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Abstract: Three-dimensional (3D) synthetic aperture radar (SAR) images can provide comprehensive
3D spatial information for environmental monitoring, high dimensional mapping and radar cross
sectional (RCS) measurement. However, the SAR image obtained by the traditional matched filtering
(MF) method has a high sidelobe and is easily disturbed by noise. In order to obtain high-quality
3D SAR images, sparse signal processing has been used in SAR imaging in recent years. However,
the typical L1 regularization model is a biased estimation, which tends to underestimate the target
intensity. Therefore, in this article, we present a 3D sparse SAR image reconstruction method
combining the Cauchy penalty and improved alternating direction method of multipliers (ADMM).
The Cauchy penalty is a non-convex penalty function, which can estimate the target intensity more
accurately than L1. At the same time, the objective function maintains convexity via the convex
non-convex (CNC) strategy. Compared with L1 regularization, the proposed method can reconstruct
the image more accurately and improve the image quality. Finally, three indexes suitable for SAR
images are used to evaluate the performance of the method under different conditions. Simulation
and experimental results verify the effectiveness of the proposed method.

Keywords: three-dimensional (3D); synthetic aperture radar (SAR); non-convex Cauchy penalty;
convex optimization

1. Introduction

Synthetic aperture radar (SAR) has the characteristics of all-time and all-weather. It
can work under extreme conditions. Therefore, it is widely used in environmental moni-
toring [1,2], remote sensing [3–6] and radar cross sectional (RCS) measurement [7]. With
the development of the SAR system, three-dimensional (3D) SAR imaging with complete
spatial information has attracted the attention of researchers [8,9]. Array resolution can be
achieved by the virtual two-dimensional array that can be obtained through the movement
of the linear array in the horizontal and vertical directions. This ensures that the SAR
system can obtain the echo data of the observation target zone. In recent years, some
publicly available SAR datasets have been provided for different applications. In [10], two
datasets, OpenSARShip [11] and SAR Ship Detection Dataset (SSDD) [12], were mentioned,
which were used for ship detection applications [13]. In addition, a SAR database, 3DRIED,
was provided for classification and 3D imaging applications [14]. The main problem is
that the image quality of traditional matched filtering (MF) is poor, include sidelobe and
noise interference [15]. This will have an adverse impact on subsequent image applications,
such as target detection and image interpretation. Therefore, it is very significant to further
improve the image quality.
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Estimating the target of interest from the measured data belongs to the inverse problem
of imaging. The inverse problem of SAR imaging is usually ill posed nature [16]. Therefore,
the prior information of the target plays a crucial role in solving the inverse problem,
which can be realized by regularization method [17,18]. The well-known regularization
functions include L1 and total variation (TV). In [19], L1 regularization was used for SAR
imaging for the first time. Then, in [17], a two-dimensional (2D) SAR imaging model
based on L1 regularization was proposed. When L1 is applied to SAR imaging, sidelobe
and noise can be effectively suppressed. As an efficient sparse reconstruction tool, L1
regularization can be solved by many algorithms, such as iterative shrinkage and threshold
algorithm (IST) [20], fast iterative shrinkage and threshold algorithm (FIST) [21] and
alternating direction method of multipliers (ADMM) [22]. However, L1 regularization is a
biased estimation which tends to underestimate the amplitude of targets, especially weak
scattering targets [23,24].

