
Citation: Yu, P.; Xu, W.; Zhong, X.;

Johannessen, J.A.; Yan, X.-H.; Geng,

X.; He, Y.; Lu, W. A Neural Network

Method for Retrieving Sea Surface

Wind Speed for C-Band SAR. Remote

Sens. 2022, 14, 2269. https://doi.org/

10.3390/rs14092269

Academic Editor: Martin Gade

Received: 12 February 2022

Accepted: 5 May 2022

Published: 8 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Neural Network Method for Retrieving Sea Surface Wind
Speed for C-Band SAR
Peng Yu 1,2 , Wenxiang Xu 2, Xiaojing Zhong 3, Johnny A. Johannessen 4, Xiao-Hai Yan 5, Xupu Geng 6 ,
Yuanrong He 1 and Wenfang Lu 7,8,*

1 College of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China;
yupeng@t.xmut.edu.cn (P.Y.); 2012112001@xmut.edu.cn (Y.H.)

2 Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education,
National Engineering Research Centre of Geo-Spatial Information Technology, Fuzhou University,
Fuzhou 350002, China; 215520009@fzu.edu.cn

3 College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China; xjzhong@jmu.edu.cn
4 Nansen Environmental and Remote Sensing Center and Geophysical Institute, University of Bergen,

N-5006 Bergen, Norway; johnny.johannessen@nersc.no
5 Center for Remote Sensing, College of Earth, Ocean and Environment, University of Delaware,

Newark, DE 19716, USA; xiaohai@udel.edu
6 Fujian Engineering Research Center for Ocean Remote Sensing Big Data, Xiamen University,

Xiamen 361005, China; gengxp@xmu.edu.cn
7 School of Marine Sciences, Sun Yat-sen University, Guangzhou 510080, China
8 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
* Correspondence: luwf6@sysu.edu.cn

Abstract: Based on the Ocean Projection and Extension neural Network (OPEN) method, a novel
approach is proposed to retrieve sea surface wind speed for C-band synthetic aperture radar (SAR).
In order to prove the methodology with a robust dataset, five-year normalized radar cross section
(NRCS) measurements from the advanced scatterometer (ASCAT), a well-known side-looking radar
sensor, are used to train the model. In situ wind data from direct buoy observations, instead of
reanalysis wind data or model results, are used as the ground truth in the OPEN model. The model is
applied to retrieve sea surface winds from two independent data sets, ASCAT and Sentinel-1 SAR data,
and has been well-validated using buoy measurements from the National Oceanic and Atmospheric
Administration (NOAA) and China Meteorological Administration (CMA), and the ASCAT coastal
wind product. The comparison between the OPEN model and four C-band model (CMOD) versions
(CMOD4, CMOD-IFR2, CMOD5.N, and CMOD7) further indicates the good performance of the
proposed model for C-band SAR sensors. It is anticipated that the use of high-resolution SAR data
together with the new wind speed retrieval method can provide continuous and accurate ocean wind
products in the future.

Keywords: C-band SAR; sea surface wind; Sentinel-1; ASCAT; neural network

1. Introduction

In the ocean, the surface wind field is one of the most important parameters for a range
of activities, both for scientific and application purposes [1]. It is widely used to study sea
surface waves [2], wind-driven currents [3], ocean circulation [4], offshore fronts, marine
biogeochemistry [5], energy, and material exchange between the ocean and atmosphere for
research in oceanography and meteorology. It is also an indispensable factor to provide
help for the safety and security of human activities, i.e., oceanographic survey, fisheries, oil
spill monitoring, maritime navigation, and other coastal and marine operations.

Traditional means to obtain the ocean surface wind field include irregular ship re-
ports and fixed meteorological stations and buoys [6]. However, the acquisition cost and
weather limitation hinder the continuity and availability of wind data by means of cruise
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observations. Measurements from offshore buoys and meteorological stations are spatially
sparse and cannot fully meet the needs of scientific and applied goals in coastal and marine
activities [7]. To meet the requirements for wind observations, satellite-borne microwave
radar, scatterometers, radiometers, and synthetic aperture radar (SAR), can be used to
observe the sea surface wind field in a large spatial scale under all-time and all-weather
conditions [8]. Among these sensors, SAR is a unique tool to allow for high-resolution (finer
than 1 km) observations of the near-surface wind field, which is more practical in coastal
regions [9], with low costs and short revisiting time [10]. The ongoing spaceborne SAR
missions have already proven their success on such applications, including Radarsat-2 [11],
Sentinel-1 [12], and Gaofen-3 [13]. As small satellites and constellations develop rapidly, the
outlook on CubeSat and small satellite SAR-based missions is also economically promising
for obtaining ocean winds [14].

