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Abstract: The coarse resolution of land surface temperatures (LSTs) retrieved from thermal-infrared
(TIR) satellite images restricts their usage. One way to improve the resolution of such LSTs is
downscaling using high-resolution remote sensing images. Herein, Gaofen-6 (GF-6) and Landsat-8
images were used to obtain original and retrieved LSTs (Landsat-8- and GF-6-retrieved-LSTs) to
perform LST downscaling in the Ebinur Lake Watershed. Downscaling model was constructed, and
the regression kernel was explored. The results of downscaling LST using the GF-6 normalized
difference vegetation index with red-edge band 2, ratio built-up index, normalized difference sand
index, and normalized difference water index as multi-remote sensing indices with multiple remote
sensing indices with random forest regression method provided optimal downscaling results, with
R2 of 0.836, 0.918, and 0.941, root mean square difference of 1.04 K, 2.06 K, and 1.80 K, and the
number of pixels with LST errors between −1 K and +1 K of 87.2%, 76.4%, and 81.9%, respectively.
The expression of spatial distribution of 16 m-LST downscaling results corresponded with that
of Landsat-8- and GF-6-retrieved-LST, and provided additional details spatial description of LST
variations, which was absent in the Landsat-8- and GF-6-retrieved LSTs. The results of downscaling
LST could satisfy the application requirements of LST spatial resolution.

Keywords: LST downscaling; GF-6 images; MIRF method; NDVI; Ebinur Lake Watershed

1. Introduction

Land surface temperature (LST) is a critical parameter in the surface energy balance. It
is also an important indicator of land degradation, salinization, desertification, and erosion,
and is widely used in studies focusing on evaporation estimates, water cycle, drought
monitoring, the “urban heat island” effect [1,2], and the cold island effect in oasis [3].
In early studies, surface temperature was mostly obtained by the ground measurement
method, which is associated with an insufficient density of stations and limited space-time
range for monitoring spatiotemporal changes of surface thermal environment [4]. With the
development of remote sensing technology, satellite images with thermal infrared sensor
(TIRS) have become an important approach for obtaining LST because of its wide coverage,
relatively low cost, and periodic acquisition [5,6].

Human activities and urban expansion substantially changes the natural surface,
causing a series of environmental impacts. The spatial and temporal distribution of thermal
environment varies widely with the heterogeneity of underlying surface components
and complexity of atmospheric conditions [7–9]. However, the LST retrieved from TIRS
images typically show a coarse resolution. The Landsat-8 TIRS images provided by the
United States Geological Survey website (USGS) (http://earthexplorer.usgs.gov, accessed
on 12 March 2022) has been resampled to a resolution of 30 m by the cubic convolution
method, although the information expressed remains similar to the physical resolution of
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the sensor at 100 m, with far lower resolution than the actual spatial model with a resolution
of 30 m [10]. This leads to large errors on the spatial scale in the monitoring of high spatial
and temporal heterogeneity of the surface environment, which limits the full application of
LST. Therefore, LST with high spatial resolution is needed for further study.

To improve this, one of the major areas of interest of TIR-based remote sensing studies
is to use high-resolution remote sensing images to downscale low- and mid-resolution IR re-
mote sensing images. The construction of China’s high-resolution earth observation system
for major science and technology projects began in 2013. The Gaofen-1 satellite launched
in 2013 exhibits high spatial resolution, high time resolution, and large-width imaging,
whereas the Gaofen-6 satellite launched in 2018 shows high-spatial resolution, large-width
resolution, and high-frequency imaging and is equipped with 2 m-resolution panchro-
matic/8 m-resolution multi-spectral high-resolution cameras (PMS) and a 16 m-resolution
wide field view (WFV) multispectral camera. In addition, purple band, yellow band, and
two red-edge bands (0.710 and 0.750 µm) are added based on the Gaofen-1 satellite, making
it suitable for large-scale ground object observation and environmental monitoring. These
images provide a basis for researchers to use domestic high-resolution images to study LST
scaling. How to use domestic high-resolution satellite images with high spatial resolution to
achieve spatial downscaling of low-resolution thermal infrared remote sensing images and
obtain high-resolution land surface temperature information remains to be determined in
thermal infrared remote sensing research. Gaofen-1 (GF-1), Gaofen-2 (GF-2), and Ziyuan-3
(ZY-3) have been used in LST downscaling studies [11,12]. Many scholars have utilized
GF-6 in crop and forest classification and extraction of built-up area [13–16]. Application of
the GF-6 in LST downscaling, particularly the effect of the new red-edge bands, requires
further analysis.

At present, pixel-level LST downscaling is typically performed using mathematical
statistics, pixel-block intensity modulation, or spectral mixing models [17]. Statistical mod-
els, such as DisTrad [18], TsHARP [19], and multiple remote sensing indices with random
forest regression (MIRF) [20], are generally straightforward to use and have acceptable
levels of precision. The DisTrad method achieves LST downscaling based on the statistical
law of scale invariance between the normalized difference vegetation index (NDVI) and
LST at different scales; however, there are deficiencies in spatial variation of expression.
The TsHARP method improves upon the DisTrad method by replacing NDVI with vege-
tation coverage and obtains better downscaling results. Considering that LST is affected
by multiple factors, the MIRF method uses multiple remote sensing indices as regression
kernel for scaling down. The influence of different surface characteristic factors on LST
distribution changes under various underlying surfaces. Rather than using normalized
difference dust index (NDDI), Pan [21] proposed a downscaling method based on normal-
ized difference sand index in MIRF (NDSI-RF) for arid sandy deserts, which enabled highly
precise downscaling in arid desert-oasis ecotones, and the applicability of NDSI factor
and MIRF methods in different seasons, distinct regions, and various sensors has been
comprehensively studied [20–22]. Chen [23] conducted a comparison between DisTrad,
TsHARP, and MIRF using multiple levels of resolution, and MIRF produced highly precise
downscaled results.