Therefore, the non-convex penalty function is considered to be used for diverse imag-
ing problems. In recent years, some non-convex penalty functions have been presented
for different problems, such as smooth clipped absolute deviation (SCAD) [25], minimax
convex penalty (MCP) [26], the non-convex log-sum non-convex sparsity penalty [27,28]
and Lq penalty term [29,30]. Compared with convex penalty functions L1, non-convex
penalty functions can usually produce more accurate estimates. However, the non-convex
penalty function will lead to the non-convex objective function, which will produce sub-
optimal local solutions [31]. This is the price of using non-convex penalty functions. To
solve the above problems, a convex non-convex (CNC) strategy is proposed to maintain
the convexity of the objective function while using the non-convex penalty function [32].
The penalty function in CNC strategy is non-convex, which can reduce the estimation
deviation. At the same time, by setting the parameters of the penalty function, the objective
function can maintain convexity. In [33], a sparse tight-frame regularization was used
for 1D and 2D signal denoising, which maintained the convexity of the objective func-
tion via constraining the parameter of the non-convex penalty. In [34], the parameterized
non-convex regularizer was used to effectively induce sparsity of the gradient magnitudes
and ensured the convexity of the objective function. In [35,36], the Moreau envelope was
used to define a penalty that maintains the convexity of the objective function, which was
implemented using forward backward splitting. After that, CNC was further developed
and applied to image denoising and image reconstruction [37–39]. In [39], a proximal
splitting methodology based on symmetric Cauchy distribution was proposed to realize 1D
and 2D signal denoising and proves the effectiveness of Cauchy penalty function over L1
and TV penalty function. Therefore, in this paper, we combine CNC with the non-convex
Cauchy penalty function for 3D sparse SAR image reconstruction. Due to the existence of
the Cauchy proximal mapping operator, we can reconstruct the 3D SAR image by using
the improved ADMM.

The ADMM have been successfully applied to solve a variety of problems, such as
signal and image restoration [22,40–42]. ADMM separates the primal variables in the
optimization problem into multiple sub variables by using the variable splitting, and then
solves each sub optimization problem alternately. Usually, the optimization problem of sub
variables is easier to solve than the original optimization problem. These sub optimization
problems can be solved in parallel. Therefore, ADMM is suitable for the reconstruction of
large-scale and high-dimensional images. In this paper, we combine the gradient descent
method with the split augmented Lagrangian shrinkage algorithm (GSALSA) to realize
3D sparse SAR image reconstruction with Cauchy penalty function. The GSALSA is an
improved ADMM, which avoids matrix inversion.

The contributions of this paper are summarized as follows:

1. We present a 3D SAR image reconstruction method based on the Cauchy non-convex
penalty function and improved ADMM;

2. We apply CNC strategy to 3D sparse SAR image reconstruction. Compared with
L1 penalty function, the proposed method reduces the estimation deviation. In
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addition, the objective function retains convexity, which can avoid falling into local
optimization;

3. We compare the proposed method with some existing penalty functions, and give
qualitative and quantitative analysis. Finally, we present several simulation and
experimental results that verify the promising performance of the proposed method.

The rest of this article is organized as follows. In Section 2, we introduce the Cauchy
penalty function and give the conditions of CNC. In addition, the improved ADMM method
is also presented, which achieves 3D SAR image reconstruction combined with Cauchy
penalty function. In Section 3, we present simulation and experimental results based on real
data, and evaluate the performance of the proposed method. We give some more detailed
discussion in Section 4. Finally, the conclusion is presented in Section 5.

2. Cauchy Penalty Function and Improved Alternating Direction Method
of Multipliers

Firstly, we briefly explain the imaging model of the array SAR system. Secondly,
we introduce the non-convexity of the Cauchy penalty and the convexity of the objective
function. Finally, the improved alternating direction method of multipliers is introduced.

2.1. Array SAR Imaging Model

The measurement configuration is shown in Figure 1. X is the range direction, Y is the
azimuth direction, and Z is the elevation direction. The echo data y is obtained by scanning
the target region with a planar array. The virtual array is formed by the movement of the
antenna in the azimuth direction and elevation direction. High range resolution is achieved
by transmitting broadband signals. The array resolution is achieved by synthetic aperture
in azimuth and elevation. Due to the SAR image obtained by traditional MF having a
high sidelobe and being easily disturbed by noise, the sparse reconstruction regularization
method is introduced to obtain high-quality SAR images.

Figure 1. The measurement configuration.