Radar sensors are very sensitive to the ocean surface roughness (or normalized radar
cross section, denoted by NRCS or σ0) [15,16]. The σ0 measured by SAR systems can
be used to provide sea surface wind speed at a 10 m height (U10) using empirical geo-
physical model functions (GMFs). At present, the C-band model (CMOD) functions, e.g.,
CMOD4 [17], CMOD-IFR2 [18], CMOD5 [19], and CMOD5.N [20], developed based on
NRCS measurements in VV (vertical-vertical) polarization from scatterometers are still
commonly used GMFs to retrieve coastal winds for SAR sensors [8]. Similar C-band GMFs
have also been developed based on SAR measured backscatter data [21,22]. These C-band
GMFs are a function of the sea surface roughness, incidence angle, polarization, and relative
azimuth between radar look angle and wind directions. Since the physical relationship
between a wind vector and its radar signal is not easy to understand [23], parameters in
GMFs should be regressed using different sources of reference winds, such as those from
numerical models [17] and buoy data [18,24]. To date, the CMOD functions have been
updated to the latest CMOD7 for advanced scatterometer (ASCAT) [25], and the European
Space Agency (ESA) is still continuously improving their performance on 10 m-height
stress-equivalent winds [26], quality assessment [27], and extreme winds [28].

GMFs are nonlinear transfer functions leading to a complicated inverse problem.
Such nonlinear regression problems can be easily solved using the neural network (NN)
technique [29,30]. Machine learning methods have also demonstrated their great potential
in some ocean remote sensing areas [31]. Some C-band GMFs based on machine learning
methods have been proposed to compute wind vectors. Thiria et al. [32] first proposed
a quasi-linear multilayer perceptrons (MLP) method to compute wind speeds based on
the σ0 triplet of simulated ERS-1 scatterometer data. The accuracy of the retrieved wind
vector was then improved by a mixture density network (MDN) with circular normal
kernel densities for C-band observations [33–35]. As for the SAR retrieval of sea surface
wind speed, Horstmann et al. [36] proposed a straightforward method to retrieve wind
speeds for uncalibrated SAR data in wave mode from the European Remote Sensing (ERS)
satellites ERS-2. The NN-based model was trained using 27 days of ERS-2 SAR data
and collocated wind data from the European Centre for Medium-Range Weather Forecast
(ECMWF) model data. Shao et al. [37] built a collocated dataset between the ECMWF winds
and Gaofen-3 SAR data, and then proposed a wind retrieval model using four NN methods,
gradient boosting decision tree, back-propagation (BP), K nearest neighbors, and random
forest. Their research confirmed the applicability of NN method for quad-polarization SAR
data compared with ASCAT winds. Considering that HH-polarized SAR data have been
extensively acquired over the Arctic region for polar monitoring, Qin et al. [38] utilized a
GMF-guided NN to retrieve winds using ASCAT winds and Sentinel-1 SAR images in EW
mode. The BP NN-based model was further improved with a larger amount of collocated
ASCAT and Sentinel-1 data [39].

In previous NN-based studies, most of them used reference winds from numerical
models, reanalysis data, or GMFs to train the network. Studies are possible using direct
in situ data from long-term buoy observations to train the model. In addition, in our
previous work, we found a good generalization capability to combine an MLPs model with
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a Bayesian Regularization scheme in regression problems [40,41]. This approach is termed
the Ocean Projection and Extension neural Network (OPEN) method [41] and has shown
its potential and merits in constructing global heat content [42]. Yet, this method has never
been applied in the retrieval of remote sensing wind speed.