The Ebinur Lake watershed is a classic example of an ecosystem of wetlands in the arid
zone, along the New Eurasian Land Bridge, one of China’s Belt and Road Initiative (BRI)
economic corridors. It lies at the heart of the Silk Road Economic Belt and is an important
part of the Tianshan Northern Slope Economic Zone (TNSEZ). The watershed is endorheic,
and it serves as a salt water catchment area for the western part of the TNSEZ [24]. This
region is highly sensitive to climate change, and the fragility of the region has been exacer-
bated by the recent excessive water consumption, which has disrupted the balance between
water allocated for ecological, industrial, and domestic usage. These issues have resulted in
Lake Ebinur drying out, degradation of vegetation on large scales, desertification, and soil
salination. The Ebinur Lake watershed, Beijing-Tianjin-Tanggu region, and Sanjiangyuan
region have been included in the sixteen national-priority ecological management zones of
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China within China’s National Plan for Long- and Medium- Term Forestry Development,
and since the state-level Lake Ebinur Wetlands nature reserve was established in 2007,
conservation plans have enabled the recovery of the area of Lake Ebinur to a certain extent.
However, the rate of recovery of the lake is still far slower than its rate of degradation.

The dynamic succession process of wetland ecosystem caused by lake surface area
fluctuation has become the barometer of ecological environment improvement and deterio-
ration, and have attracted widespread interest from academia, governmental organizations,
the media, and the public. Numerous studies have been conducted on drainage system
changes, soil salination, dust storms, desertification, landscape patterns, and the cool island
effect, in the context of this region’s deteriorating ecological environment [25–31]. How-
ever, studies on drought assessment, irrigation monitoring, and water and heat balance
require practical application of LST at the field scale, such as soil moisture monitoring at
the field scale [32]. This requires the spatial downscaling of LST to meet the resolution
requirements for water resource management of the small-scale, highly heterogeneous
underlying surfaces, for which study area are lacking. The acquisition of high resolution
LST is helpful for analysis complex interactions between human (socio-economic) and
natural (ecological) systems, which is a prerequisite for environmental protection and
restoration in the study area.

In order to understand the relationship between surface variability caused by human
activities and LST, this study took the Ebinur Lake watershed as the study area; Landsat-8
and GF-6 WFV images were used as data sources to perform LST downscaling using the
DisTrad, TsHARP, and MIRF methods, respectively. Remote sensing indices, such as the
GF-6 NDVI, normalized difference vegetation index with red-edge band 1 (NDVIRE1),
normalized difference vegetation index with red-edge band 2 (NDVIRE2), NDSI, ratio built-
up index (RBI), and normalized difference water index (NDWI), were selected as regression
kernels according to the characteristics of band of GF-6 WFV images and underlying surface
features of the study area. This study provides a preliminary data on the viability of using
GF-6 images for LST downscaling in the study area, and the effects of the two newly added
red-edge bands on the downscaling results with three methods were evaluated, to obtain
satisfactory downscaling results for subsequent applications.

2. Materials and Methods
2.1. Overview of the Study Area

The study area is the Ebinur Lake watershed, which is a classic example of an arid oasis.
The area lies within the north temperate zone and has a desert-continental climate. It is
located in the Bortala Mongol Autonomous Prefecture in the Xinjiang Uyghur Autonomous
Region (81◦46′–83◦51′E, 44◦02′–45◦10′N). The Gurbantünggüt Desert, Borohoro Mountains
(western branch of the Tian Shan Mountain system), Dzungarian Alatau (northern-most
branch of the Tian Shan Mountain system), and Mount Mayili (western mountains of
Dzungaria) lie to the east, south, west, and north of the study area, respectively. Alashankou
valley (with a width of approximately 10 km) is located between the Dzungarian Alatau
and Mount Mayili, as shown in Figure 1.

The study area is situated in the wetland ecotone of Ebinur Lake. This region has
an extremely fragile ecological environment that has been strongly affected by human
activities and environmental factors. Owing to its unique geographical location, this study
area is extremely important for conducting research on climate regulation, reducing the
occurrence of salt-dust storms, and conserving the endemic biodiversity [33].

Agricultural and industrial sectors have developed rapidly together with the popula-
tion in this region in recent years, and the amount of water consumption for agricultural,
municipal, and industrial needs in regions upstream of Ebinur Lake has also increased.
Due to this stress, Kuitun River, which is one of the rivers feeding Lake Ebinur, has been
completely cut off, leaving only the Bortala River and Jinghe River to feed Ebinur Lake.
Combined with a large amount of evaporation and dust weather, the lake area is shrinking
rapidly, lakeshore region has become severely desertified, and the salt desert formed on
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the dried lakebed has become a major source of severe aeolian sandstorms. Therefore, the
regional ecological issues caused by changes in the lake-area of Ebinur Lake have become
a direct threat to the sustainable development of the TNSEZ and the safety of the New
Eurasian Land Bridge [34]. Understanding human and social dynamics, quantifying and
mapping the spatial-temporal distribution of environmental vulnerability caused by natural
and man-made impacts are needed for environmental protection and restoration [35–38].
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2.2. Data Sources and Preprocessing
2.2.1. Data Sources

The time of passing territory of Landsat-8 and GF-6 in the study area were simi-
lar at 13:14:40 and 13:43:20 (Beijing Time), respectively, providing a reliable data source
for this study. Landsat-8 images can be contaminated with cloud, particularly in the
winter in the study area. Considering the season and quality of image acquisition, im-
ages with thick aerosol or heavy cloud cover were removed, and images obtained dur-
ing the growing season (spring, summer, and autumn) in the study area were selected:
Landsat-8 Operational Land Imager (OLI) and TIRSc images from 12 April, 17 July, and
3 September 2019 (downloaded from the United States Geological Survey website (USGS)
(http://earthexplorer.usgs.gov, accessed on 12 March 2022) and GF-6 WFV images from
9 April, 24 July, and 26 August 2019, (obtained from the Satellite Application Center of the
Xinjiang Uygur Autonomous Region), which minimized interference and maximized the
image quality, and the spectral and textural features of these images were, therefore, clear
and distinct.

