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Abstract: Computer vision has great potential to accelerate the global scale of photovoltaic potential
analysis by extracting detailed roof information from high-resolution aerial images, but the lack of
existing deep learning datasets is a major barrier. Therefore, we present the Roof Information Dataset
for semantic segmentation of roof segments and roof superstructures. We assessed the label quality
of initial roof superstructure annotations by conducting an annotation experiment and identified
annotator agreements of 0.15–0.70 mean intersection over union, depending on the class. We discuss
associated the implications on the training and evaluation of two convolutional neural networks and
found that the quality of the prediction behaved similarly to the annotator agreement for most classes.
The class photovoltaic module was predicted to be best with a class-specific mean intersection over
union of 0.69. By providing the datasets in initial and reviewed versions, we promote a data-centric
approach for the semantic segmentation of roof information. Finally, we conducted a photovoltaic
potential analysis case study and demonstrated the high impact of roof superstructures as well as the
viability of the computer vision approach to increase accuracy. While this paper’s primary use case
was roof information extraction for photovoltaic potential analysis, its implications can be transferred
to other computer vision applications in remote sensing and beyond.

Keywords: dataset; roof information; roof superstructures; roof segments; computer vision; deep
learning; semantic segmentation; aerial images; remote sensing; annotation; labeling; photovoltaic
potential

1. Introduction

Climate change is one of the greatest global challenges of our time and requires
prompt and effective action. The transition from fossil to renewable energy generation is
an essential contributor to reducing greenhouse gas emissions. Photovoltaic (PV) power
is a major pillar of the renewable energy mix. Artificial intelligence and computer vision
(CV) can support and accelerate the introduction and operation of PV systems [1,2]. For
example, CV can improve load forecasting by detecting cloud formations and enhance
solar irradiation prediction [3,4]. CV is also used for mapping existing solar panels, which
are often unknown to grid operators [5–10]. The focus of this paper lies on extracting
roof information for estimating unexploited rooftop PV potential, which represents an
important basis for decisions by policy-makers or investors. While deep learning CV
approaches have recently proven effective for mapping solar panels on a large scale [5–7],
there are only a few publications applying the same approaches to extracting further
roof information for rooftop PV potential assessment. A major challenge is the lack of
adequate datasets for deep learning. To the best of our knowledge, there is only one publicly
available dataset for the semantic segmentation of roof segments [11] and none for roof
superstructures. Therefore, this paper aimed to advance CV-based semantic segmentation
of roof information in aerial images in three steps as visualized by Figure 1. First, we
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present the Roof Information Dataset (RID) for roof segments and roof superstructures.
Second, we examine the annotation quality of roof superstructures and its influence on
neural networks’ training and prediction. Third, we assess the viability and benefit of using
CV-based roof superstructure detection for PV potential analysis.
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Figure 1. Overview depicting the three steps in this paper: description of the roof information dataset;
evaluation of the label quality and convolutional neural network (CNN); the application of semantic
segmentation of superstructures for PV potential analysis.

The rest of the paper is structured as follows. Section 2 derives the necessity of roof
information data for semantic segmentation based on the application of PV potential
analysis in Section 2.1. Subsequently, related work on assessing dataset quality and the
effect of noisy data on deep learning is described in Sections 2.2 and 2.3. Based on the
presented publications, research gaps and contributions are presented in Section 2.4. After
introducing the dataset in Section 3.1, three methods for examining annotation quality,
for training and evaluating the neural networks as well as for PV potential analysis are
outlined in Section 3.2. Similar to the methods, the results in Section 4 are structured into
annotation quality, neural network results, and PV potential. Section 5 discusses the results
and limitations of the work, and Section 6 concludes the paper.

2. Related Work

This section briefly introduces state-of-the-art PV potential assessments, the role of
CV in this field as well as associated publicly available CV datasets. Then, we review the
challenges of determining dataset quality in remote sensing and cover related work on
implications of data quality for CV. Finally, we summarize the related work and derive this
paper’s contributions.

2.1. PV Potential Based on Aerial Images

LiDAR vs. CV-Based approaches: Rooftop PV potential assessment aims at accurately
calculating the PV potential of each roof while also being scalable to a city or a larger region.
Light detection and ranging (LiDAR) approaches are the state of the art with respect to the
level of detail of the input data [12]. Such an assessment is based on three-dimensional
data and, therefore, allows for a highly accurate calculation of the irradiation on a tilted
plane as well as shading analysis. LiDAR-based approaches have been the subject of
multiple studies [13–17] and have been applied in solar cadasters over the last decade, e.g.,
Mapdwell [18], Google’s Project Sunroof [19], and tetraeder.solar [20]. However, a downside
is that flat roof superstructures (windows or existing solar panels) or small superstructures
(chimneys) usually remain undetected. In practice, those superstructures significantly limit
panel placement options, leading to the overestimation of PV potential [21,22]. Furthermore,
even though LiDAR data are becoming increasingly available, there is still no exhaustive
coverage, especially in less densely populated areas. Therefore, researchers are conducting
PV potential analyses based on alternative methods for extracting roof information using
CV and aerial images.
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Lack of Datasets for CV-Based Approaches: Existing CV-based publications extract
building footprints [23] or determine roof segments including their azimuth
orientation [11,24–26]. Although various authors have already shown that CV can be
effectively used to detect solar panels in satellite images on a large scale [5–7], only a few
studies have explored detecting the whole range of superstructures on a roof.

Mainzer et al. [25] used conventional CV techniques to extract roof segments and roof
superstructures. Additionally, they used a deep learning approach for PV panel detection
and excluded roofs with installed PV systems from their potential assessment. Lee et al. [11]
presented DeepRoof, a semantic segmentation CNN for determining roof segments and
their orientation. Krapf et al. [26] built upon the work by Lee et al. [11] and increased the
level of detail by adding a semantic segmentation CNN for roof superstructures.

Deep learning and CV applications have become a major research interest in the
remote sensing community, but the availability of annotated images has been identified
as one of the biggest challenges in this field [27,28]. While there are multiple datasets on
building footprint segmentation [29–31], a dataset on the semantic segmentation of roof
segments [11], and datasets on solar panel detection [8,32], there is no publicly available
deep learning dataset for the semantic segmentation of roof superstructures. To the best of
our knowledge, there is only one roof superstructure dataset from the city of Geneva [33].
The data include partial annotations of roof superstructures, but the labels are too irregular
and inaccurate for training CNNs.