The purpose of this study is to propose a new wind speed retrieval method for single-
antenna SAR sensors, which may help to provide accurate and high-resolution coastal and
ocean wind speeds both for scientific and applied purposes. Since co-polarization NRCSs
are still the most reliable and easily collected data from ongoing SAR, especially for the
freely available Sentinel-1 with relatively high residual noise in cross-polarization data [43,44]
and small satellites such as Hisea-1 with only co-polarization measurements [14], the OPEN
method is examined to retrieve sea surface wind speeds for VV polarization C-band SAR
in this study. To prove the methodology with a robust dataset, a long record of NRCS
measurements from ASCAT, which is a well-known C-band radar sensor [25], are used to
train the model. In situ wind observations exclusively from buoys are collocated with ASCAT
data from 2013 to 2017 and used as the label data for our network. Descriptions of the datasets
and methods are presented in Section 2. Section 3 validates and compares the model results
using ASCAT, Sentinel-1 SAR, and buoy data. Discussions and conclusions are provided in
Sections 4 and 5.

2. Data and Methods
2.1. Data Sets
2.1.1. ASCAT Data

ASCAT is one of the instruments aboard the Meteorological Operational (MetOp)
satellites with an altitude of 817 km, which are operated by the European Organization
for the Exploitation of Meteorological Satellites (EUMETSAT). It is a C-band real aperture
radar with six beam antennas, providing three σ0 measurements in VV polarization, both
to the left and right side along the satellite track. The Royal Netherlands Meteorological
Institute (KNMI) (https://scatterometer.knmi.nl/home/ accessed on 1 February 2022) is
now responsible for the operational deployment of the ASCAT wind products. Currently,
ASCAT can provide wind products with spatial resolutions of 12.5 km and 25 km. Since
C-band series scatterometers have been used operationally to produce sea surface wind
vectors on a global scale in the past decades based on NRCS measurements [25], it can be
considered a robust sensor to provide reliable data for training and validating a GMF for
C-band SAR.

In this study, the coastal wind products with a resolution of 12.5 km onboard the
MetOp-A and MetOp-B satellites, launched in October 2006 and September 2012, are used
to train and validate the model. The individual NRCS observations for the coastal products
have been processed by a boxcar spatial filtering by the KNMI to provide more wind vectors
close to the coast [45], which is useful for the application of the proposed model in the
coastal area. Since SAR can only provide NRCSs from its single antenna, observations from
other two poses are abandoned except for the data from the middle beam. Measurements
including middle-beam incidence angle, azimuth, and σ0 in decibels (dB) for years from
2013 to 2017 are extracted from the coastal products. These data are in BUFR format and
are further handled by the BUFR Reader program developed by KNMI to collocate with
the buoy data. Note that the ASCAT NRCS measurements have not been processed by an
ocean calibration to keep consistent with SAR data. The wind speeds from ASCAT 12.5 km
coastal wind product are also used to validate the derived wind results by the proposed
NN model.

2.1.2. Sentinel-1 SAR Data

The Sentinel-1 mission designed by ESA can provide freely available C-band SAR
data with side-looking radars. The SAR mission consists of two satellites, Sentinel-1A and
Sentinel-1B, which were launched in April 2014 and April 2016. It allows for the observation
of ocean surface roughness with a very high spatial resolution (less than 100 m). The Level-1
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Ground Range Detected (GRD) SAR images in the VV band with interferometric wide (IW)
swath mode are collected to validate the proposed model. These SAR data are processed
using the Sentinel Application Platform (SNAP). The processing steps include removal
of low-intensity GRD border noise, thermal noise removal, radiometric calibration, and
refined lee filtering [46]. The pixel spacing of the SAR imagery is averaged to 1 km × 1 km
to suppress the speckle noise. Given such a cell size, the mean radiometric resolution
is 0.43 dB [39], which is equal to the absolute accuracy of Sentinel-1 SAR data [47]. The
reproduced data also include incidence angle, σ0, and radar look azimuth.

2.1.3. In Situ Buoy Data

Five-year ASCAT measurements and in situ wind data from the National Data Buoy
Center (NDBC) buoys provided by National Oceanic and Atmospheric Administration
(NOAA) are collocated and used to train the OPEN model. The 11 moored buoys are
mainly near the coast and located around the Gulf of Mexico (as shown in Figure 1). The
wind data are averaged over a period of 8.5 min [48].
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Figure 1. Locations of the NDBC buoys for training the OPEN model in this study. The yellow marks
indicate the locations of NDBC buoy data.