Considering that the Landsat-8 TIRS images from USGS have been resampled to a
resolution of 30 m, GF-6 and Landsat-8 TIRS images were first scaled up to 100 m to obtain
the remote sensing index and original LST under the low resolution, as well as establish the
downscaling model. GF-6 images with the original resolution were used to construct the
high-resolution remote sensing index to downscale the original LST and yield the 16 m LST.
GF-6 images resampled to the resolution of 30 m and the 30 m Landsat-8 TIRS images
before upscaling were used to retrieve the LST (Landsat-8- and GF-6-retrieved LST) and to
evaluate the downscaling results of the resampling to the 30 m resolution.

The auxiliary data used WFV-OLI image pairs (from April to October 2019), while
the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital
Elevation Model (ASTER GDEM: downloaded from https://earthdata.nasa.gov/, accessed
on 12 March 2022) were used for radiometric cross-calibration. Ground observation data

http://earthexplorer.usgs.gov
https://earthdata.nasa.gov/
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were obtained from three ground stations (downloaded from the China Meteorological
Data Service Centre (http://data.cma.cn, accessed on 12 March 2022, and Hydrographic
and Water Resources Survey Bureau of Xinjiang Bortala Mongolia Autonomous Prefecture),
measured using a ground temperature meter (sensor): glass liquid cryometer and platinum
resistance cryosensor. The actual LST was estimated from upwelling and downwelling
longwave radiations observed by pyranometers using the following equation:

Ts = [Rlu − (1− ε)·Rld/ε·σ]0.25 (1)

where Rlu (Rld) is the surface upwelling (or downwelling) longwave radiation, ε is the
land surface emissivity (LSE), Ts is LST, and σ is the Stefan–Boltzmann constant. The
temporal resolution is 1 h, while the underlying surface around the ground station was
homogeneous according to the field visit. The remote sensing images used in this study are
listed in Table 1. Table 2 shows the geographic coordinates of the ground stations and their
underlying surface types. The locations of the ground stations are shown in Figure 1.

Table 1. Remote sensing images sources.

Data Type Band Name Center
Wavelengths (µm) Bandwidth (µm) Spatial

Resolution (m) Date Usages

GF-6 WFV

Band 1 Blue 0.478 0.45–0.52

16
9 April, 24 July, and

26 August 2019

Retrieve and
Downscale

Band 2 Green 0.528 0.52–0.59
Band 3 Red 0.660 0.63–0.69
Band 4 NIR 0.806 0.77–0.89
Band 5 Red

edge 1 0.710 0.69–0.73

Band 6 Red
edge 2 0.750 0.73–0.77

Landsat-8 OLI

Band 1 Coastal 0.443 0.43–0.45

30 12 April,
17 July, and

3 September 2019

Band 2 Blue 0.4825 0.45–0.51
Band 3 Green 0.5625 0.53–0.60
Band 4 Red 0.655 0.63–0.68
Band 5 NIR 0.865 0.85–0.88

Landsat-8 TIRS
Band 10 TIR 10.9 10.6–11.19

100Band 11 TIR 12 11.5–12.51

WFV-OLI
image pairs

From April to
November, 2019

Radiometric
cross-calibration

Table 2. Ground station information.

Station Name Geographic Coordinates Underlying Surface Types Temporal Resolutions

Wenquan Hydrological Station 81◦02′E, 44◦59′N Water 1 h
Bole Hydrological Station 82◦02′E, 44◦52′N Vegetation 1 h

Jingheshankou Hydrological Station 82◦55′E, 44◦22′N Impervious surface 1 h

2.2.2. Normalization of Remote Sensing Images

Because of the differences in radiation calibration and spectral response function with
different sensors, collaborative application of multi-source sensor images causes some diffi-
culties, and observation geometry and atmospheric conditions impact the image. Therefore,
normalization processing must be performed eliminate data discrepancies caused by these
factors before the comprehensive application of multi-source remote sensing images.

Considering the characteristics of GF-6 coverage and large angle observation, the
GF-6 images were normalized using Landsat-8 images as a reference to ensure consistency
between them and to standardize the input data for the LST downscaling algorithm. This
process included radiometric cross-calibration [39–41], orthorectification, geometric correc-
tions, atmospheric correction using the Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes (FLAASH) algorithm, image cropping, and resampling. In radiometric cross-
calibration, the angle information of OLI image and the slope and aspect information of

http://data.cma.cn
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ASTER GDEM product was used to establish the surface Binomial Reflectance Distribution
Function (BRDF) model, establish the lookup table, fit the top of atmosphere reflectance
(TOA) brightness of GF-6, establish the linear relationship between TOA brightness and
image digital number (DN) value, and fit the calibration coefficient.

The normalized and unnormalized GF-6 NDVI were compared to Landsat-8 NDVI.
Following normalization, the GF-6 NDVI was more similar to the Landsat-8 NDVI, as
shown in Figure 2, and it was, thus, confirmed that normalization succeeded in reducing
disparities between the GF-6 and Landsat-8 NDVI. The statistical parameters of the data are
shown in Table 3, where normalization reduced the root mean square difference (RMSD)
and increased R2, which is evidence of its efficacy.
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Table 3. Statistical parameters of individual pixel values of Landsat-8 NDVI and normal-
ized/unnormalized GF-6 NDVI.