2.2. Dataset Quality

Challenge of Determining Ground Truth in Remote Sensing: In remote sensing, the
quality of ground truth used to train machine learning models has been an issue for at least
25 years [34,35]. However, inadequate datasets remain an unsolved challenge [27]. Most
datasets in remote sensing are sourced from human annotators [27]. Thus, they are subject
to human interpretation [36] and inter- and intra-annotator variability [37,38]. Depending
on the task, labeling can be complex, even for domain experts [39,40]. Identifying objects’
boundaries on aerial images is challenging, because for some objects, spatial boundaries
may be more or less well defined [41,42]. For example, there is no clearly defined line
between a forest and a field. Even objects with well-defined boundaries, such as buildings,
can be challenging to accurately delineate due to the limited image resolution [43]. Never-
theless, possible quality concerns in human-labeled ground truth are often neglected and
data are implicitly treated as error free [36,44–46]. A recent review by Elmes et al. [45] on
training data error in machine learning applications for earth observation calls for the field
to investigate their data quality more rigorously and to openly report on it. Determining the
accuracy of a labeled ground truth dataset requires reference data. In remote sensing, refer-
ence data are scarce and, in some cases, impossible to acquire [35,47]. Since a ground truth
dataset is typically larger than its corresponding reference dataset, an overall accuracy score
represents an extrapolated estimation [48]. Hence, the composition of the reference data
sample can skew the extrapolation and lead to errors in the accuracy assessment [49,50].

Agreement Instead of Accuracy: As an alternative to measuring accuracy using a
reference dataset, some authors measure annotator certainty or annotator agreement by
comparing the labels of multiple annotators [32,44,51–53]. The ability of humans to an-
notate objects in aerial images is object-class dependent [36,54,55]. Van Coillie et al. [36]
studied internal and external factors affecting the annotation quality of annotators delineat-
ing objects in aerial imagery. They found that the internal factor speed and the external
factor distractedness have the largest influence, respectively. Albrecht studied human
annotator agreement for object classes including buildings, roads, gardens, and forests [55].
Their study showed that labels of multiple annotators on the same image revealed vary-
ing levels of disagreement. In an analysis of the PV array annotations in their dataset,
Bradbury et al. [32] found that approximately 30% of arrays are missed by one of the two
annotators. Additionally, some objects are mistaken for PV arrays, and arrays delineated
by both annotators have a median intersection over union (IoU) of 0.86.
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2.3. Learning from Noisy Data

Although noisy data and its effects on algorithms have been a topic for over 30 years [56],
machine learning practitioners commonly focus on improving the model while neglecting
the quality of the data [45,57]. However, data quality influences a model’s achievable perfor-
mance, the validity of its performance evaluation, and its success in the real world [45,57].
The ratio of mislabeled data in real-world image classification datasets is reported to range
from 8.0% to 38.5% [58–62].

Mellor et al. [63] studied the effects of different ratios of mislabeled data in combination
with training set size on the accuracy of a land cover classifier. They showed that for binary
classification, increasing the training dataset size can mostly mitigate even the negative
effect of 25% mislabeling. For multiclass classification, more data only slightly improves
performance. Swan et al. [64] studied the influence of three different types of training set
data noise on the performance of a SegNet for building segmentation in aerial imagery.
They investigate shifted labels, omitted labels, and added false labels and found that all
the three types negatively impacted the F1 score. However, they also found that some
may have positive effects on either precision or recall. Shifted labels lead to a loss of edge
detail. Omitted labels lead to a large increase in precision and reduction in recall, because
the network predicts fewer positive labels. Lastly, added false labels only lead to small
decreases in the metrics.

A publication by Northcutt et al. [65] found pervasive label errors in the test sets of
popular datasets, most notably a label inaccuracy of 5.85% in ImageNet. They further found
that a model architecture which performed best on a noisy test set was inferior to the actual
clean test set.

2.4. Summary and Contributions

Our literature review shows that there is currently only one publicly available dataset
for the semantic segmentation of roof segmentations and no publicly available dataset for
the semantic segmentation of roof superstructures. Furthermore, it showed that manually
annotated labels are prone to errors such as misclassification, omission, or spatial inaccuracy.
Quantifying such errors is challenging because of the absence of highly accurate reference
data. Even though annotation errors can have a great effect on training and evaluation, the
quality of the datasets is often neglected. To improve the model performance, researchers
commonly take a model-centric approach instead of a data-centric approach. Therefore,
this paper contributes to the research gap of using CV for PV potential assessment by
addressing the lack of datasets for extracting roof information from aerial images with deep
learning. We included a label quality assessment and investigated the effect of class-specific
label quality on the training and evaluation of a U-Net. The paper includes the following
contributions:

1. The paper provides two semantic segmentation datasets for 1880 buildings: one for
roof segments and one for roof superstructures. The Roof Information Dataset (RID)
is made available as georeferenced geometries and as ground truth image masks as
well as in two states of annotation quality—initial labels, and reviewed labels. This
enables a greater variety of data-centric experimentation for future research;

2. For smaller datasets, high label quality is important. Using an annotation experiment,
we investigated the level of difficulty of labeling roof superstructures. Furthermore,
with the experiment, we provide an approach for the challenging task of quantifying
annotation quality in the absence of reference data and applied it on the initial dataset;

3. The annotation quality has implications for the training as well as the evaluation of a
CNN. Therefore, this paper includes a detailed analysis of the predictions by a U-Net
and compared the class-specific labeling performance of annotators and U-Net;

4. Roof superstructures decrease the PV potential significantly. Using the trained net-
work, we estimated the PV potential for a study area and discuss the necessity of
identifying roof superstructures.
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3. Materials and Methods

To structure our research, we derived three hypotheses. Superstructure annotation is a
challenging labeling task due to the fact of their small size and ambiguous segmentation
boundaries. Therefore, we expected a low mean IoU between labelers (Hypothesis 1).
Increased label quality can improve network performance posing the question, if the net-
work becomes as good as human labelers, who annotate the initial dataset (Hypothesis 2)?
Finally, we aimed at testing the viability of the network’s predictions on the application
of PV potential analysis. Neglecting roof superstructures leads to overestimation of PV
potential, as existing superstructures decrease the available roof area. Therefore, including
this information should improve the PV potential assessment (Hypothesis 3).