To illustrate the capability of the OPEN method for wind retrieval for distinct sea
states and topography, buoy data from October 2019 to April 2020 near the coasts of
Fujian Province, in the East China Sea, is used as an independent data set to validate the
proposed wind retrieval method. The adjacent sea has a mean water depth of ~60 m [49], an
intensified wind jet in winter with wind speed >10 m/s [50], and resultant high sea states.
Therefore, it is a question to be answered to what extent the method can be applied in
wind retrieval for distinct environments. These data are provided by the Fujian provincial
meteorological bureau. Figure 2 shows the location of these buoys and collocated SAR data.
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The distance from all buoys to the coastal lines is more than 5 km to reduce the influence of
land. Table 1 lists the information of buoy data used in this research.
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Figure 2. Locations of the coastal buoys for the validation of SAR winds using the proposed model.
The yellow rectangular box shows the locations of collocated SAR scenes, and the yellow marks
indicate the locations of buoy data.

Table 1. The information of buoy data used in this research.

Buoys in the Gulf of Mexico Buoys in the East China Sea

Station ID Latitude Longitude Station ID Latitude Longitude

42013 27.17◦N 82.92◦W B1 (F3570) 27.02◦N 120.50◦E
42022 27.50◦N 83.74◦W B2 (58767) 26.60◦N 120.59◦E
42023 26.01◦N 83.09◦W B3 (F3520) 26.56◦N 120.22◦E
42043 28.98◦N 94.90◦W B4 (F3914) 26.42◦N 120.21◦E
42044 26.19◦N 97.05◦W B5 (58951) 26.17◦N 120.42◦E
42045 26.22◦N 96.50◦W B6 (F4325) 25.07◦N 119.22◦E
42046 27.89◦N 94.04◦W B7 (F0002) 24.29◦N 119.17◦E
42047 27.90◦N 93.60◦W B8 (59330) 24.12◦N 118.01◦E
42067 30.04◦N 88.65◦W
42360 26.67◦N 90.47◦W
42395 26.40◦N 90.79◦W

Because buoy anemometers are at different heights above the sea surface, wind speeds
have been corrected to a reference level of 10 m for training and comparing with measured
satellite data. It should be mentioned that by considering boundary-layer stratifications or
not, radar sensors can provide neutral and nonneutral winds. By further accounting for the
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effects of air mass density, equivalent neutral winds can be corrected to stress-equivalent
winds. Recent work has shown that the satellite-derived winds can be improved using
stress-equivalent winds accounting for the effects of atmospheric stability [26]. However,
calculations of stress-equivalent winds require the information of air mass density (related
to the sea surface temperature, sea surface pressure, and humidity), which cannot be
simultaneously provided by the buoys used in this study. Therefore, we follow Bidlot
et al. [51] to use the steady-state neutral wind profile relation to solve the friction velocity
(u*). The wind speed (U, m/s) at a height of z (m) can be given by

U(z) = u*ln(z/z0)/κ (1)

z0 = αu*2/g, (2)

where κ is the von Karman constant of 0.41, α is the constant Charnock parameter, and g is
the acceleration of gravity.

2.2. Collocated Satellite Data and Buoy Observations

The ASCAT coastal wind products are spatially and temporally collocated with in situ
NDBC buoy measurements within the distance of 12.5 km and the time window of 30 min.
Considering that very low wind speeds from C-band radars may not be reliable due to the
absence of Bragg waves [52], buoy measurements with wind speeds less than 1 m/s are
abandoned in the collocated dataset. The middle-beam sea surface radar backscatter σ0,
incidence angle, and radar look azimuth, which are extracted from ASCAT acquisitions, are
subsequently collocated with wind vectors from buoys. The incidence angles of collocated
ASCAT data range from 26.81◦ to 52.79◦. The histogram using 53,406 collocated data from
buoy observations is shown in Figure 3. The wind speeds range from about 1 m/s to
18 m/s. The collocated data sets from ASCAT and NDBC buoy observations are randomly
separated into two sets. Among the collocated data, 98% of points are randomly selected as
the training set, and the remaining 2% are taken as the test set for assessing the performance
of the OPEN model.
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To further validate the proposed method using NDBC data against an independent data
set from Chinese buoys, a collocated data set is also generated by collocated Sentinel-1 SAR
data and buoy observations in the East China Sea. Exclusively, 28 images collected from four
repeated orbits are collocated with the buoys near Fujian (locations are shown in Figure 2).
The collocated observations between the buoy and SAR occurred within 10 min and a 1 km
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radius. This process provides a total of 71 collocated points (including the wind speed, wind
direction, C-band NRCS in VV polarization, incidence angle, and radar look angle).

