, as frequency increases, i.e., as the
average depths of sensitivity decrease, the brightness temperatures at higher frequencies
reflect the seasonal physical temperature variations in shallow firn. For example, at 89 GHz
and 91.65 GHz, the measured brightness temperatures vary ~35 K between summer and
winter. On the other hand, the physical temperatures at the firn surface deviate from
the annual mean in a similar manner. These high correlations confirm the potential of
extracting thermal properties of polar firn using wideband or multifrequency radiometer
such as the GPM radiometer constellation.
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Figure 16. Comparative analysis of calculated and measured brightness temperatures at Concordia
and Vostok Stations at frequencies (a) 6.9 GHz, (b) 7.3 GHz, (c) 10.65 GHz, (d) 18.7 GHz, (e) 19.35 GHz,
(f) 23.8 GHz, (g) 36.5 GHz, (h) 37 GHz, (i) 89 GHz, and (j) 91.65 GHz.
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Figure 17. Correlation between GPM-measured brightness temperatures at (a) 6.9 GHz, (b) 7.3 GHz,
(c) 10.65 GHz, (d) 18.7 GHz, (e) 19.35 GHz, (f) 23.8 GHz, (g) 36.5–37 GHz, and (h) 89–91.65 GHz
and physical firn temperatures at the associated average depths of sensitivity (a) 41.4 m, (b) 37 m,
(c) 15.1 m, (d) 2.1 m, € 2 m, (f) 1 m, (g) 0.2 m, and (h) surface. The high correlation between brightness
and physical temperatures imply that multifrequency GPM observations can be utilized to profile
internal firn temperatures versus depth.
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4. Discussion

This study, based on a simple microwave emission model, demonstrates the potential
for wideband microwave radiometers such as the GPM constellation to characterize the
Antarctic firn in terms of its internal temperature profiles and density properties. It has
been demonstrated that the GPM constellation has the potential of profiling the internal
physical temperature of the Antarctic firn, which was highlighted by the strong correlation
between the GPM brightness temperatures at different frequencies and the physical firn
temperatures at the associated depths of sensitivity. In addition, the differences between the
brightness temperatures observed over Concordia and Vostok Stations could be simulated
by varying the depth-dependent firn density parameters, which suggests that the retrieval
of density profiles are also possible.

Note that several studies have been published before regarding the passive microwave
remote sensing of the polar firn in which simulated brightness temperatures could be
fine-tuned to minimize the bias with satellite measurements [4,16–18]. However, those
studies were mostly limited to the 10.65 GHz to 37 GHz frequency range, i.e., intermediate
frequencies in this study. This paper, on the other hand, presents the first attempt to
utilize a much larger frequency spectrum from 6.9 GHz to 91.65 GHz, i.e., the entire
microwave spectrum from C-band to W-band, for a much comprehensive analysis where
minimizing biases between simulations and satellite measurements were challenging.
However, utilizing all this spectrum, we can characterize the Antarctic firn from the surface
to the deep firn by changing the density and grain size profiles as a function of depth
with fine vertical resolutions which enables us to retrieve non-uniform variations in firn
density and grain with respect to depth as shown in Figure 12. Such retrievals are indeed
needed as in situ measurements of firn density and grain size profiles demonstrate similar
depth-dependent characteristics [16].

Future studies will include utilizing more comprehensive coherent and incoherent
forward electromagnetic models discussed in [19] with additional variables such as internal
temperature parameters to further tune and revise the simulated brightness temperatures
and incorporating additional radiometer measurements at different frequencies, such
as SMAP’s 1.4 GHz observations [42]. This will help to validate the initial conclusions
presented in this paper, decrease the errors in brightness temperature simulations, and, with
proper retrieval algorithms, lead to estimation studies for a more inclusive set of subsurface
geophysical parameters over larger and deeper regions within the Antarctic Ice Sheet.
Moreover, assimilation of the additional radiometer measurements as well as the lowest
AMSR2 frequency channels, 6.9 GHz and 7.3 GHz, into the set of intercalibrated radiometer
products should be investigated to achieve better consistency across all frequencies utilized
for the characterization of the Antarctic firn through passive remote sensing.
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