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Abstract: In recent years, few-shot remote sensing scene classification has attracted significant
attention, aiming to obtain excellent performance under the condition of insufficient sample numbers.
A few-shot remote sensing scene classification framework contains two phases: (i) the pre-training
phase seeks to adopt base data to train a feature extractor, and (ii) the meta-testing phase uses the pre-
training feature extractor to extract novel data features and design classifiers to complete classification
tasks. Because of the difference in the data category, the pre-training feature extractor cannot adapt to
the novel data category, named negative transfer problem. We propose a novel method for few-shot
remote sensing scene classification based on shared class Sparse Principal Component Analysis
(SparsePCA) to solve this problem. First, we propose, using self-supervised learning, to assist-train a
feature extractor. We construct a self-supervised assisted classification task to improve the robustness
of the feature extractor in the case of fewer training samples and make it more suitable for the
downstream classification task. Then, we propose a novel classifier for the few-shot remote sensing
scene classification named Class-Shared SparsePCA classifier (CSSPCA). The CSSPCA projects novel
data features into subspace to make reconstructed features more discriminative and complete the
classification task. We have conducted many experiments on remote sensing datasets, and the results
show that the proposed method dramatically improves classification accuracy.

Keywords: remote sensing; scene classification; few-shot learning; deep learning

1. Introduction

The classification of aerial data and remote sensing data is significant in land use and
cover [1–3], vegetation coverage [4], resource investigation [5], natural disaster observa-
tion [6,7], environmental monitoring [8] and ship monitoring [9,10]. Many deep learning
methods based on big data have recently achieved excellent performance on classification
tasks. However, these deep learning classification methods [9–19] need to rely on extensive
data for training to achieve good results. In the case of limited data or expensive data
acquisition, the application of models based on deep learning is limited, such as the field
of remote sensing. Recently, more and more researchers have paid attention to the small
sample learning method, which aims to learn classification tasks using a few samples.
We propose a few-shot classification method for remote sensing scene classification in
this work.
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At present, the few-shot remote sensing scene classification method mainly includes
two stages: the pre-training stage of the feature extractor and the meta-testing stage. In the
pre-training stage, we use base data to train the feature extractor and obtain the feature
extractor with the best performance. In the meta-testing stage, we use the pre-training
feature extractor to extract the features of novel data. At each stage, there are two main
challenges that are affected by the small amount of data.

The first challenge is that of how to train a perfect feature extractor. The main reason
for this difficulty is that the feature extractor is affected by insufficient training data in
the pre-trained stage. The model is easy to overfit or underfit in the training process. The
poor performance of feature extractors prevents the extracted samples from having more
discriminated features. Therefore, it is necessary to practice several measures to improve
the performance of the feature extractor. Recently, there have been several attempts to solve
this problem. The prototypical network [20] proposed by Snell, J. et al. used a four-layer
neural network as the feature extractor. When there are fewer training data, the neural
network has fewer layers and is not easily over-fitted. At the same time, the meta-learning
method is adopted to train the feature extractor, which is different from the traditional
training method that can judge all categories in the training dataset. This method subtracts
N categories from the dataset as a meta-task, and N is usually 5. Using different meta-tasks
to train the model continuously improves the model’s generalization performance and
avoids under-fitting. However, this method is affected by the shallow depth of the neural
network, which cannot extract deeper representation features of the image, limiting the
classification performance of this method.

Unlike the prototypical network, Metaopt [21–23] used Resnet-12 with the twelve-layer
neural network as the backbone. When using the deep convolutional network to extract
features, the deeper network depth is, the better feature discrimination is. At the same
time, a residual block is added to the network to solve the problem of model performance
degradation with the deepening of the model. Metaopt achieved better performance, and
then it gradually became the primary feature extractor for few-shot image classification.

Different from the training strategies adopted by the previous two methods, Tian,
Y. et al. [24] found that finding a feature extractor with sufficient learning was more effective
than the complex meta-learning algorithm. Instead of extracting the meta-task training
model during training, they used the traditional classification training method. During the
meta-testing stage, the steps are to remove the softmax layer of the neural network as the
feature extractor and then use a simple linear classification to achieve excellent classification
performance. In our proposed method, we use this simple and effective training method to
train the feature extractor. Compared with the meta-learning training method, the model
trained by this method is more robust and more suitable for transfer learning. At the same
time, to further improve the performance of the feature extractor, we use the standard
classification cross-entropy loss and attach self-supervised loss to enhance the performance
of the feature extractor.

The second challenge is how to design a robust classifier using a limited number
of samples (usually one or five) in the meta-testing phase. In remote sensing scene clas-
sification tasks, most previous works have tried to complete these through pre-trained
models. Hu, F. et al. [13] employ transfer learning methods to apply pre-trained models in
the ImageNet dataset on the remote sensing scene classification of high-resolution remote
sensing imagery, which has achieved excellent performance. Cheng, G. et al. [15] used
remote sensing datasets to fine-tune pre-trained networks to make pre-trained networks
satisfy remote sensing classification tasks more adaptable. In the most novel research,
Cheng, G. et al. [14] proposed the method that made use of lots of existing CNN models,
exchanged a new discriminant objective function optimization model in the training stage
and minimized the classification error while imposing a metric learning regularization,
which reached the current optimal performance.