RMSD R2

unnormalized 0.1410 0.8540
normalized 0.1049 0.8630

2.2.3. Retrieval of Land Surface Temperatures (LSTs)

The single-channel algorithm [42] requires very few parameters to estimate LST, and
is applicable in a certain range of atmospheric water vapor content, due to which, when
high, the error of related parameters in the derivation process will increase, thus reducing
the inversion accuracy. Conversely, when the atmospheric water vapor content decreases
to 2 g·cm−2, the retrieval error of LST decreases to between 1.53 K [43,44]. In this study,
the atmospheric water vapor content was less than 2 g·cm−2; the single-channel algorithm
was, therefore, used to retrieve LST for the study area. Landsat-8 TIRS and GF-6 WFV,
which after cross-radiation calibration replaced Landsat-8 OLI, were used to retrieve LST.
For convenience, the 30-m Landsat-8 images and 16 m GF-6 images were both resampled
into 100 m images. Furthermore, the 16 m GF-6 images were also resampled into 30 m
images; 100 m and 30 m LST can be retrieved with TIRS. The 100 m-retrieved LSTs were
the original LSTs for downscaling, and the 30 m-retrieved LSTs were used to evaluate
downscaling results.

The governing equation of the single-channel algorithm is as follows:

Ts = γ[(ψ1L + ψ2)/ε + ψ3] + δ (2)
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γ ≈ T2/bγL (3)

δ ≈ T − T2/bγ (4)

bγ = c2

(
λ4/c1 + 1/λ

)
(5)

ψ1 = 0.04019ω2 + 0.02916ω + 1.01523 (6)

ψ2 = −0.38333ω2 − 1.50294ω + 0.20324 (7)

ψ3 = 0.00918ω2 + 1.36072ω− 0.27514 (8)

ω = 0.0981e + 0.1697 (9)

e = 0.61083exp
17.27(T0 − 273)
237.3 + T0 − 273

RH (10)

where ε is surface emissivity, L is the radiant intensity measured by the remote sensing
sensor at the altitude of the satellite (W·m−2·sr−1·µm−1), T is the brightness temper-
ature, λ is the central wavelength (band 10 of Landsat-8 has a central wavelength of
10.9 µm), c1 = 1.91104 × 108 W·µm4·m−2·sr−1 and c2 = 14,387.7 µm·K, ψ1, ψ2, and ψ3 are
atmospheric functional parameter, ω is the atmospheric water vapor content, e is the abso-
lute vapor pressure (hPa), RH is relative humidity, and T0 is air temperature measured at
2 m above the surface. RH and T0 are meteorological data of the Jinghe County meteoro-
logical station (ID:51334), which were downloaded from the China Meteorological Data
Service Centre (http://data.cma.cn, accessed on 12 March 2022).

2.3. Three Classic LST Downscaling Methods Used

GF-6 and Landsat-8 TIRS images were first scaled up to 100 m to obtain the remote
sensing index and original LST under the low resolution, and to establish the downscaling
model. GF-6 images with original resolution were used to construct a high resolution of
the remote sensing index to downscale the original LST.

2.3.1. DisTrad

The DisTrad method was first proposed by Kustas et al. in 2003. Based on the statistical
law of scale invariance between NDVI and LST at different scales, Kustas achieved scaling
down the thermal infrared image from 1 km to 100 m. The governing equation of DisTrad
is as follows:

LST′L(NDVIL) = a + bNDVIL (11)

4 LST′L = LSTL − LST′L (12)

LST′H(NDVIH) = a + bNDVIH +4LST′L (13)

where LSTL is the LST value at the original resolution, LST′L is the simulated LST value
at the coarser resolution, NDVIL is the NDVI value at the coarser resolution, a and b
are constants, 4LST′L is the regression residual, NDVIH is the NDVI value at the finer
resolution, and LST′H is the downscaled result.

2.3.2. TsHARP

The TsHARP method is an improved algorithm proposed by Agam [19] on the basis of
the DisTrad algorithm. This method assumes that a relatively stable functional relationship
between NDVI (or vegetation coverage) and LST is maintained at different spatial scales. In
this method, a function between LST and NDVI is constructed at the coarser resolution, and
this is then applied to the higher spatial resolution. Residual correction is then conducted to
obtain the LST at the required resolution. The governing equation of the TsHARP method
is as follows:

LST′H = f (NDVIH) + ∆Ts (14)

∆Ts = LST′L − f (NDVI) (15)

http://data.cma.cn
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f (NDVI) = a0 + a1(1− NDVI)0.625 (16)

where f is the regression function between NDVI and Ts, ∆T is the regression residual, and
a0 and a1 are the regression coefficients.

2.3.3. MIRF

Considering that the LST is affected by multiple factors, Yang et al. [20] proposed
the MIRF algorithm. In MIRF, a downscaling model is constructed using random forest
regression based on multiple surface-related remote sensing indices, which include the soil-
adjusted vegetation index (SAVI), normalized multi-band drought index (NMDI), modified
normalized difference water index (MNDWI), normalized difference dust index (NDDI),
and the normalized difference building index (NDBI). The governing equation of MIRF is
as follows:

LSTF = f (SAVIL, NMDIL, NDBIL, MNDWIL, NDDIL)

e = LSTF − LSTO

LSTH = f (SAVIH , NMDIH , NDBIH , MNDWIH , NDDIH) + e

 (17)

in which SAVIL, NMDIL, NDBIL, MNDWIL, and NDDIL are the SAVI, NMDI, NDBI,
MNDWI, and NDDI values at the coarser resolution, respectively, e is the regression resid-
ual, LSTO is the LST at the original resolution, LSTF is the simulated LST at the coarser
resolution, SAVIH, NMDIH, NDBIH, MNDWIH, and NDDIH are the SAVI, NMDI, NDBI,
MNDWI, and NDDI values at the finer resolution, respectively, and LSTH is the value of
the downscaled LST.