Hypothesis 1. Annotation agreements approximately reach a value of 0.5 mean IoU between
labelers during the initial labeling step;

Hypothesis 2. Using the reviewed dataset of higher quality, the trained network can achieve similar
performances as the human annotators’ initial labels, that is, close to the 0.5 mean IoU;

Hypothesis 3. Including superstructures mapped by CV decreases overestimation of PV potential
by approximately 20%.

Section 3 is organized accordingly. First, RID and its key metrics are described in
Section 3.1. Then, Section 3.2 presents the methods for investigating the hypotheses,
covering the annotation experiment (Section 3.2.1), training and evaluation of CNNs
(Section 3.2.2), and PV potential analysis (Section 3.2.3).

3.1. Materials

Section 3.1.1 describes the RID and its annotation process, and Section 3.1.2 gives an
overview of the dataset’s key indicators. The RID can be downloaded at: doi.org/10.14459/
2022mp1655470. Additionally, code for evaluating the dataset or adapting masks can be
downloaded at: https://github.com/TUMFTM/RID (accessed on 21 March 2022).

3.1.1. Dataset Description

The RID contains semantic labels of roof segments and roof superstructures. The
images are aerial images that were downloaded via the Google Maps API [66] and which
can be used for research purposes. Our goal was to create a dataset of approximately
2000 buildings within one connected area. Detecting small roof superstructures, such as
chimneys or windows, requires very high-resolution images. Therefore, we chose aerial
images instead of satellite images. Furthermore, we aimed at using images of challenging
quality with respect to contrast, shadow, and distortion to enable a better transferability to
other regions. Thus, we selected the rural German village of Wartenberg as our study area.
The available images in this area had a resolution of approximately 10 cm/pixel but were
less sophisticated than high-quality images in more urban regions.

Annotation Process: The annotation process of RID was conducted in two phases.
First, the initial labeled dataset was created by five university members using a self-
developed tool that allowed for drawing polygon and line labels on a Google Maps Dy-
namic API interface. The rule set underlying the annotation process was published together
with the dataset. While our tool facilitated georeferenced labeling and provided a good
overview of geographic coverage, the magnification factor of the images was limited. Due
to the ambiguity of the segmentation boundaries of some superstructure classes, such
as ladders, trees, shadows, and small-sized objects in the image, we conducted a second
review step. To this end, we used the Computer Vision Annotation Tool (CVAT) [67],
because it enables better administration of the reviewing task and at a higher zoom. We
conducted the review phase after the annotation experiment described in Section 3.2.1 and
some initial training to apply our findings to the quality improvement. The review was

https://github.com/TUMFTM/RID
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performed on each image by two labelers, who did not contribute to the initial dataset to
reduce bias. With this paper, we published the initial as well as the reviewed dataset. By
this, we aimed to enable future research on the effects of label quality improvement and to
promote data-centric CV approaches.

Published Dataset: RID consists of three components: aerial images, georeferenced
vector data, and masks. The dataset includes one aerial image for each annotated building,
with the building at its center. Second, we provide the annotated labels as tables of
georeferenced geometries. Furthermore, RID contains the training, validation, and test
masks that are derived from the geometry labels and prepared for the deep learning
pipeline. The respective code was published alongside the dataset.

Dataset Split: Using roof-centered images requires special preparation of training,
validation, and test sets. A random data split leads to overlapping training and test images
and, consequently, overestimated test metrics. Therefore, we split the dataset with respect
to geographic location. Figure 2 illustrates the image boundaries of our dataset.
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Figure 2. Visualization of training, validation, and test split for five cross-validation splits. The
orange boxes illustrate the images used in the annotation experiment. They are surrounded by dark
blue boxes that represent images excluded from the training and validation set to avoid overlap.

The annotation experiment explained in Section 3.2.1 used 26 buildings (orange). In
this paper, we used the same buildings to form the test dataset. Hence, we excluded all
images from the training and validation set that intersected with the building outline (dark
blue). Then, we created five training and validation sets by iteratively increasing the buffer
(blue lines) around a coordinate until the validation set size was 20% of all images. We
refer to the dataset configurations as north (D1), west (D2), east (D3), center north (D4), and
center south (D5).
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3.1.2. Dataset Key Indicators

The RID contains 1880 annotated roofs. The images cover an area of 1.5 km2, excluding
overlap, and 4.9 km2 in total.

Roof Segment Metrics: The roof segment annotations include 4520 polygons, and
its classes were derived by its azimuths. Lee et al. [11] selected 16 azimuth classes, for
example, south, south–south–west, and south–west, plus a class for flat roofs and one
for trees. Usually, roof orientations are biased towards north, south, east, and west for
architectural reasons. Therefore, we provided code to classify roof segments in three
different ways.

Figure 3 visualizes the class distribution of the respective roof segment masks using 4,
8, or 16 azimuth classes. Classes were unbalanced for the 16 classes, but the level of detail
decreased for the four classes, as the category “south” contained azimuth angles between
45◦ and −45◦.
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west (SSW), etc.

Superstructure Metrics: In addition, we labeled 12,359 superstructure polygons. The
goal was to annotate all pixels on a roof that were different from the roof’s surface. To this
end, we defined eight roof superstructure classes, which can be allocated to structural ob-
jects (PV module, dormer, window, ladder, and chimney), natural objects (tree and shadow),
or other objects with an unknown class. The class PV module contains photovoltaic and
solar thermal panels. Unclassified superstructures were assigned to the unknown class.
Although natural objects do not physically restrict the installation of new PV modules, we
labeled these pixels, too, to be able to investigate whether the network can benefit from
their annotation. Furthermore, they constituted a share of more than 20% of the labeled area
as illustrated in Figure 4. The figure shows the class distribution of the roof superstructure
labels by the number of labels and by area, indicating a class imbalance in the dataset.
While labels in the “unknown” class were the most common by occurrence number, its
mean area was smaller than the area of PV modules, dormers, and shadows. The number
of PV module annotations was one of the smallest, but it was the largest class in terms of
annotated area. Furthermore, the share of annotated roof superstructure pixels was only
4.12% in comparison to 93.88% background pixels. This underlines the challenge of this
deep learning task.
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3.2. Methods

To resolve the challenge of evaluating label quality in the absence of reference data with
limited overhead, we defined an annotation experiment in Section 3.2.1. In Section 3.2.2,
we described the training process for two neural network architectures that served to
investigate the implications of the annotation agreement on the CNN. In the Section 3.2.3,
the method of estimating PV potential is presented. For the rest of the paper, we focused on
the roof superstructure dataset containing the initial labels or otherwise explicitly referred
to the reviewed dataset. Code for training and evaluating CNNs can be downloaded at:
https://github.com/TUMFTM/RID (accessed on 21 March 2022).