Nevertheless, these methods cannot be well applied to few-shot remote sensing scene
classification. On the one hand, in the meta-testing stage, each category usually has only one
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or five training samples. The fine-tune method will lead to over-fitted and further decline of
model performance. On the other hand, due to the excessive domain shift between the few-
shot image classification dataset and the existing remote sensing dataset, the pre-trained
model on the few-shot dataset cannot adapt to the remote sensing data well, referred to as
a problem of “negative transfer”, which will seriously affect the classification performance.
To solve this problem, we focus on improving the discrimination of novel data features
and propose to use the Class-Shared Sparse PCA method to train and reconstruct features.
Sparse PCA [25] (Sparse Principal Component Analysis) is widely used in data processing
and dimensionality reduction, which is an extension of the standard PCA method [26]
(Principal Component Analysis). In this paper, we extended Sparse PCA and named
Class-Shared Sparse PCA. Figure 1 shows the distribution of the novel data features and
the features reconstructed using our method. First, we map the novel data’s features into
a more discriminative subspace and reconstruct features to obtain more discriminative
features. Then, we adopt the reconstructed features to complete the classification task.
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Figure 1. The framework of CSSPCA.

The main contributions of this paper are as follows.

• We use self-supervised learning-assisted feature extractor training since the few-shot
remote sensing scene data are thus less likely to over-fit the model problem. By
constructing self-supervised auxiliary data and labels, the model performance is
improved effectively.

• We introduce the subspace learning method into the framework of the few-shot remote
sensing scene classification task and propose a novel method: the few-shot remote
sensing scene classification method. Further experiments show that the proposed
method can effectively solve the problem of “negative migration”.

• We propose a novel few-shot remote sensing scene classification based on the Class-
Shared SparsePCA method, called CSSPCA. The CSSPCA maps the novel data features



Remote Sens. 2022, 14, 2304 4 of 19

to more discriminant subspace to obtain more discriminant reconstruction features,
thus improving classification performance.

• We test on two few-shot remote sensing scene datasets that have proved our proposed
method’s validity and rationality.

2. Related Work

This section will review the related works about few-shot remote sensing scene classi-
fication and the problem of negative transfer in the pre-trained model.

Few-Shot Remote Sensing Scene Classification. Over the past few years, remote sens-
ing scene classification has drawn the attention of researchers as a result of its widespread
applications. As a spurt of progress in deep learning, these methods have gradually become
the mainstream approaches. Still, deep learning places huge demands on labeled data,
while there are inadequate data with expensive acquisition costs in the remote sensing
field, which has restricted development in this area. In recent years, in order to solve
the problem of limited data in some scenarios, researchers have proposed the method of
few-shot learning and made remarkable progress. Therefore, few-shot learning further
promotes the practical application of deep learning in the remote sensing field. At present,
there are two main methods of few-shot learning based on remote sensing data: few-shot
remote sensing scene classification based on optimization and based on metric learning.

Few-shot remote sensing scene classification based on optimization mainly utilizes
the MAML [27] proposed by Finn, C. et al. and its improved methods [28,29]. By learning
the model’s initialization parameters, the MAML maximized the precision on a new task
after one step or several iterations and learned a feature that can be adapted to many
tasks through optimization. This approach achieved better generalization performance
with a few iterative steps. The model is easier to fine-tune while not requiring to care
about the model’s form and adding new parameters. Meanwhile, it can perform gradient
descent on new tasks quickly from previous tasks without an over-fitted problem. Dalal,
A. A. et al. [30] applied the MAML algorithm to remote sensing scene classification tasks,
achieving encouraging performance in the case of limited remote sensing data.

Few-shot remote sensing scene classification based on metric learning is a combination
of metric learning and few-shot learning. Its basic principle is to independently learn
the distance measurement function for a specific task according to different tasks. Many
methods based on metric learning have been applied to few-shot remote sensing scene
classification and have achieved excellent results in recent years.

The prototypical network [20] proposed by Snell, J. et al. was a simple and efficient
method of few-shot learning. First, a few samples provided by each category are used
to calculate the prototype of each class. The samples can realize the class by calculating
the euclidean distance between their embedding features and these prototypes. Alajaji,
D. et al. [31] applied the metric learning method of the prototypical network to remote
sensing scene classification tasks. They used pre-trained SqueezeNet as a feature extractor,
which is a simple and effective method. Zhang, P. et al. [32] also applied the prototypical
network to remote sensing scene classification. They used remote sensing data to train
feature extractors and finally measured the similarity between sample and prototype
by cosine distance. The prototypical network is straightforward and powerful and has
achieved outstanding performance in remote sensing scene classification tasks. However,
due to the lack of training data, the prototype is prone to be affected by isolated samples,
resulting in an inaccurate prototype and weak robustness.