2.4. Remote Sensing Indices Based on GF-6 Images

According to the field investigation and the GF-6 image of the study area, the underly-
ing surface types of the study area mainly include vegetation, water bodies, impermeable
surfaces, and barren soil. The remote sensing indices relating to these underlying surface
types were selected. As NDDI cannot distinguish sand from soil, this indicator negatively
affects the accuracy of LST downscaling, and it was, therefore, replaced by the normalized
difference sand index (NDSI). Furthermore, as the GF-6 images does not provide shortwave
infrared bands that can be used to compute the NDBI, which makes it difficult to identify
built-up land using a single band or combination of bands, the ratio built-up index (RBI)
was used instead of the NDBI [45]. Finally, based on underlying surface characteristics of
the study area and the available bands of the GF-6 images, MIRF regression was conducted
using the GF-6 NDVI, NDWI, RBI, and NDSI indices. To highlight the effects of the red-
edge band 1 (RE1) and red-edge band 2 (RE2) on LST downscaling, three different NDVIs
(NDVIGF6_Nir, NDVIRE1, and NDVIRE2) were constructed based on the common bands and
RE1 and RE2 bands of the GF-6 image, and the equations used to compute each of these
indices are as follows:

NDVIGF6_Nir = (ρNir − ρred)/(ρNir + ρred) (18)

NDVIRE1 = (ρver1 − ρred)/(ρver1 + ρred) (19)

NDVIRE2 = (ρver2 − ρred)/(ρver2 + ρred) (20)

where ρNir and ρred are the reflectance values of the NIR and red bands, NDVIGF6_Nir is
the NDVI based on Nir band, ρver1 is the reflectance of RE1, NDVIRE1 is the NDVI based on
RE1, ρver2 is the reflectance of RE2, and NDVIRE2 is the NDVI based on RE2.

NDWI =
(
ρgreen − ρNir

)
/
(
ρgreen + ρNir

)
(21)

where ρgreen and ρNir are the reflectance values of the green and NIR bands, respectively.

RBI = KT1/KT2 (22)
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KT1 = 0.326× ρblue + 0.509× ρgreen + 0.56× ρred + 0.567× ρNir (23)

KT2 = −0.311× ρblue + 0.356× ρgreen + 0.325× ρred + 0.819× ρNir (24)

where ρblue, ρgreen, ρred, and ρNir are the reflectance values of the blue, green, red, and NIR
bands, respectively.

Furthermore, the NDSI equation is as follows:

NDSI = (ρred − ρblue)/(ρred + ρblue) (25)

where ρred and ρblue are the reflectance values of the red and blue bands, respectively.

2.5. Evaluation Measures

Two measures were selected to evaluate the LST downscaling results, including R2

and RMSD, which were calculated as follows:

R2 = 1− ∑n
i=1
(

LST′i − LSTi
)2

∑n
i=1
(

LST′i − LST
)2 (26)

where LST′i is the downscaled result, LSTi is the reference LST, LST is the mean reference
LST, and n is the total number of pixels in the image.

R2 is the coefficient of determination between the reference and downscaled images.
RMSD was used to test the difference between the reference and downscaled LSTs. A
high R2 and a low RMSD indicates a satisfactory downscaling. The Landsat-8- and GF-6-
retrieved LSTs were used to evaluate the downscaling results of the resampling to 30 m.

3. Results
3.1. Evaluation of Downscaling Results
3.1.1. Downscaling Results

According to the field investigation and classification of GF-6 images in the study area,
as compared with other regions, region A (Figure 3) contains all four types of underlying
surfaces (vegetation, water bodies, impermeable surfaces, and barren soil), and their
distribution is concentrated; Figure 4 shows an enlarged view of region A to present the
downscaling results more clearly. Figure 5 shows the underlying surface types classified
by GF-6 image, using support vector machines (SVM), with classification accuracies of
92.7%, 92.5%, and 94.4%. Figure 6 shows the Landsat-8- and GF-6-retrieved LST of region
A, where a, b, and c show the original 100 m LSTs for downscaling, which were retrieved
by GF-6 and Landsat-8 images scaled up to 100 m, and d, e, and f show the 30 m LSTs used
to evaluate downscaling results, which were retrieved by GF-6 images resampled to the
resolution of 30 m and the 30 m Landsat-8 TIRS images.