3.2.1. Evaluation of Annotator Agreement

Annotation Experiment Dataset: To assess Hypothesis 1, stating that superstructure
annotation exhibits an agreement of 0.5 of the mean IoU between labelers, we conducted a
labeling experiment. We created an auxiliary dataset based on 26 images that were each
labeled by five annotators, who contributed to the initial labeled dataset. The auxiliary
dataset was not used for training and validation of the CNNs, only for testing. It was
gathered under similar conditions as the initial dataset to ensure comparability between
the two datasets. To limit the necessary labeling time, the buildings were manually selected
to contain at least 15 occurrences of each superstructure class in the 26 images. However,
this introduced a different class balance in the auxiliary dataset than the highly imbalanced
class distribution of the initial dataset (Figure 3). This fact was mitigated by using class-
specific weights when transferring results from the annotation experiment to the entire
initial dataset

Evaluation Metrics: The confusion matrix is a common tool in remote sensing accu-
racy assessments [50,68]. In this paper, we derived confusion matrices to calculate the
annotator agreement by successively treating one annotated mask as ground truth and
the others as predictions. For each image, each labeler was compared to all other labelers
separately, leading to 20 confusion matrices per image and 520 for the entire experiment.
We derived class-sensitive (multi-class) and class-agnostic agreements (superstructure vs.
background) from the confusion matrix. Examples of two annotations are given in Figure 5.
We calculated the averaged overall confusion matrix as a micro-average by summing up
all absolute confusion values of the 520 matrices and normalizing them in the end. The
macro-averaging approach normalizes each matrix first, before computing the sum of each
entry. The differences between micro- and macro-averaging are discussed in detail in [69].

https://github.com/TUMFTM/RID


Remote Sens. 2022, 14, 2299 9 of 22Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 22 
 

 

 

Figure 5. Exemplary visualization of annotations of the annotators (blue edge) 1 and 3 (orange edge). 

Union is depicted by the higher alpha value of the colors. 

Furthermore, we used IoU, also known as the Jaccard index [70], to calculate the 

class-specific annotation agreement of labelers and define it as follows: 

IoU =  
TP

TP + FP + FN
 (1) 

using true positives (TP), false positives (FP), and false negatives (FN). The mean IoU of 

one image was calculated as the mean of all class-specific IoUs including the background 

class. The overall reported mean IoU is the mean of all images’ class-specific mean IoUs, 

corresponding to a macro-averaged mean IoU. 

3.2.2. Training and Evaluation of Neural Networks 

Implementation Details: To compare the class-specific annotation agreement with a 

CNN and to answer Hypotheses 2 (0), we trained a U-Net [71] and a Panoptic FPN [72]. 

We used an implementation as used in [73] and training details as given in Table 1Error! 

Reference source not found.. As we report our results using IoU, we chose Jaccard loss 

as the loss function. We added focal loss because of the class imbalance as recommended 

by Jadon [74]. 

Table 1. Implementation details for U-Net and Panoptic FPN. 

Backbone ResNet-34 [75] 

Initial encoder weights  Pre-trained on ImageNet [76] 

Optimizer Adam [77] 

Activation SoftMax 

Batch size 8 

Epochs 40 

Learning rate 10−4 

Loss function Jaccard loss + focal loss 

Dataset Preparation: The dataset was constructed using the 1880 roof-centered aerial 

images described in Section 3.1.1. Our test set consisted of the same 26 buildings that were 

selected for the annotation experiment. Accordingly, 134 images were excluded from the 

training and validation set (see Figure 2Error! Reference source not found.) to assure zero 

geographical overlap of the images with the building. The remaining images were split 

five times into training (80%) and validation (20%) as illustrated in Figure 2Error! Refer-

ence source not found.. We conducted cross-validation and present our results for both 

networks as well as the initial and reviewed training and validation datasets. 

Evaluation: We report the comparison between the CNN and human annotations by 

calculating the IoU for each building and by computing the confusion matrix as a sum of 

the confusion matrices of each building in a micro-averaging way as described in Section 

3.2.1. The images’ mean IoUs were derived using macro-averaging of its class-specific 

pvmodule

dormer

window

ladder

chimney

shadow

tree

unknown

background

Labeler 1

Labeler 3

Figure 5. Exemplary visualization of annotations of the annotators (blue edge) 1 and 3 (orange edge).
Union is depicted by the higher alpha value of the colors.

Furthermore, we used IoU, also known as the Jaccard index [70], to calculate the
class-specific annotation agreement of labelers and define it as follows:

IoU =
TP

TP + FP + FN
(1)

using true positives (TP), false positives (FP), and false negatives (FN). The mean IoU of
one image was calculated as the mean of all class-specific IoUs including the background
class. The overall reported mean IoU is the mean of all images’ class-specific mean IoUs,
corresponding to a macro-averaged mean IoU.

3.2.2. Training and Evaluation of Neural Networks

Implementation Details: To compare the class-specific annotation agreement with a
CNN and to answer Hypothesis 2, we trained a U-Net [71] and a Panoptic FPN [72]. We
used an implementation as used in [73] and training details as given in Table 1. As we
report our results using IoU, we chose Jaccard loss as the loss function. We added focal loss
because of the class imbalance as recommended by Jadon [74].

Table 1. Implementation details for U-Net and Panoptic FPN.