Li, L. et al. [33] proposed a few-shot remote sensing scene classification method based
on the matching network. The matching network [34] mapped images to an embedded
space containing the label distribution, used different architectures to reflect the test images
into the same embedded space and applied cosine similarity to measure the similarity to
achieve classification and detection. The DLA-Matchnet method combined channel and
spatial attention into feature networks to implement discrimination learning and then
concatenated support and query sample features in-depth. Then, it utilized a matchnet
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to adaptively select the semantically relevant sample pairs to assign similarity scores.
The addition of an attention mechanism effectively improved the performance of the
matching network. DLA-Matchnet avoids problems of prototypical network and has better
performance. However, this method uses CONV-5 as a feature extractor, which cannot
extract deep representation information of data and which affects the performance to a
certain extent.

Yuan, Z. et al. [35] proposed a few-shot method for remote sensing scene classification
named Multi-attention DeepEMD, which is an improvement based on DeepEMD [36].
DeepEMD split images into blocks and then introduced a new distance metric method
named Earth Mover’s Distance (EMD), which calculated the best matching cost between
query set and blocks. In order to minimize the impact of clutter background, the author
designed a space and channel attention module to capture distinguishing features. At
the same time, to avoid the over-fitted problem, the author introduced a label smoothing
method to improve the generalization performance, which has high accuracy.

Negative Transfer. The use of the pre-trained model is an important reason for the
rapid improvement of few-shot learning performance in recent years. Some applications’
scenario training data on remote sensing field are fewer, often using the pre-trained model
for transfer learning [31]. However, because the pre-trained and remote sensing data are
different, the pre-trained model cannot adapt to the remote sensing data, often bringing
negative effects. Namely, the source domain of the study harms the performance of the
target domain.

In order to solve this problem, Dvornik, N. et al. [37] proposed a few-shot method
based on learning. In the pre-trained stage, multiple models were integrated, and the
final result was calculated by voting or averaging the method according to the model’s
output results. This paper selected a few-shot classifier based on metric learning for each
basic model, similar to the prototypical network. Each model had different initialization
parameters and random seeds, and each model was trained simultaneously and in parallel.
This method can effectively alleviate the problem of negative migration, but the complexity
of the model is high, resulting in more time cost in the computational process than other
algorithms. Yue, Z. et al. [38] proposed an interventional few-shot learning method to ex-
plain the cause of confounding introduced by pre-trained knowledge from the perspective
of causality. Based on existing methods, feature-based and class-based adjustments were
carried out in the fine-tuning stage to remove confounding, which solved the insufficiency
of pre-trained in few-shot learning. This method effectively avoids the problem of high
complexity and applies to a broader range.

Shao, S. et al. [39] proposed another few-shot learning method based on multi-head
feature collaboration. This algorithm used the subspace method to project multi-head
features into a unified space to obtain low-dimensional representations of multi-head
features. It integrated the extracted features of these principal components to obtain more
discriminative information, which reduced problems of negative transfer to a certain extent.
This method presents a solution from the perspective of subspace, which is simple, effective
and expansible. The negative migration problem can be effectively alleviated with the
increase in sample representation views.

Because of the difference between training and testing samples in categories, nega-
tive transfer problems widely exist in transfer learning fields. Several well-established
approaches attempt to mitigate negative migration, such as the fine-tune method. How-
ever, in the few-shot learning field, because there are only one or five training samples
in the testing stage, the fine-tune method is easily over-fitted, leading to further model
performance degradation. The existence of negative migration is the biggest bottleneck to
improve the few-shot scene classification performance.
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3. Problem Setup

In this section, we introduce some preliminaries of the few-shot classification. The
few-shot classification is generally divided into two stages, including the pre-trained and
meta-testing stages.

(i) We pre-trained an embedding model on the base data Dbase, and the model was
trained on the whole training set. Then, we removed the last fully connected layer and
applied the feature extractor P(·) to the next stage.

(ii) In the meta-testing stage, as the few-shot learning protocol, the novel data Dnovel
were fed into the model in the form of meta-tasks. A meta-task contains a support set
S = {(xi, yi)|i = 1, 2, · · ·, C× Ns} and query set Q =

{
(xi, yi)|i = 1, 2, · · ·, C× Nq

}
. Here,

C represents the number of classes and Nq, Nq is the number of samples for each class. The
support set and query set share the same classes, but the samples are different. Furthermore,
the categories in Dbase and Dnovel are different.

4. Proposed Method
4.1. Overview Framework of the Proposed Method

This work applies the Class-Shared SparsePCA for the few-shot remote sensing scene
classification, named CSSPCA. Figure 1 shows the steps of our proposed method. Specifi-
cally, different from the training method of the feature extractor in [20], we do not use the
meta-learning method to train the feature extractor. Instead, we train the feature extractors
following [39], which is more effective than the complex meta-learning algorithm. In our
opinion, compared with the general few-shot image classification tasks, the few-shot remote
sensing scene classification tasks have less data volume. When the convolutional neural
network is trained, it is easy for the network to be over-fitted, resulting in worse gener-
alization ability and affecting the final classification effect. We introduce self-supervised
learning in the pre-training stage to improve the generalization ability of feature extractor
by constructing more self-supervised data.