Figure 7 shows the 16 m downscaled LST taking 26 August 2019 as an example. As
shown in Figure 7, all of the nine downscaled results in the three seasons were consistent
with the overall spatial patterns of Landsat-8- and GF-6-retrieved LST, and their high- and
low-temperature zones were general consistence with the Landsat-8- and GF-6-retrieved
LST. Based on the images and underlying surface types of this region (Figure 5), barren
soils had the highest temperatures, followed by impermeable surfaces. Vegetation had
significantly lower temperatures than barren soil and impermeable surfaces, while water
bodies had the lowest temperatures. This is consistent with the regular pattern that the
temperature increases in water, vegetation, impervious surface, and poor soil. Comparing
the DisTrad and TsHARP results, those based on NDVIGF6_Nir and NDVIRE2 were relatively
similar to each other, but there were obvious changes in LST in vegetated areas which
were obtained with the RE1 band changes. Compared to the Landsat-8- and GF-6-retrieved
LST, the DisTrad- and TsHARP-downscaled results provided no additional details of LST
variations. The MIRF-downscaled results from the common bands and the RE1 and RE2
bands of GF-6 can describe the detail spatial variations in LST. The temperature variations
of the MIRF-downscaled results were also much milder.
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LST on 24 July 2019, (c) 100 m LST on 26 August 2019, (d) 30 m LST on 9 April 2019, (e) 30 m LST on
24 July 2019, (f) 30 m LST on 26 August 2019.
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Figure 7. The 16 m downscaled LSTs obtained using three different methods with GF-6 images of
26 August 2019. (a) DisTrad LSTGF6_Nir, (b) DisTrad LSTRE1, (c) DisTrad LSTRE2, (d) TsHARP
LSTGF6_Nir, (e) TsHARP LSTRE1, (f) TsHARP LSTRE2, (g) MIRF LSTGF6_Nir, (h) MIRF LSTRE2,
(i) MIRF LSTRE2.
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The spatial distribution of the differences between Landsat-8- and GF-6-retrieved LST
and downscaled LST (resampled to 30 m) shows that the temperature in the vegetation
area was overestimated by each downscaling methods with RE1 band, and the range
of overestimation gradually decreased with the order of DisTrad, TsHARP, and MIRF,
as shown in Figure 8 (taking 26 August 2019 as an example). In the MIRF method, the
temperature of impervious surface around vegetation and water covered area was higher,
and the temperature of vegetation area in the middle of impervious surface and bare soil
covered area were lower. The MIRF-downscaled LST results also revealed roads between
vegetated areas, impermeable surfaces around water bodies, greenified areas among built-
up areas, and temperature changes between impermeable and barren soil surfaces. These
small temperature variations were absent from the Landsat-8- and GF-6-retrieved LST.
Furthermore, the LST variations obtained by MIRF downscaling with the contribution of
GF-6 images were consistent with the natural LST variations.
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Figure 8. Spatial distribution of the differences between the Landsat-8- and GF-6-retrieved LST
dataset and downscaled results obtained using three different downscaling methods with different
GF-6 bands on 26 August 2019 (in units of K). (a) DisTrad LSTGF6_Nir, (b) DisTrad LSTRE1, (c) DisTrad
LSTRE2, (d) TsHARP LSTGF6_Nir, (e) TsHARP LSTRE1, (f) TsHARP LSTRE2, (g) MIRF LSTGF6_Nir,
(h) MIRF LSTRE1, (i) MIRF LSTRE2.
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3.1.2. Evaluation and Comparison of Downscaled LST

To evaluate the three methods, DisTrad, TsHARP, and MIRF, the downscaling results
were scaled up to 30 m to be consistent with the Landsat-8- and GF-6-retrieved LST, the
scatter plot of the downscaled results (from the common bands and two red-edge bands of
GF-6), and the R2 and RMSD values of the downscaled results were calculated, as shown in
Figure 9 (taking 26 August as an example) Statistical difference was evaluated between the
downscaling results and Landsat-8- and GF-6-retrieved LSTs, as shown in Figure 10 (taking
26 August 2019 as an example). The statistics for all three groups are listed in Table 4.
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Figure 9. Scatter plot of the Landsat-8- and GF-6-retrieved LST dataset and downscaled results ob-
tained using three different downscaling methods with different GF-6 bands on 26 August 2019
(in units of K). (a) DisTrad LSTGF6_Nir, (b) DisTrad LSTRE1, (c) DisTrad LSTRE2, (d) TsHARP
LSTGF6_Nir, (e) TsHARP LSTRE1, (f) TsHARP LSTRE2, (g) MIRF LSTGF6_Nir, (h) MIRF LSTRE1,
(i) MIRF LSTRE2.
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Table 4. The statistics for the three groups. 

Date Method R2 RMSD (K) 
The Number of Pixels with 

Residuals between −1 K and +1 K 
(%) 

9 April 2019 
DisTrad 

0.752 1.57 48.5 
0.701 1.86 47.1 
0.755 1.47 50.0 

TsHARP 
0.762 1.42 80.8 
0.741 1.84 54.0 

Figure 10. Differences probability (with respect to Landsat-8- and GF-6-retrieved LST) in down-
scaled results obtained using three different downscaling methods and different GF-6 bands on
26 August 2019 (a) DisTrad LSTGF6_Nir, (b) DisTrad LSTRE1, (c) DisTrad LSTRE2, (d) TsHARP
LSTGF6_Nir, (e) TsHARP LSTRE1, (f) TsHARP LSTRE2, (g) MIRF LSTGF6_Nir, (h) MIRF LSTRE1,
(i) MIRF LSTRE2.

It can be seen from Figures 9 and 10 and Table 4 that the evaluation results that the
three groups of images show consistent regular (Table 4). In a horizontal comparison
between the downscaled results obtained with the same downscaling method but based
on different NDVIs, downscaling with NDVIRE2 yielded the highest R2, the lowest RMSD
values, and the largest number of pixels with residuals between −1 K and +1 K. Therefore,
NDVIRE2 provided the optimal downscaling precision level. In the vertical comparison
between the downscaled results with the same NDVI and different downscaling methods,
MIRF-downscaled results consistently provided the highest R2, lowest RMSD, and the
highest number of pixels with residuals between −1 K and +1 K.
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Table 4. The statistics for the three groups.