Backbone ResNet-34 [75]

Initial encoder weights Pre-trained on ImageNet [76]

Optimizer Adam [77]

Activation SoftMax

Batch size 8

Epochs 40

Learning rate 10−4

Loss function Jaccard loss + focal loss

Dataset Preparation: The dataset was constructed using the 1880 roof-centered aerial
images described in Section 3.1.1. Our test set consisted of the same 26 buildings that
were selected for the annotation experiment. Accordingly, 134 images were excluded
from the training and validation set (see Figure 2) to assure zero geographical overlap of
the images with the building. The remaining images were split five times into training
(80%) and validation (20%) as illustrated in Figure 2. We conducted cross-validation and
present our results for both networks as well as the initial and reviewed training and
validation datasets.

Evaluation: We report the comparison between the CNN and human annotations by
calculating the IoU for each building and by computing the confusion matrix as a sum of the
confusion matrices of each building in a micro-averaging way as described in Section 3.2.1.
The images’ mean IoUs were derived using macro-averaging of its class-specific mean
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IoUs, similar to the approach defined in Section 3.2.1. For comparison with the human
annotations, the evaluation is conducted for the centered building only. This is required
because the annotation experiment uses buildings scattered within the whole study area
and focused on one building, neglecting other buildings in the image. Hence, detected
superstructures of other surrounding buildings in the image, which were not part of the
26 buildings from the annotation experiment, were treated as background for ground truth
and prediction. We trained 20 networks, a U-Net and a Panoptic FPN that were trained
on initial and reviewed labels with five different training and validation splits (D1–D5),
introduced in Section 3.1.1. A detailed analysis in Section 4.2 is presented for the network
with the best performance on the test set.

3.2.3. PV Potential Estimation

PV Potential Estimation Method: To assess the relevance of superstructures for PV
potential analysis and the viability of the deep learning approach (Hypothesis 3), the third
part of this paper estimates the PV potential for a study area. The calculation procedure
consisted of four steps:

1. Predict superstructures per roof segment;
2. Derive vectorized representation of the superstructures;
3. Calculate the PV system area and resulting peak power;
4. Estimate the yearly technical potential per roof segment.

In step 1, we used the trained network to predict superstructures on roofs. Step 2
transformed the superstructures from a raster format to georeferenced, vectorized format
to facilitate the downstream potential estimation. Using roof segment boundaries, the
usable PV area was calculated in step 3. To isolate the effect of superstructure detection,
this paper used the ground truth for roof segments. The usable PV system area was
determined by a PV module placement algorithm. Modules were placed in orientation of
the segment’s azimuth and projected onto the horizontal plane with respect to the slope
angle. Modules intersecting with superstructures are discarded. The algorithm places
modules horizontally and vertically and chooses the alignment with the greater number
of modules. Modules on flat roofs are assumed to be south oriented. The system peak
power was calculated by summing up the modules’ peak power of 400 Wp each. We
compared the module placement approach to an estimation that uses the roof segment
area, subtracts the superstructure area, and assumes a specific peak power of 0.25 kWp/m2,
which corresponds to modules of a size 1.6 × 1 m and 400 Wp. For flat roofs, the specific
peak power is 0.125 kWp/m2 to account for the distance between module rows needed to
avoid shading.

The final step 4, obtained the technical potential from the PVGIS [78] API to estimate
the PV potential. PVGIS applied the r.sun model [79] for solar radiation modeling enabling
calculations of large areas. A review comparing this method to other methods for solar
potential estimation was published by Freitas et al. [80]. The technical potential was
downloaded for one location in the study area, azimuth values in 3◦ steps, and a constant
slope value of 30◦. Furthermore, we selected data from the year 2014, because this year
exhibited average yearly solar radiation compared to the data for all available years at
PVGIS. A default PV system loss of 14% was assumed. As the approach is based on 2D
information only, no shadow effects of surrounding buildings or superstructures were
considered in this paper.

Dataset and Configurations: We derived the technical potential for each roof segment
of 359 buildings in the validation dataset of the best network. In contrast to using the test
dataset of the annotation experiment, we chose the validation dataset for two reasons. First,
the roof superstructures were more representative because the annotation experiment roofs
contained a higher-than-average number of superstructures for the purpose of our analysis.
Second, the validation dataset consisted of a greater number of buildings. However,
the validation dataset brings the disadvantage of predicting superstructures with higher
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accuracy than on an independent test set. Nevertheless, creating an additional test set for
the PV potential analysis was not within the scope of this paper.

4. Results
4.1. Annotation Experiment

The results of the annotation experiment are illustrated as boxplots (blue) of the IoUs
for all superstructure classes in Figure 6. The figure additionally includes the annotators’
IoUs of the roof outline as a reference (left boxplot, white). Furthermore, the IoUs of
the U-Net’s predictions (gray), which are discussed in Section 4.2, are plotted next to the
annotators IoUs to compare the two. On the right, the figure also shows the mean IoUs per
image and the class-agnostic mean IoUs per image. The boxplots show that the participants’
agreement was strongly dependent on the superstructure class. For example, the annotators
were very confident at delineating roofs, demonstrated by the high mean of 0.95 and a low
variance. This matches the findings of Albrecht et al. [55]. In contrast, more ambiguous
and challenging classes, such as shadows, tree, or unknown, exhibited means of 0.29, 0.39,
and 0.15, respectively.
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To discuss annotation agreement in more detail, Figure 7 contains the micro-averaged
confusion matrix.

High Agreement: The annotators were confident labeling dormers (mean: 0.70, me-
dian: 0.83) and PV modules (mean: 0.68, median: 0.82—similar to [30]). They rarely
confused dormers with other superstructures but omitted labeling approximately 15% of
dormer pixels. This can be traced back to architectural edge cases where the semantic
boundary between dormers and the roof area was unclear. The PV module class displayed
the lowest confusion rate with the background class. Its only notable confusion rates with
other superstructures came from windows and unknowns.