At the same time, it will inevitably bring new problems. Since the sample categories
used by the pre-trained model are different from the remote sensing images, it is chal-
lenging for the feature extractor trained in the pre-trained stage to adapt to novel data,
and there is the problem of “negative transfer”. To alleviate this problem, we propose
using the Class-Shared SparsePCA maps novel data embedding features to obtain more
discriminative space and more discriminative reconstructed features, thus alleviating the
“negative transfer” problem and improving the performance of the few-shot remote sensing
scene classification task.

4.2. Feature Extractor

In this work, we use Resnet-12 [40] as our backbone to classify all categories of data
in Dbase, illustrated in Figure 2. The feature extractor consists of four residual blocks and
dropout, 5× 5 average pooling and a fully connected (FC) layer. Each block contains
3× 3 convolution layers, batch normalization layers, and LeakyReLU layers, and 2× 2
max-pooling layers. We resize all the data to 84× 84 before training.

In the pre-training stage, we train the feature extractor by introducing a self-supervised
method. The loss function L contains classification loss [41] Lc and auxiliary rotation
loss [42] Lm. Lc can be formulated as:

Lc = −∑
c

y(c,x)log(p(c,x)) (1)

where c denotes the cth class, y(c,x) indicates the truth label and p(c,x) is the probabilities
that predicted the label of xth sample belonging to cth class. Then, we flip each sample to m,
and m = {horizontally, vertically, diagonally} is the label of the sample rotated by different
angles. Lm can be formulated as:

Lm = −∑
m

y(m,x)log(p(m,x)) (2)
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where y(m,x) indicates the truth label, and p(m,x) indicates the probabilities that predicted
the label of xth sample belonging to mth class. The loss function is defined as follows:

L = Lc + Lm (3)

In the meta-testing stage, we remove the FC layer of the pre-trained feature extractor
and finally obtain a 512-dimensional embedding feature as the input of the classifier.

3×3 ConV

BatchNormal

LeakyReLU

2×2 Max Pooling

Residual Block 

5×5 Aver Pooling

FC layer-1 FC layer-2

3×3 ConV

BatchNormal

LeakyReLU

3×3 ConV

BatchNormal

LeakyReLU

Residual Block 

Residual Block

Residual Block

Embedding 

Feature

horizontally vertically diagonallybeachairplane airport lake

Figure 2. Schematic diagram of self-supervised auxiliary loss.

4.3. Class-Shared SparsePCA Classifier

To solve the problem of negative transfer in the few-shot remote sensing scene classifi-
cation, we propose a novel method. We propose to use Class-Shared SparsePCA to project
samples into subspace to obtain more discriminative reconstruction features and make
them more suitable for few-shot remote sensing scene classification. The objective function
is defined as follows:

argminA,B

∥∥∥X− XBAT
∥∥∥2

F
+ λ0‖B‖2

F + λ1

K

∑
j=1

∥∥∥B•j

∥∥∥
1
+ η‖Y− XBW‖2

F

s.t. AT A = IK×K , ‖Wk•‖2 ≤ 1

(4)

Here, we assume that X ∈ RN×D, A ∈ RD×K and B ∈ RD×K denote the features
extracted from the noval data, the synthesis dictionary (orthogonal matrix) and the analysis
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dictionary (sparse matrix), respectively. N is the number of features, D represents the
dimension of features, and K is the dictionary size. Y ∈ RN×C represents the label matrix,
and W ∈ RK×C denotes the classification plane, where C is the number of categories of
sample X. B•j denotes the jth column of matrix B, and Wk• denotes the kth row of matrix W.
λ and η are constant.

If we initialize the synthesis dictionary A and the analysis dictionary B with random
matrices with unit Frobenius norm [43], Equation (4) can be solved with the following
three steps:

(i) Fix A and B; update W. The objective function is as follows:

f (W) = argminA,B‖Y− XBW‖2
F s.t. ‖Wk•‖2 ≤ 1 (5)

We set S = XB, and D = STS, where S ∈ RN×K, and D ∈ RK×K. Then, we obtain the
W as (6):

Wk• =
(STY)k• − (D̃k•)W∥∥(STY)k• − (D̃k•)W

∥∥
2

(6)

where D̃ is D whose diagonal element is set to 0, and (STY)k• denotes the kth row of
matrix STY.

(ii) Fix W and B; update A. The objective function is written as follows:

f (A) = argminA,B

∥∥∥X− XBAT
∥∥∥2

F
s.t.AT A = IK×K (7)

The problem can be soved by the SVD algorithm. We obtain the SVD as follows:

XTXB = UDVT (8)

where U ∈ RD×D, D ∈ RD×K and V ∈ RD×K are the matrices obtained by the SVD
algorithm, and U and V are the unitary matrices.