2.3. The CMOD Functions

C-band GMFs have been widely used to obtain the sea surface wind field for C-band
SAR. It can thus provide another good reference to evaluate the performance of the OPEN
method. In this study, CMOD4, CMOD-IFR2, CMOD5.N, and CMOD7 are chosen for the
cross-validation. The CMOD model is an empirical function, which can be described as:

σ0 = B0(1 + B1 cos φ + B2 cos 2φ)p, (3)

where σ0 is the NRCS in VV polarization. B0, B1, and B2 are functions of incidence angle
(θ) and U10. φ is the relative angle between wind direction (WD) and radar look azimuth
(RLA). p is a parameter, which can be chosen as 1.6 to avoid higher order harmonic terms
in CMOD4 and CMOD5.N. The formulation of CMOD7 is a look-up table, which can be
obtained from the website of KNMI (https://scatterometer.knmi.nl/cmod7/ accessed on 1
February 2022).

2.4. Development of the OPEN Method

The NN-based OPEN method is detailed in [40,41], while here we only present some
necessary information. We adopt a NN with 2 hidden layers, each with 30 neurons. The
structure of the OPEN model is presented in Figure 4. One may argue that using a deep
NN could better capture the nonlinear relationship between the input and output data.
However, given the sample size of ~53,400, training a deep NN is an unrealistic practice.
For simplifying the calculation, we tend to use a shallow and relatively wide NN for the
retrieval. Theoretically, an NN with sufficient neurons can approximate any continuous
function, which is known as the universal approximation theorem [53]. Our practice
suggested that the Bayesian regularization algorithm can efficiently avoid overfitting by
adding some degree of smoothness to the cost function [54]. The input features of the NN
model include σ0 in VV polarization (dB), θ (in degree), wind direction (in degree from 0◦

to 360◦), and radar azimuth angle (in degree from 0◦ to 360◦). In practice, wind directions
for SAR wind speed retrieval can be typically obtained from external wind inputs, such as
atmospheric models [37] or wind-induced streaks [55]. Wind directions from the ECMWF
model will be used in the OPEN model to present the distribution of SAR winds in the East
China Sea in Section 3.

The root-mean-squared error (RMSE), correlation coefficient (R), mean absolute per-
centage error (MAPE), and bias are used to evaluate the wind results in this research.
Because an explicit cross-validation subset is not required to ensure generalization based
on the Bayesian Regularization algorithm, 98% of the collocated data (52,337 points) are
randomly selected as the training set. The colormap represents the sample counts. The
comparison between the OPEN results and labeled wind data from NDBC buoy measure-
ments can be seen in Figure 5. The relatively small RMSE (less than 1.2 m/s) and bias (less
than 0.01 m/s) indicate that the OPEN model fits the label wind data well.

https://scatterometer.knmi.nl/cmod7/
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3. Results
3.1. Evaluation of the Wind Speed Estimation from ASCAT Data