Low Agreement: Chimneys (mean: 0.39, median: 0.44), trees (mean: 0.39, median:
0.43), shadows (mean: 0.29, median: 0.30), windows (mean: 0.25, median: 0.14), ladders
(mean: 0.22, median: 0.00), and unknowns (mean: 0.15, median: 0.07) were more chal-
lenging for humans to label consistently at the provided image resolution. At a median
agreement value of 0.00, it can be concluded that labeling ladders as a separate class was too
challenging for humans in most cases. In general, the thematic class agreement (diagonal)
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displayed in Figure 7 was low except for PV modules and dormers. However, the figure
also shows that the class-agnostic agreement was significantly better. This can be seen
from the relatively low confusion of the superstructure classes with roofs. Except for the
unknown and PV module labels, all classes exhibited values between 0.15 and 0.30. This
underlines the ambiguity of the unknown class and the clarity of the PV module labels.
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Label Quality of the Initial Dataset: By weighting the class-specific IoUs with respect
to their area (Figure 3), the metric can be transferred from the annotation experiment’s
auxiliary dataset to the entire initial dataset with 1880 images. Hence, the estimated human
label performance in terms of micro-averaged IoU was 0.52 for class-sensitive labeling and
0.71 for class-agnostic labeling. The difference between the two was a measure for the
amount of misclassification, while the class-agnostic IoU indicated the spatial agreement.

4.2. Neural Networks

Results of Trained Networks: We conducted 20 training runs (two model architec-
tures × two dataset states × five training-validation splits) and selected four models, two
U-Nets and two Panoptic FPNs with the lowest loss value for the initial and reviewed
dataset, respectively. The training–validation split D2 (Section 3.1.1) led to the lowest loss
values for the U-Net trained on the initial labels, while the other three models showed the
lowest loss for D1. The twelve models trained on D1, D2, and D4 resulted in similar loss
values with a mean loss of 0.55. The eight training runs of training–validation splits D3
and D5 resulted in higher losses at a mean of 0.58, indicating a small geographic bias.

To compare the CNNs to the human annotators, the four selected models were applied
on the annotation experiment test dataset, which contained 26 images with 130 ground
truth masks (Table 2). The models showed mean IoUs of 0.42–0.44. Furthermore, the
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four models predicted the same 26 images with 26 ground truth masks from the reviewed
dataset with higher IoUs of 0.45–0.46, even though two models were trained on initial
labels and two models were trained on reviewed labels. This suggests that the higher IoUs
came from more precise annotations in the reviewed test dataset and that the models can
partly overcome inconsistencies in the initial training dataset. Furthermore, this underlines
the significance of a high-quality test dataset.

Table 2. IoUs of selected CNNs trained and tested on initial and reviewed ground truth, respectively.

RID Version for Testing

RID Version for Training Train-Val Split Annotation Experiment (Initial) Reviewed

U-Net Initial D2 0.428 0.447

U-Net Reviewed D1 0.424 0.457

Panoptic FPN Initial D1 0.425 0.460

Panoptic FPN Reviewed D1 0.439 0.460

Selection of Best Model: For the subsequent comparison to human annotations, we
use a CNN trained on initial labels and chose U-Net, as it performed slightly better on the
annotation experiment test set than the Panoptic FPN. The evaluation is conducted only on
buildings that are part of the annotation experiment, as described in Section 3.2.2, while the
rest of the image was set to background. To investigate the effect of this filtering, the U-Net
was evaluated on the same images without a filter using masks from the original initial
and reviewed dataset, containing 26 masks instead of 130 masks in the auxiliary dataset.
Without a filter, the mean IoU was lower for the initial dataset (0.40 vs. 0.42) but increased
for the reviewed dataset from 0.43–0.46. Hence, we concluded that the filtering did not lead
to an unjustified boost, and the subsequent results can be transferred from the auxiliary to
the original dataset.

Class-Specific Performance of U-Net: Figure 6 introduced in Section 4.1, compares
the class-specific IoUs of annotators and the U-Net. The figure shows that the class-agnostic
mean IoU of the U-Net trained on multiple classes reached 0.58, approximately 0.11 less
than the value from the annotation experiment (0.69). The class-specific IoUs for PV
modules (0.68 vs. 0.69), windows (0.25 vs. 0.22), and chimneys (0.39 vs. 0.43) were similar
between human annotation and prediction, respectively. The prediction of ladders (0.21 vs.
0.06) or trees (0.39 vs. 0.12) varied significantly. However, both classes are less relevant for
the PV potential analysis due to the low number of ladders on roofs and the fact that trees
can be removed to increase solar radiation on a roof. The U-Net’s predictions of dormers
achieved a high mean IoU of 0.60, although it displayed a high variance.

Figure 8 shows the confusion matrix of the U-Net. PV modules had the highest TP
value of 0.89. As reflected in the mean IoUs, dormers, windows, and chimneys had higher
TP values than the rest of the classes. Windows were confused with PV modules and
the unknown class, and the reasons could be erroneous ground truth or false prediction.
Furthermore, the U-Net predicted approximately 44% of unknown superstructures but
assigned the correct class for only 12% of unknown ground truth. The U-Net’s confusion
with background was highest for trees and shadows, indicating a lower performance for
these two classes.

Prediction Examples: Figure 9 depicts six images with ground truth and prediction.
From left to right, the images resemble the top two, median two, and bottom two predictions
on the test set with respect to the network’s mean IoU.
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In the top two images, the U-Net predicted PV modules, dormers, windows, and
chimney wells. While the median two images showed good predictions of PV modules,
dormers, and chimneys, and misclassification and the presence of trees and ladders led to
lower mean IoUs. The predictions reached IoUs of 0.68 and 0.62, which are good as they
are the highest annotation agreement on these images, respectively.

The bottom two images on the right contain fewer superstructures. They also underline
the labeling challenge, because the second right image’s ground truth included a large
ambiguous shadow label and windows labeled as unknown.

In the right-most image, the dormer is a borderline case due to the fact of its size, the
roof is covered by a tree, and the shadow reached the outline of the roof, provoking an
unclear classification between shadow and ladder.

The challenge of labeling images, such as the two right ones, underlines the difficulty
of the annotation task for roof superstructures. Furthermore, it depicts the large influence
of the test set on the evaluation of a CNN, because the predictions seem reasonable at first,
or even outperform some of the classification decisions of the human annotator, e.g., the
windows on the second right image.

4.3. PV Potential

This section presents the PV potential assessment for the validation dataset D2 using
the U-Net discussed in Section 4.2. To investigate Hypothesis 3, we calculated the technical
potential according to the approach described in Section 3.2.3 for six configurations using
ground truth labels for the roof segments.