Then, we obtain the synthesis dictionary A as Equation (9).

A = UVT (9)

(iii) Fix W and A; update B. The objective function is written as follows:

f (B) = argminA,B

∥∥∥X− XBAT
∥∥∥2

F
+ λ0‖B‖2

F + λ1

K

∑
j=1

∥∥B•j
∥∥

1 + η‖Y− XBW‖2
F (10)

Then, Equation (10) factorizes to Equation (11) as follows:

f (B) = trace
{

XTX− 2XTXBAT + ABTXTXBAT
}
+ λ0trace

{
BT B

}
+λ1

K

∑
j=1

∥∥B•j
∥∥

1 + ηtrace
{

YTY− 2YTXBW + WT BTXTXBW
} (11)

Rewrite the objective function as follows:

f (B) = trace
{

BT(XTX + λ0 I)B + ηWWT BTXTXB
}

−2trace
{

XTXBAT + ηYTXBW
}
+ λ1

K

∑
j=1

∥∥B•j
∥∥

1

(12)

Define g(B) = trace{·} − 2trace{·}. The objective can be rewritten as follows:
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f (B) = g(B) + λ1

K

∑
j=1

∥∥B•j
∥∥

1 (13)

According to Equation (13), we obtain that

f (B•k) = g(B•k) + λ1‖B•k‖1 (14)

so that we can use the ADMM algorithm (Alternating Direction Method of Multipliers) [44]
method to solve this problem:

f (B•k, z) = g(B•k) + λ1‖z‖1 s.t.B•k = z (15)

f (B•k, z, ξ) = g(B•k) + λ1‖z‖1 + ξT(B•k − z) + ρ‖B•k − z‖2
2 (16)

where ξ is the Lagrange multiplier and ρ is constant.
Then, fix z and ξ; update the analysis dictionary B•k

f (B•k) = g(B•k) + ξT B•k + ρ‖B•k − z‖2
2 (17)

To this end, the optimal B can be formulated as:

B•k = [G]−1
[

XTXA•k + ηXTYWT
•k + ρz− ξ

2
− ηXTXZ̃k•

]
(18)

where G = ηXTX(∑k
j=1(WWT)kk) + XTX + (λ + ρ)I, Z = WWT and

Z̃k• =

{
Z•p, p 6= k
0, p = k

}
.

Fix B•k and ξ; update z.

z = max
{

B•k +
1

2ρ
(ξ − λ1), 0

}
+ min

{
B•k +

1
2ρ

(ξ + λ1), 0
}

(19)

Fix B•k and z; update ξ.
ξ = ξ + ρ(B•k − z) (20)

4.4. Classification Scheme

Given a query image xq, we extract its feature embedding F (xq). The predicted label
is obtained by Equation (21):

category(xq) = max
{

xq AW
}

(21)

5. Experiments and Results
5.1. Datasets

We train feature extraction models on the few-shot learning datasets miniimagenet and
tieredimagnet, respectively, and test them on two datasets: NWPU-RESISC45 and RSD46-
WHU. Figure 3 shows several images of the datasets, and the details of these datasets are
introduced as follows.

The NWPU-RESISC45 dataset is a dataset for remote sensing scene classification. It
consists of 31,500 images divided into 45 classes of scenes. Each class contains 700 images
with 256× 256 pixel size. As the split division setting proposed by [32], we divided the
45 scene classes into 25, 8, 12 for meta-training, meta-validation and meta-testing, respectively.

The RSD46-WHU is an open dataset for remote sensing scene classification. There are
117,000 images divided into 46 classes of scenes in the dataset, each with 500–3000 images
of 256-pixel size. On the basis of [32], we separated it into three sections: 26 classes for
meta-training, 8 classes for meta-validation and 12 classes for meta-testing. The specific
information is shown in Table 1.
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Table 1. NWPU-RESISC45 and RSD46-WHU dataset category information.

Dataset All Meta-Training Meta-
Validation Meta-Testing

NWPU-
RESISC45 45 25 8 12

RSD46-WHU 46 26 8 12

(a)

beach forestairplane railway cloud

island ship mountain overpass desert

wetland terrace stadium meadow intersection

crossroads dockbuilding fish pond footbridge

grassland oiltankgraff overpass parking lot

(b)

airport bare landairplane basketball court forest land

Figure 3. Samples from different datasets. (a) NWPU-RESISC45, (b) RSD46-WHU.



Remote Sens. 2022, 14, 2304 11 of 19

5.2. Implementation Details

In the pre-trained stage, we adopt a common Resnet-12 network for which the structure
is same as [40], and the feature extractor trained on the server consists of eight Tesla-V100
GPU with 32 GB memory. In the course of training, the optimizer for the model is a
stochastic gradient descent (SGD) optimizer. The momentum of the optimizer is set to
0.9, and the weight decay is 1 × 10−4. In addition, the learning rate was 0.1 initially,
then the learning rate was changed to 0.01, 0.001 and 0.0001 at epochs 30, 60 and 90,
respectively. The whole model consists of 120 pre-trained epochs on base data. Moreover,
some standard data enhancement methods such as horizontal flipping, random clipping,
and color dithering were applied before the data were fed into feature extractor. When the
training is completed, the best model is chosen according to the classification precision
testing on the meta-training set.