Date Method R2 RMSD (K)
The Number of Pixels

with Residuals between
−1 K and +1 K (%)

9 April 2019

DisTrad
0.752 1.57 48.5
0.701 1.86 47.1
0.755 1.47 50.0

TsHARP
0.762 1.42 80.8
0.741 1.84 54.0
0.785 1.38 81.6

MIRF
0.828 1.10 85.4
0.797 1.25 77.9
0.836 1.04 87.2

24 July 2019

DisTrad
0.864 3.65 64.6
0.741 5.61 20.3
0.872 3.62 65.7

TsHARP
0.874 2.46 70.3
0.761 5.42 26.6
0.880 2.40 71.1

MIRF
0.916 2.13 75.0
0.861 4.08 31.7
0.918 2.06 76.4

26 August 2019

DisTrad
0.903 1.95 55.9
0.688 2.04 8.3
0.910 1.95 58.1

TsHARP
0.919 1.92 70.0
0.796 2.03 24.9
0.928 1.89 72.5

MIRF
0.928 1.85 75.9
0.812 1.98 28.3
0.941 1.80 81.9

Due to the cost of ground temperature observation equipment, there are limited
observation station in the study area; therefore, the observation data were used as a
supplement to evaluate the downscaling results.

Table 5 shows that the bias of retrieval LST at the three stations were all within 2.42 K,
by comparing the three downscaling methods, it can be seen that the bias of DisTrad method
at three stations were all within 3.95 K, TsHARP method within 3.47 K, and MIRF method
within 1.96 K. Meanwhile, by comparing the downscaling results of three NDVIs, the bias
of downscaling results with GF-6 NDVI at the three stations were all within 3.70 K, GF-6
NDVIRE1 was all within 3.95 K, and GF-6 NDVIRE2 was within 3.04 K. By comparing the
downscaling results of the three seasons, the bias of downscaling results at three stations on
the 9 April, 24 July, and 26 August 2019 were within 2.95 K, 2.76 K, and 3.95 K, respectively.
MIRF LSTRE2 improved the accuracy of LST at all stations.

Therefore, MIRF was considered to be the most precise downscaling method and
the optimal downscaling regression kernel was NDVIRE2, which provided additional
spatial details.

3.2. Effects of the RE1 and RE2 Bands on LST Downscaling

The MIRF-downscaled results were used to analyze the effects of the new RE1 and
RE2 bands on LST downscaling. A scatter plot was drawn using downscaled LSTs based on
three different NDVIs (Figure 11), where it is evident that NDVI and LST have a “triangle-
like” relationship that varies between the dry and wet edges; NDVI and LST are negatively
correlated at the dry edges but positively correlated at the wet edges. Compared with
NDVIGF6_Nir and NDVIRE2, the value of NDVIRE1 is lower at dry edge resulting in a higher
value of the corresponding LST, the value of NDVIRE1 is higher at wet edge resulting in a
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lower value of the corresponding LST. The correlation coefficients of NDVIGF6_Nir, NDVIRE1,
and NDVIRE2 with respect to LST were −0.85, −0.77, and −0.87 on 9 April 2019, the corre-
lation coefficients of NDVIGF6_Nir, NDVIRE1, and NDVIRE2 with respect to LST were −0.93,
−0.89, and −0.94 on 24 July 2019, and the correlation coefficients of NDVIGF6_Nir, NDVIRE1,
and NDVIRE2 with respect to LST were −0.89, −0.86, and −0.91 on 26 August 2019, respec-
tively. Therefore, NDVIRE2 correlated the most strongly (and negatively) with LST, and it is,
thus, the most useful regression kernel for LST downscaling.

Table 5. Bias of downscaling results and ground observation data (in K).

Date Station
Landsat-8-
and GF-6-

Retrieved LST

DisTrad
LSTGF6_Nir

DisTrad
LSTRE1

DisTrad
LSTRE2

TsHARP
LSTGF6_Nir

TsHARP
LSTRE1

TsHARP
LSTRE2

MIRF
LSTGF6_Nir

MIRF
LSTRE1

MIRF
LSTRE2

9 April 2019
a 1.51 1.98 2.95 1.84 2.00 2.45 1.45 1.42 1.96 1.15
b 1.20 1.72 2.48 1.74 1.48 2.17 1.15 1.45 1.55 1.12
c 1.62 1.64 2.23 1.47 1.58 1.82 1.47 1.60 1.73 1.04

24 July 2019
a 1.95 1.98 2.46 1.45 2.00 2.10 2.03 1.32 1.42 1.06
b 1.96 2.45 2.48 1.64 2.40 2.76 1.72 0.95 1.55 0.68
c 0.98 1.03 1.82 1.01 1.38 1.60 1.07 0.69 0.96 0.52

26 August 2019
a 1.90 3.70 3.95 3.04 2.48 2.67 1.08 1.13 1.17 1.09
b 2.42 2.01 3.34 2.19 2.74 3.47 1.58 1.03 1.65 1.18
c 1.01 1.33 3.29 2.00 1.00 1.14 1.08 1.09 1.36 0.96
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Figure 11. Scatter distribution of three NDVI and the corresponding LST. (a) NDVIGF-6_Nir and
LST on 9 April 2019, (b) NDVIRE1 and LST on 9 April 2019, (c) NDVIRE2 and LST on 9 April 2019,
(d) NDVIGF-6_Nir and LST on 24 July 2019, (e) NDVIRE1 and LST on 24 July 2019, (f) NDVIRE2

and LST on 24 July 2019, (g) NDVIGF-6_Nir and LST on 26 August 2019, (h) NDVIRE1 and LST on
26 August 2019, (i) NDVIRE2 and LST on 26 August 2019.
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4. Discussion

In this study, GF-6 and Landsat-8 images were used for downscaling experiments.
The verification results indicate that the downscaled LST using the MIRF method and the
regression kernel with GF6 RE2 band were generally accurate.