Effect of Superstructures: Figure 10 visualizes the results for the study area. The
values are derived for each roof segment as specific energy generation in kWh/m2a to be
able to compare roof segments of various sizes. Hence, a roof segment’s energy generation
is divided by its entire area, not its usable area, for each configuration. Configuration one
is the baseline, calculated under the assumption that the roof segment area equals the
PV system area. The specific yearly energy generation is between 110 and 254 kWh/m2a
depending on the segment’s azimuth orientation to the north or south, respectively. The
total technical potential reached 14.76 GWh/a.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 22 
 

 

 

Figure 10. Boxplots of specific yearly energy generation of each roof segment in the study area for 

six configurations. Configuration two used ground truth (GT) superstructures and configurations 

three, four, and six used predicted (PR) superstructures. 

Configurations two and three included the ground truth and predictions of roof su-

perstructures, and the mean specific yearly energy generation was 149 kWh/m2a and 169 

kWh/m2a, respectively, corresponding to a reduction in the total estimated technical po-

tential of 20.5% and 15.0%. The configuration using predicted superstructures displayed 

a higher potential due to the fact of less superstructure area in comparison to the ground 

truth. However, the difference was 0.82 GWh/a, demonstrating that the network can im-

prove potential assessment despite relatively low IoUs. 

Configuration four was calculated under the assumption that segments with existing 

solar arrays were not exploited for further PV installations, leading to a 29.5% lower tech-

nical potential. This underlines the significant impact of considering existing solar instal-

lations, especially in Germany, where residential solar systems have been installed for 

more than a decade. 

PV Potential Using Module Placement: An increasingly realistic PV potential esti-

mation is achieved in configurations five and six, which are based on placed modules. 

Placing modules on roof segments regardless of roof superstructures in configuration five 

exhibits a mean specific yearly energy generation of 108 kWh/m2a, 44.9% lower than the 

baseline configuration one. Configuration six shows the necessity of considering super-

structures, as the mean specific yearly energy generation was 78 kWh/m2a, and the tech-

nical potential decreased by 31.1% to 7.04 GWh/a compared to configuration five. This 

decrease doubled the difference between configuration one and three, illustrating that lo-

cating superstructures is highly relevant for module placement. This finding was aggra-

vated by the fact that modules placed in groups of less than four were usually not consid-

ered in real PV system design due to the high installation effort. 

In addition, the effect of superstructures displayed a high variety. While on average, 

a roof segment’s specific energy generation was reduced by 25%, and the decrease was 

less than 5% for 39% and less than 15% for 50% of roof segments. At the same time, super-

structures led to larger reductions of more than 20% for approximately 43% of roof seg-

ments, and 10% of segments experienced a decrease of 70% or higher. 

Module Placement Examples: Figure 11Error! Reference source not found. includes 

an exemplary visualization of roof segments and roof superstructures and placed mod-

ules for three images in the study area. The left image visualized the south-oriented mod-

ules on a flat roof that was partly covered with existing PV modules. The network did not 

detect the superstructure in between the PV modules and falsely placed isolated arrays in 

the middle. The center and right display modules placed in isolation or small groups to 

fill in gaps between superstructures. In practice, PV planners prefer coherent areas for PV 

systems, reducing the installed modules. Locating superstructures on roofs is one im-

portant advantage of aerial image-based PV potential analysis. However, the presented 

Figure 10. Boxplots of specific yearly energy generation of each roof segment in the study area for six
configurations. Configuration two used ground truth (GT) superstructures and configurations three,
four, and six used predicted (PR) superstructures.

Configurations two and three included the ground truth and predictions of roof
superstructures, and the mean specific yearly energy generation was 149 kWh/m2a and
169 kWh/m2a, respectively, corresponding to a reduction in the total estimated technical
potential of 20.5% and 15.0%. The configuration using predicted superstructures displayed
a higher potential due to the fact of less superstructure area in comparison to the ground
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truth. However, the difference was 0.82 GWh/a, demonstrating that the network can
improve potential assessment despite relatively low IoUs.

Configuration four was calculated under the assumption that segments with existing
solar arrays were not exploited for further PV installations, leading to a 29.5% lower
technical potential. This underlines the significant impact of considering existing solar
installations, especially in Germany, where residential solar systems have been installed for
more than a decade.

PV Potential Using Module Placement: An increasingly realistic PV potential estima-
tion is achieved in configurations five and six, which are based on placed modules. Placing
modules on roof segments regardless of roof superstructures in configuration five exhibits
a mean specific yearly energy generation of 108 kWh/m2a, 44.9% lower than the baseline
configuration one. Configuration six shows the necessity of considering superstructures, as
the mean specific yearly energy generation was 78 kWh/m2a, and the technical potential
decreased by 31.1% to 7.04 GWh/a compared to configuration five. This decrease doubled
the difference between configuration one and three, illustrating that locating superstruc-
tures is highly relevant for module placement. This finding was aggravated by the fact that
modules placed in groups of less than four were usually not considered in real PV system
design due to the high installation effort.

In addition, the effect of superstructures displayed a high variety. While on average,
a roof segment’s specific energy generation was reduced by 25%, and the decrease was
less than 5% for 39% and less than 15% for 50% of roof segments. At the same time,
superstructures led to larger reductions of more than 20% for approximately 43% of roof
segments, and 10% of segments experienced a decrease of 70% or higher.

Module Placement Examples: Figure 11 includes an exemplary visualization of roof
segments and roof superstructures and placed modules for three images in the study area.
The left image visualized the south-oriented modules on a flat roof that was partly covered
with existing PV modules. The network did not detect the superstructure in between the
PV modules and falsely placed isolated arrays in the middle. The center and right display
modules placed in isolation or small groups to fill in gaps between superstructures. In
practice, PV planners prefer coherent areas for PV systems, reducing the installed modules.
Locating superstructures on roofs is one important advantage of aerial image-based PV
potential analysis. However, the presented study assumed 30◦ for the roof slope of all tilted
segments and considered no shadowing. Variances in slope can alter the outcome, and
shadows further decrease the actual technical potential.
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5. Discussion

Section 5 first discusses the hypotheses proposed in Section 2.4 and then points out
the paper’s limitations.
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5.1. Discussion of Hypotheses

Discussion of Hypothesis 1. The results in Section 4.1 confirm Hypothesis 1 and
demonstrate the challenge of annotating small superstructures in high-resolution aerial
images. The annotator agreement of initial labels reached a mean IoU of 0.48. Class-specific
IoUs revealed significant differences reaching from a 0.70 for dormers to a 0.15 mean IoU
for unknowns.