In the meta-testing stage, it is similar to common few-shot image classification. First, all
remote sensing images are resized into 84× 84 for the whole dataset. Then, the parameters
of the pre-trained feature extractor are fixed, and the last FC layer is removed. We can
thus obtain a 512-dimensional feature vector for each remote sensing image through the
feature extractor Resnet-12. Next, the CSSPCA classifier is used for classification. For the
parameter for the CSSPCA, we fix λ0 to 20, λ1 to 2−9, and ρ to 2−3 on NWPU-RESISC45
dataset as well as λ0 to 20, λ1 to 2−8, and ρ to 2−10 on RSD46-WHU dataset under the 5-way
1-shot and 5-way 5-shot case. According to the few-shot learning experimental setting
proposed by [20], we evaluate the method’s performance on the on N-way K-shot case over
600 episodes with 15 query samples. We randomly select N classes samples from the test
samples for each episode and randomly select K samples for each class, where N = 5 and
K = 1 or 5. Figure 4 shows the example of a 5-way 1-shot case with 600 episodes.

agricultural airplane forest beach buildings ? ? ?

···

···

Support Query

···

···

forest

600 episodes

···

golfcourse harbor freeway river ? ? ?chaparral

buildings freeway ?runway ?parkinglot ?

Figure 4. The example of a 5-way 1-shot case.

5.3. Experimental Results

The methods based on meta-learning such as [32,33,35] and others have gained ex-
cellent results, which has effectively solved the problem that the network is accessible to
over-fitting due to fewer data. However, the network cannot be fully trained, making it
difficult to further improve the accuracy of sample classification. Therefore, we proposed
the method based on decision fusion to settle it effectively. At the same time, the decision
fusion is applied to deal with the cross-domain negative transfer, which has achieved
remarkable performance in the few-shot remote sensing scene classification.

We listed the experimental results of average accuracy (%) with 95% confidence
interval over 600 epochs in Tables 2 and 3, respectively. The prior work experimental results
come from their report. We usually test the accuracy of few-shot remote sensing scene
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classification under 5-way 1-shot and 5-way 5-shot cases. In the 5-way 1-shot case, only
one image in each category is used to train the classifier, which is challenging.

Our method achieved 71.27% on the NWPU-RESISC45 dataset in the 5-way 1-shot case,
and 85.64% in the 5-way 5-shot case, respectively. In the 5-way 1-shot case, we achieved an
accuracy of 70.61% on the RSD46-WHU dataset in the 5-way 1-shot case, and 84.50% in the
5-way 5-shot case, respectively. Compared with the prior work, we have improved 0.98%
and 0.40% on all datasets on the 5-way 5-shot case, respectively. Even on the 5-way 1-shot
case, we attained 1.81% and 1.53%, respectively.

We summarize and analyze all few-shot remote sensing scene classification methods,
of which ProtoNet, RelationNet, MatchingNet, DLA-MatchNet, TADAM, MetaOptNet,
DSN-MR and MetaLearning are few-shot remote sensing scene classification methods
based on metric learning, and LLSR, MAML and Meta-SGD are based on optimization. At
the same time, the MetaLearning methods achieved the best performance on all datasets.
We analyze that the method based on metric learning is more suitable for few-shot remote
sensing scene classification.

We observed that prototypical networks and MAML methods performed much better
when using Resnet-12 than ConV-4 on the NWPU-RESISC45 datasets. In particular, the
prototypical network improved by 11.61% and 5.61%, respectively, under the 5-way 1-shot
and 5-way 5-shot cases. It can be seen that the more layers of the neural network, the better
performance of extracted sample features. At the same time, we also observed that in the
NWPU-RESISC45 dataset, the performance of most methods using Resnet-12 as the feature
extractor was generally lower than that of the DLA-Matchnet method. We believe that the
training data of remote sensing data were insufficient, resulting in the over-fitted problem
of Resnet-12 during training.

Table 2. The few-shot classification accuracies on the NWPU-RESISC45 with 95% confidence intervals
over 600 epochs.