The accuracy of wind retrievals by the OPEN method is first validated by the test data
set using the remaining 2% points. The incidence angle, NRCS in VV polarization, radar
azimuth angle from ASCAT data, and the actual wind direction from the NDBC buoys are
regarded as the input to the NN model to retrieve the sea surface wind speeds. CMOD4,
CMOD5.N, CMOD-IFR2, and CMOD7 are used to compare the U10 obtained from the
OPEN method. Note that the CMOD4 is tuned for nonneutral wind, while CMOD-IFR2,
CMOD5.N, and the OPEN model can provide neutral winds. The latest CMOD7 can
provide stress-equivalent winds after a correction of air mass density and stability [26]. The
global average neutral wind is slightly larger (~0.2 m/s) than the nonneutral wind [20],
which may also influence the model results. The comparison between these model results
and collocated buoy measurements can be seen in Figure 6. It shows that the derived
wind speed by our NN model is in good agreement with NDBC buoy measurements with
an RMSE of 1.15 m/s, a correlation coefficient of 0.91, a MAPE of 17.2%, and a bias of
0.02 m/s in Figure 6a. The CMOD functions perform similarly but share a larger RMSE
(approximately 1.5 m/s) and correlation coefficient (around 0.84) compared with NDBC
buoys, which is outperformed by the OPEN model.
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Since ASCAT wind retrievals are a high scientific level operational product with
high quality, it is exploited to assess the accuracy of the proposed model. The statistical
validations are also carried out using the test data, which are shown in Figure 7. Compared
with ASCAT coastal wind products, the results show that the RMSE and bias of the OPEN
model are both the smallest one, while the CMOD7 model can obtain a smaller MAPE and
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bias than other C-band GMFs as expected because CMOD4 and CMOD5.N are predecessors
of CMOD7 for operational ASCAT winds.
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3.2. Evaluation of the Wind Speed Estimation from SAR Data

The performance of the OPEN model is further assessed using C-band Sentinel-1 SAR
data and in situ wind measurements from buoys near the coast of Fujian, China (as shown
in Figure 2). The σ0, incidence angle, azimuth angle from SAR data together with the wind
direction from coastal buoys are used to obtain the sea surface wind speed using the OPEN
model, CMOD4, CMOD5.N, CMOD-IFR2, and CMOD7. Figure 8 shows the comparisons of
buoy and SAR wind speeds using these five models. Overall, the OPEN model can acquire
better results (RMSE and correlation coefficient) compared with the CMOD functions. The
accuracy of wind speeds (RMSE) by the NN model (1.74 m/s) is still better than the CMOD
functions with 2.07 m/s (CMOD4), 2.5 m/s (CMOD5.N), 2.09 m/s (CMOD-IFR2), and 2.05 m/s
(CMOD7). As for the bias, the OPEN model obtains a smaller bias compared with the other four
CMOD functions, and the CMOD4, CMOD-IFR2, and CMOD7 functions perform similarly.
The CMOD5.N model obviously overestimates the wind speed for ~1.5 m/s.
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3.3. SAR-Derived Wind Map Using the OPEN Model

As an example, an image showing the near sea surface wind speeds estimated from
the proposed model is further analyzed using the SAR image that was obtained from
Sentinel-1 on 12 January 2020. Two SAR images (over the same region as shown in the
northeast of Figure 2) with a time interval of around 25 s are merged to present a larger
coverage area in Figure 9a. The collocated wind speeds retrieved from the OPEN model
using SAR parameters and wind directions from the ECMWF forecast model can be seen in
Figure 9b. The spatial resolution of the estimated wind speeds is the same as the processed
SAR image, with 1 km, while the grid spacing is interpolated to be approximately 9 km for
the ECMWF wind directions to provide a better view. The acquired time of the image is in
a cold season during the winter monsoon with a mean wind speed of around 11.05 m/s
and prevailing winds from the northeast. For this region of the East China Sea in winter,
southward Chinese Coastal Currents are often observed, which bring cold water to this
area [56]. In response to the cross-shore gradient of the sea surface temperature, several
localized air–sea interaction mechanisms [57] have been involved to generate along-shore
strips of high wind speeds. Overall, the obtained wind field in Figure 9b is quite smooth,
and no outliers are found.
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4. Discussion

The complicated nonlinear relationship between observed sea surface radar backscat-
ter and wind vectors is solved using the OPEN method. Instead of using reanalysis wind
data or model results, in situ wind observations exclusively from buoys near the coasts
are used as the label data for training the NN model based on five-year C-band NRCS
measurements. Compared with operational GMFs, the NN-based model does not rely on
the empirical cosine-type equation as shown in Equation (3). For instance, φ (the relative
angle between radar look azimuth and wind direction) does not need to be calculated
in this study, and these two direction parameters can be separately input into the OPEN
model to obtain wind speeds.