Discussion of Hypothesis 2. The results of Section 4.2 showed that networks trained
on initial annotations and reviewed annotations performed similarly on the annotation
experiment test set. Furthermore, the best network achieved a mean IoU of 0.44, which
was 0.04 lower compared to the annotation agreement of 0.48. However, this was partly
attributed to inexact initial labels in the annotation experiment as the networks performed
better on the same 26 buildings using reviewed labels (0.45–0.46). Furthermore, the details
in Figure 9 show that the top two predictions achieved IoU scores that were as high as the
best annotations on the respective images and that the network can outperform the initial
annotations in some cases. Nevertheless, Hypothesis 2 was rejected because the models’
IoUs did not reach 0.50.

In addition, based on the comparison of the best network’s predictions with the annota-
tion experiment, we can draw two conclusions regarding the application of aerial image-based
deep learning for PV potential assessment. First, while we included shadows and trees as
superstructure classes for research purposes, these two classes should be excluded from
datasets in the future. Second, a class-agnostic approach could be investigated, as spatial
accuracy is more important than classification to determine PV potential accurately.

Discussion of Hypothesis 3. The study presented in Section 4.3 confirms Hypothe-
sis 3, as superstructures reduced the technical potential by 20.5% in configurations one vs.
three. The effect of superstructures was even higher when the PV potential was evaluated
on placed modules and led to a decrease of 31.1% in configurations five vs. six. Further-
more, our analysis revealed that the effect of superstructures varied greatly between roof
segments. Thirty-nine percent of segments were affected only by a 5% or lower reduction,
while the decrease was higher than 20% for approximately 43% of segments. Hence, it is
important to conduct roof segment-specific analysis of superstructure effects instead of
using constant estimations of available roof area.

5.2. Limitations of the Work

The limitations of this work cover the three presented contents of the paper: the
RID, its quality and implications on network training, as well as the PV potential analysis.
Although RID covers 1880 unique buildings with more than 4500 roof segment and more
than 12,000 roof superstructure labels, the study area was small and restricted to one town
in a rural German setting. Therefore, we expect that the networks cannot be transferred to
a broad range of roof architectures without expansion of the dataset. As a comparison, the
DeepRoof dataset for roof segments contains 2274 buildings from six cities in the USA [11].
However, more than 90% of the buildings come from two cities, and the unique number of
buildings is less than 2274 due to the fact of overlapping images.

In this paper, we estimated the label quality of initial annotations by conducting an
annotation experiment. We exposed the low annotation agreement for classes of small
size (e.g., window) and ambiguous outline (e.g., tree). Nevertheless, mean IoU of PV
module annotations was 0.68 and the median was 0.82. The study by Bradbury et al. [32]
reports a mean IoU of 0.86 when annotating a single solar panel class, indicating that our
label quality could be improved, but low IoUs of other classes stem from the challenging
labeling task instead of low labeling skills. Furthermore, we increased the label quality
by reviewing each image and providing labels as initial and reviewed version. While this
enables data-centric experimentation, a limitation of this paper was the lack of quality
quantification for reviewed labels. However, an additional annotation experiment would
exceed the scope of this publication.
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Finally, the PV potential results strongly indicated the relevance of roof superstructure
detection for potential analysis. Yet, due to lack of real-world energy generation data,
we can only compare the results in different configurations instead of validating the final
simulated energy generation with reality. In addition, aerial image-based PV potential
analysis can only estimate the effect of slope and shading, leaving these aspects open for
future work.

6. Conclusions

The use of deep learning for PV potential analysis can increase the accuracy and
availability due to the consideration of roof superstructures and broad availability of
high-resolution aerial images. However, the availability of training data is a major barrier.
Therefore, this paper introduced two novel multiclass datasets for the semantic segmenta-
tion of roof segments and roof superstructures, respectively.

We presented an approach for evaluating dataset annotation quality with limited
overhead and applied it on the initial roof superstructures dataset. By evaluating the
annotation agreement of five annotators on 26 images, we analyzed the task of labeling
superstructures in high-resolution aerial images and discussed challenges. Although the
annotators demonstrated high mean IoUs of 0.70 and 0.68 for dormers and PV modules,
respectively, labeling other, more ambiguous classes, such as shadows (0.29) or unknowns
(0.15), exhibited low annotation agreement. The predictions of U-Net achieved mean IoUs
comparable to the annotation agreement for the majority of classes. Low IoUs can be
tracked back to labeling errors in the training as well as in the test set. We provided both of
our datasets with initial and reviewed annotations to promote data-centric experimentation.

Furthermore, a PV potential assessment case study on a subset of the annotated
dataset showed the high impact of superstructures and the viability of the neural network
to increase accuracy. When superstructures were considered, the technical potential de-
creased by 20.5% and 15.0% using ground truth and predictions, respectively. The effect of
superstructures more than doubled (31.1% vs. 15.0%) for the more realistic approach of
estimating the potential using a module placement approach. Additionally, the effect of
superstructures varied greatly between roof segments.

A first brief comparison between networks trained on initial data and reviewed data
showed that networks can offset labeling inconsistencies. Future work should go into
more detail and quantify the effect of increasing label quality. For example, research could
investigate the effect of labeling noise on different model architectures. The RID is limited
to a rural area in Germany. Urban roofs architectures or buildings in other countries are
likely to display different roof segment appearances and additional roof superstructure
types. Therefore, an efficient expansion of RID to enable a scalable application on a broader
level is important.

Furthermore, while deep learning-based PV potential analysis using 2D aerial images
incorporates superstructures, it lacks slope and shadow information. Hence, approaches
to learning this information from aerial images or merging 2D and 3D data should be
investigated to further increase the accuracy of potential estimation. In addition to PV
potential analysis, enriched 3D models could advance a variety of other research and
applications such as urban noise diffusion modeling, roof insulation assessment, or building
energy demand estimation.

As demonstrated in this paper, deep learning on aerial images has the potential
to accelerate global-scale PV potential analysis by extracting detailed roof information
from high-resolution aerial images. We aim to advance its application with the datasets,
annotation experiments, and case study presented in this publication.
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