Method Backbone 5-Way 1-Shot 5-Way 5-Shot

LLSR [45] ConV-4 51.43 72.90
MAML [27] ConV-4 53.52± 0.83 71.69± 0.63

ProtoNet [20] ConV-4 51.17± 0.79 74.58± 0.56
RelationNet [46] ConV-4 57.10± 0.89 73.55± 0.56

MatchingNet [34] Conv-5 37.61 47.10
Meta-SGD [47] ConV-5 60.63± 0.90 75.75± 0.65

DLA-MatchNet [33] ConV-5 68.80± 0.70 81.63± 0.46
MAML [27] Resnet-12 56.01± 0.87 72.94± 0.63

ProtoNet [20] Resnet-12 62.78± 0.85 80.19± 0.52
RelationNet [46] Resnet-12 55.84± 0.88 75.78± 0.57

TADAM [48] Resnet-12 62.25± 0.79 82.36± 0.54
MetaOptNet [21] Resnet-12 62.72± 0.64 80.41± 0.41

DSN-MR [49] Resnet-12 66.93± 0.51 81.67± 0.49
D-CNN [14] Resnet-12 36.00± 6.31 53.60± 5.34

MetaLearning [32] Resnet-12 69.46± 0.22 84.66± 0.12
TPN [50] Resnet-12 66.51± 0.87 78.50± 0.56
MKN [51] Resnet-12 65.84± 0.89 82.67± 0.55

TAE-Net [52] Resnet-12 69.13± 0.83 82.37± 0.52

Ours Resnet-12 71.27± 0.70 85.64± 0.46
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Table 3. The few-shot classification accuracies on the RSD46-WHU with 95% confidence intervals
over 600 epochs.

Method Backbone 5-Way 1-Shot 5-Way 5-Shot

LLSR [45] ConV-4 51.43 72.90
MAML [27] ConV-4 52.73± 0.91 69.18± 0.73

ProtoNet [20] ConV-4 52.57± 0.89 71.95± 0.71
RelationNet [46] ConV-4 55.18± 0.90 68.86± 0.71

MAML [27] Resnet-12 54.36± 1.04 69.28± 0.81
ProtoNet [20] Resnet-12 60.53± 0.99 77.53± 0.73

RelationNet [46] Resnet-12 53.73± 0.95 69.98± 0.74
TADAM [48] Resnet-12 65.84± 0.67 82.79± 0.58

MetaOptNet [21] Resnet-12 62.05± 0.76 82.60± 0.46
DSN-MR [49] Resnet-12 66.53± 0.70 82.74± 0.54
D-CNN [14] Resnet-12 30.93± 7.49 58.93± 6.14

MetaLearning [32] Resnet-12 69.08± 0.25 84.10± 0.15

Ours Resnet-12 70.61± 0.73 84.50± 0.48

5.4. Ablation Studies
5.4.1. Influence of Self-Supervised Mechanism

In the pre-training phase, a self-supervised mechanism is used to train the feature
extractor. The mirror transformation is applied to the training samples and jointly constructs
the loss function. We explain self-supervised auxiliary loss and give the effect on the final
result to prove that the self-monitoring mechanism is better.

We flip the image, and generating the corresponding pseudo-label is used as an
auxiliary classification task to supervise the network training to complete the image angle
prediction task. Figure 2 is the schematic diagram of the self-supervised auxiliary loss.
Suppose the network wants to predict the flip angle of the image. In that case, it must learn
to understand the salient objects in the image, identify their orientation and object type, and
then associate the object orientations with the original image. If the network cannot learn
to understand these concepts, it cannot accurately predict flip angles. At the same time, the
construction of auxiliary tasks increases the training complexity of the network to a certain
extent. The features extracted by the network can be classified well and accurately predict
the flip angle. The features extracted during the training process have better generalization.

We test the self-supervised learning mechanism on the NWPU-RESISC45 and RSD46-
WHU datasets. The test results are shown in Table 4. baseline is the result of baseline without
self-supervised mechanism. baseline + ssm is the result of baseline with self-supervised
mechanism. All experiments are performed under the same settings.

From Table 4, we can see that under the different test cases of the two datasets, using
the self-supervision mechanism is better than the results of the baeline. Compared with
the results of the data augmentation method based on rotation, using the self-supervision
mechanism improved 5.23% and 2.72% in all datasets on the 5-way 1-shot case, and it
promoted 3.14% and 1.74% on the 5-way 5-shot case, respectively.

Table 4. Comparison results with baseline on 5-way few-shot case.

Weight
NWPU-RESISC45 RSD46-WHU

1-Shot 5-Shot 1-Shot 5-Shot

baseline 66.04± 0.82 82.50± 0.52 67.89± 0.79 82.76± 0.52
baseline + ssm 71.27± 0.70 85.64± 0.46 70.61± 0.73 84.50± 0.48

We plot the changes in the training and validation accuracy of the first 50 epoch train-
ings on base data (left side) and self-supervised data (right side) using the self-supervised
mechanism on NWPU-RESISC, as shown in Figure 5. The figure on the left shows the vari-
ation in accuracy of the main classification task for training and validation on the base data.
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With the increase in the frequency of training, the training and validation accuracy have
been increasing simultaneously. After training to 15 epochs, the training and verification
accuracy gradually stabilized at about 94%. The figure on the right shows the variation in
accuracy of the auxiliary classification task trained and verified on self-supervised data.
The accuracy of the training is significantly improved at first. When the training stage
reaches the four epoch, the training accuracy begins to stabilize and remains at about 70%,
while the verification accuracy fluctuates. Notably, when we adjusted the learning rate
from 0.1 to 0.01 in the 30th epoch, the validation accuracy did not change significantly, but
the training accuracy displayed a tiny but distinct improvement, which exists in both cases.
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Figure 5. Change in training accuracy in pre-training stage, (a) shows training accuracy on base data,
and (b) shows training accuracy on self-supervised data.