From the results of validation, the LST downscaling experiment (Figure 7) showed that
all the downscaled results preserved the quality of the overall spatial pattern of Landsat-
8- and GF-6-retrieved LST, while the high- and low-temperature zones were generally
consistent with the regular pattern of nature compared to the MIRF. The DisTrad- and
TsHARP-downscaled results provided no additional details regarding LST variations. The
MIRF-downscaled results reflect the spatial distribution details of LST on a small scale for
detecting temperature changes between roads covered by vegetation, impervious surfaces
around water bodies, green areas in urban construction areas, and impervious surfaces
and bare soil. These detailed differences are absent in the Landsat-8- and GF-6-retrieved
LST. The spatial distribution of the differences between Landsat-8- and GF-6-retrieved
LST and downscaled LST (Figure 8) showed that the temperature in the vegetation area
was all overestimated by each downscaling methods with RE1 band, and the range of
overestimation gradually de-creased with the order of DisTrad, TsHARP, and MIRF. From
the quantitative results, as shown in Figure 9 and Table 4, as compared with the Landsat-8-
and GF-6-retrieved LST, the variation degree of the downscaling results was different. Upon
comparing the downscaled results obtained for different NDVIs, downscaled with NDVIRE2
yielded the highest R2, with the lowest RMSD values among all downscaling methods.
Moreover, upon comparison between the results of different downscaling methods, the
MIRF-downscaled results provided the highest R2, while the lowest RMSD for all NDVIs.
This suggests that the downscaling results of NDVIRE2 using MIRF had the highest accuracy
and the lowest scaling effect.

As shown in Figure 10, the distribution of differences is left-skewed in each method
using NDVIRE1. Therefore, the results of the three NDVI participations versions in the
MIRF method were further analyzed, as shown in Figure 11. Compared with NDVIGF6_Nir
and NDVIRE1, the value of NDVIRE1 is lower at dry edge resulting in a higher value of the
corresponding LST, the value of NDVIRE1 is higher at wet edge resulting in a lower value
of the corresponding LST. This is related to the central wavelength of band RE1, which
is 710 µm, and the vegetation condition of the study area. The reflectivity of vegetation
increases sharply, which is reflected by the steep slope, from visible band to the spectral
region of approximately 710 µm [46,47]. NDVIRE2 had a stronger negative correlation
with LST, while NDVIRE1 has the lowest correlation, which were consistent with those
shown in Figure 9. The spatial distribution of land surface temperature was correlated
with the spatial distribution of landscape features of underlying surface. In this study, we
introduced NDVIRE2 into three typical algorithms instead of NDVIGF6_Nir, and obtained
the most satisfactory downscaling LST results with MIRF. Thus, the four remote sensing
indices selected in this experiment can better express the surface features of the study area,
which is helpful to improve the accuracy of LST downscaling.

We discussed the feasibility and accuracy of using GF-6 WFV images and statistical
models to perform LST downscaling of the study area in this paper. High-spatial resolution
LST contains more abundant textural information and can effectively reflect the surface
temperature in terms of small-scale spatial heterogeneity. It would be helpful to further
study the causes and characteristics of heat island effect in the study area, and the results can
aid in agricultural irrigation, regional planning, drought assessment, ecological monitoring,
water-heat balance research, and water resources allocation. Based on the analysis of
the high-resolution spatial distribution of LST and its driving factors, a high-resolution
geospatial resilience map can be drawn, which is critical for understanding the complex
interactions between human (socioeconomic) and natural (ecological) systems. Evaluation
of these systems is essential for determining sustainable development policies for the
study area.
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The errors in geometric correction between different source images leads to errors in
the experimental results. Hence, further studies are needed regarding the influence of using
GF-6 to construct other remote sensing indexes as regression kernels on LST downscaling.
Based on the 16 m LST obtained in this study, we show that GF6 PMS images can be used
to conduct research at higher spatial resolutions. Further research is needed to understand
the effect of the superiority of GF-6 red-edge bands in vegetation recognition ability on
downscaling results.

5. Conclusions

A preliminary study was conducted on the feasibility of using GF-6 images for LST
downscaling in the Ebinur Lake Watershed. Landsat-8- and GF-6 WFV images obtained
during the growing season (spring, summer, and autumn) were used as data sources,
downscaling model was constructed, and the selection of regression kernel was explored
in this study. The following conclusions were obtained by comparison analysis:

(1) Compared with Landsat-8- and GF-6-retrieved LST, the results of downscaling LST
using NDVIRE2 as a single factor regression kernel had the highest R2 and the lowest
RMSD, and the number of pixels with LST errors of between −1 K and +1 K were the
highest. As NDVIRE2 was strongly and negatively correlated with the downscaled
LSTs, it might be an excellent indicator of the spatial variations in LSTs and provide
an outstanding LST downscaling performance.

(2) The downscaling method of multi-remote sensing indices is better than the single-
factor method; the correlation between LST and NDVI is not obvious in the high
heterogeneity area, which causes to a large error in the downscaling results of the
single-factor method. The spatial patterns of downscaled LSTs using NDVIRE2, RBI,
NDSI, and NDWI as multi-remote sensing indices with the MIRF method were
consistent with the Landsat-8- and GF-6-retrieved LST, which improved the accuracy
of LST at all stations; hence, the downscaled LSTs provide additional details spatial
description of LST variations, which were absent in Landsat-8- and GF-6-retrieved
LSTs. Furthermore, the temperature gradations of the downscaled LSTs were smoother
and more consistent with the natural variations in LST.

(3) The results of this study prove the viability of downscaling LSTs based on GF-6
and Landsat-8 images. Furthermore, 16 m-resolution images were successfully used
to improve the medium-resolution LST. The downscaling results also proved to be
reliable and highly precise, and can meet the application requirements of LST spatial
resolution in the study area.
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