It can be found from Figure 8 that the four CMOD functions do not perform well
for the estimates of coastal SAR winds with RMSEs of more than 2 m/s, especially for
the CMOD5 model with the bias and RMSE of around 1.5 m/s and 2.5 m/s. Even an
absolute NRCS calibration accuracy of about 0.5 dB cannot explain this bias (less than
0.5 m/s for moderate incidence angles and low to moderate wind speeds [52]). The OPEN
model can obtain a smaller RMSE of about 1.74 m/s in Figure 8a, but it is worse than the
result from the test ASCAT data (around 1.15 m/s in Figure 6a). What are the sources
of errors? Apart from radar geometries and NRCS processing, it was reported that the
wind direction [58], water depth [18], and other sea state factors [59,60] can influence sea
surface wind measurements from SAR satellites, especially in coastal areas. The error from
the direction should be small because the input direction in Figures 6 and 8 are obtained
from in situ buoy data. However, our analysis in Figure 9 uses external wind directions
from the model winds for the SAR wind speed retrieval. Recent research has shown that
the real spatial resolution of ECMWF winds is more than 100 km [27], which can bring in
representativeness errors obtained from differences in spatial resolution when using model
wind directions for SAR wind speed retrieval.

The collocated training and NDBC buoy data are divided into two parts according to
water depth. Observations with water depth less than 100 m are regarded as coastal winds
with 36,230 points, and the remaining data with 17,176 points are presented as offshore
winds shown in Figure 10. The comparisons between the ASCAT 12.5 km coastal wind
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product and buoy data have indicated that the quality of the coastal winds can be as good
as for the offshore winds [45]. Similar results can also be seen by using the OPEN model.
Although the RMSE of offshore winds (1.35 m/s) is larger than coastal winds (1.08 m/s),
similar MAPEs between OPEN model results and in situ measured data are found with
values of 16.11% for offshore winds and 17.28% for coastal winds, which indicates that
the proposed model performs similar for coastal and offshore winds in the Gulf of Mexico.
However, for the coastal area near Fujian, the overall water depth is much shallower than
those of the Gulf of Mexico. The difference in water depth and coastlines could lead to
very different sea state factors. In terms of the waves, higher significant wave height can be
found in the Taiwan Strait (~1.6–2.1 m) [61] than in the Gulf of Mexico (~1.2 m) [62]. Except
for waves, many other factors can result in the deviation in derived winds, e.g., different
climates, sea surface temperature, wind conditions, etc. For instance, the proposed model
does not remove the effect of air mass density and air mass stability. A correction to the
stress-equivalent reference winds has shown its benefit for ASCAT winds using information
of the sea surface temperature, sea surface pressure and humidity [26]. After an ocean
calibration, the retrieved winds by CMOD models can also be improved [63]. The OPEN
model performs better than other models, although this calibration process has not been
applied to the training NRCS data to keep consistent with not well-calibrated SAR data.
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Yet, the comparisons of MAPE for two validation subsets (22.13% for Fujian coastal
buoys vs. 17.19% for the cross-validation set) suggest that the OPEN method performs
similarly well. Even with limited observations, OPEN can correctly extract sea surface
winds under different sea state conditions without complex processing of the training data.
This highlights the potential of such neural network methods in surface wind retrieval with
considerable extrapolating capabilities. Surely, much more independent observation would
be required. Additional inclusions of the air mass density correction, ocean calibration, and
other sea state effects in the NN-based model may also be of high importance to provide
accurate wind speed estimates for C-band SAR in future efforts. The input wind direction
for the NN model from alternative sources with a spatial resolution comparable to SAR
should also be considered to provide more reliable results at a fine scale of less than 1 km.
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5. Conclusions

In this research, a novel method based on the NN technique and Bayesian regular-
ization algorithm is proposed to retrieve sea surface wind speed for C-band SAR sensors.
In situ wind observations exclusively from buoy data, instead of reanalysis wind data
or model results, are used as the reference winds to train the neural network based on
five-year collocated data. Through the evaluation of derived wind speeds using ASCAT
coastal wind products and coastal buoy data from different sources, the results show that
the proposed OPEN model can work well for wind speed estimates.

Overall, the proposed approach based on the OPEN model is promising for single-
antenna C-band SAR sensors. The retrieved wind fields with a fine spatial resolution
derived from SAR are highly important for scientific and applied purposes. As small
satellites and constellations develop rapidly, it is also expected that CubeSat and small
satellite SAR-based missions will strengthen the use of high-resolution radar data together
with the NN model for providing continuous and accurate ocean wind information.
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