5.4.2. Influence of Reconstructive Feature

At present, there is a “negative transfer” problem in few-shot remote sensing scene
classification, and the feature extractor pre-training on base data cannot adapt well to
the features of novel data. We proposed to use Class-Shared SparsePCA to learn and
reconstruct features. We performed ablation experiments to verify the validity of the
reconstructed features. We use t-SNE (t-distributed Stochastic Neighbor Embedding) [53]
to visualize novel data features X and reconstructed features XB on NWPU-RESISC45,
and the experimental results are shown in Figure 6. It can be seen from the figure that the
distributions of the novel data’s different category features overlap each other. In contrast,
the reconstructed features have a closer distance between the same category features and a
longer distance between different category features, which has better discrimination and is
more conducive to image classification.
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Figure 6. The t-SNE visualization. We use t-SNE to perform visual analysis on the extracted novel
data features and the reconstructed features. (a) shows t-SNE result on novel data features, and (b)
shows t-SNE result on reconstructed features.
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5.4.3. Influence of Parameters

We carry out ablation studies to analyze the influence of the hyper-parameters λ0,
λ1 and ρ. To determine the optimal parameters of the experiment more quickly, we fixed
two of the parameters and then changed another parameter. The experimental results on
NWPU-RESISC45 and RSD46-WHU under the 5-way 1-shot case are shown in Figures 7–9.
Finally, we choose the parameter with the best classification result as our final parameter.
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Figure 7. Influences of parameters λ0. (a) shows experimental results on NWPU-RESISC45, and
(b) shows experimental results on RSD46-WHU.
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Figure 8. Influences of parameters λ1. (a) shows experimental results on NWPU-RESISC45, and
(b) shows experimental results on RSD46-WHU.
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Figure 9. Influences of parameters ρ. (a) shows experimental results on NWPU-RESISC45, and
(b) shows experimental results on RSD46-WHU.
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5.4.4. Influence of Meta-Testing SHOT

Tables 2 and 3 illustrate that the heterogeneity in performance between 5-way 1-
shot and 5-shot cases is noteworthy. We further develop the effects of various shots on
performance in the 5-way setting. As we can see from Figure 10, the performance of our
approach gradually rose as the number of shots increased, but at a slower rate, especially
in the 5-way 2-shot case.
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Figure 10. Ablation studies to show the performances of the meta-testing shot. (a) shows experimental
results on NWPU-RESISC45, and (b) shows experimental results on RSD46-WHU.

6. Conclusions

In recent years, the few-shot remote sensing scene classification has attracted re-
searchers’ attention, and it solves the lack of available training data. We have analyzed the
methods on few-shot remote sensing scene classification in recent years and found two
problems. One is that the inappropriate neural network model can easily lead to trained
over-fitting or can be unable to extract the deep representation features of samples. The
other is that the pre-trained model with a better feature extraction ability will have the
problem of negative transfer due to the massive difference between the pre-trained data
used in training and remote sensing data. In response to these questions, we propose a few-
shot scene classification method based on Class-Shared SparsePCA, aiming at the existing
problems. First, we propose using self-supervised learning as an auxiliary classification
task, which helps us train a more robust feature extractor with limited data. We propose
a new and more robust classifier for few-shot remote sensing scene classification in the
meta-test phase, which can effectively improve the discrimination of novel data features.
We have significantly improved the performance of two commonly used few-shot remote
sensing scene classification datasets. Through many ablation experiments, we proved the
rationality and effectiveness of our proposed method.
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Abbreviations
The following abbreviations are used in this manuscript:

LLSR Lifelong learning for scene recognition in remote sensing images
MAML Model-agnostic meta-learning for fast adaptation of deep networks
ProtoNet Prototypical networks for few-shot learning
RelationNet Learning to compare: Relation network for few-shot learning
MatchingNet Matching networks for one-shot learning
Meta-SGD Meta-SGD: Learning to learn quickly for few-shot learning
DLA-MatchNet DLA-MatchNet for few-shot remote sensing image scene classification
TADAM TADAM: Task-dependent adaptive metric for improved few-shot learning
MetaOptNet Meta-learning with differentiable convex optimization
DSN-MR Adaptive subspaces for few-shot learning
D-CNN Remote sensing image scene classification via learning discriminative CNNs
MetaLearning Few-shot classification of aerial scene images via meta-Learning
deepEMD Few-shot image classification with differentiable earth mover’s distance
MA-deepEMD Multi-attention deepEMD for few-shot learning in remote sensing
TPN Learning to propagate labels: Transductive propagation network for

few-shot learning
TAE-Net Task-adaptive embedding learning with dynamic kernel fusion for few-shot

remote sensing scene classification
MKN Metakernel networks for few-shot remote sensing scene classification
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