The general sparse SAR image reconstruction model can be expressed as

y = Dx + n (1)

where y ∈ CM×1 is the echo data, D ∈ CM×N is the measurement matrix, n ∈ CM×1 is the
noise, and x ∈ CN×1 is the reflection coefficient of the observation scene [8]. Since recon-
structing x from y is an ill posed problem, we usually need to use the priori information of
x to obtain stable reconstruction results. Under the assumption that the noise is Gaussian
independent identically distributed, we can obtain the reconstruction result by solving the
following optimization problem
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x̃ = min

{
‖y−Dx‖2

2
2

+ dϕ(x)

}
(2)

where ϕ(x) is the penalty function, d > 0. In this paper, we use Cauchy penalty function,
which is described in Section 2.2.

2.2. Cauchy Penalty Function

The typical penalty function used in SAR imaging is L1 norm. The convexity of L1
norm ensures that the optimization problem of (2) can be solved effectively. However, the
L1 norm is a biased estimation, which will underestimate the reflection coefficient of the
target. The existing non-convex penalty functions, such as SCAD and MCP, can obtain
more accurate solutions. However, the non-convex penalty will cause the objective function
to be non-convex and fall into the sub-optimal local solution [34]. Therefore, in this paper,
we introduce the convex non-convex (CNC) strategy, that is, the Cauchy penalty function
is a non-convex penalty and the objective function retains convexity [39]. We present
different penalty functions in Figure 2a. It can be seen that the Cauchy penalty function
is non-convex. Different penalty functions correspond to different proximal mapping
operators. For example, the proximal mapping operator corresponding to L1 is a soft
threshold operator. Five different proximal mapping operators are shown in Figure 2b.

(a)

(b)

Figure 2. Different penalty functions. (a) Penalty functions. (b) Proximal mapping operators.
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Cauchy distribution belongs to the case of α = 1 in α-Stable distribution. However,
unlike most α-Stable distributions, the probability density function of Cauchy distribution
can be expressed analytically

pc(x) ∝
γ

π(x2 + γ2)
(3)

The parameter γ affects the expansion of the distribution.
Then the Cauchy penalty is

ϕc(x) = − log pc(x) = − log
(

γ

π(x2 + γ2)

)
(4)

Substituting (4) into (2), the following optimization problem is obtained

x̃ = min

{
‖y−Dx‖2

2
2

− d log
(

γ

π(x2 + γ2)

)}
(5)

The Cauchy proximal mapping operator Proca(x) = min
{
‖x−u‖2

2
2 − µϕc(x)

}
is as

follows, and µ is the step size [43].

c1 = γ2 + 2µ− x2

3
c2 = xγ2 + 2x3

27 −
x
3
(
γ2 + 2µ

)
c3 =

3
√

c2/2 +
√

c1
3/27 + c22/4

c4 =
3
√

c2/2−
√

c1
3/27 + c22/4

h = x
3 + c3 + c4

(6)

where h is the output of the Cauchy proximal mapping operator.
Next, the condition of the objective function maintains convexity is explained. We give

the first-order derivative ϕ
′
c(x) and second-order derivative ϕ

′′
c (x) of the function ϕc(x).

ϕ
′
c(x) = 2x/

(
x2 + γ2)

ϕ
′′
c (x) = 2

(
γ2 − x2)/(x2 + γ2)2 (7)

We can get ϕ
′
c(0+) = ϕ

′
c(0−) = 0, ϕ

′′
c (0+) = ϕ

′′
c (0−) = 2/γ2. Therefore, the Cauchy

penalty function is quadratic differentiable. After that, we define the objective function
as follows

J(x) =
‖y−Dx‖2

2
2

− d log
(

γ

π(x2 + γ2)

)
(8)

The Hessian of J(x) is as follows

∇2 J(x) = DHD +
2d
(
γ2 − x2)

(x2 + γ2)
2 (9)

In order to keep function J(x) convex, ∇2 J(x) � 0 is required

DHD +
2d
(
γ2 − x2)

(x2 + γ2)
2 � 0 (10)

Let DHD ≈ cI, I is the identity matrix and c > 0 is the constant, then there is the
following relationship

cI +
2d
(
γ2 − x2)

x4 + 2γ2x2 + γ4 � 0 (11)
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2d
(
γ2 − x2)+ c

(
x4 + 2γ2x2 + γ4)

(x4 + 2γ2x2 + γ4)
� 0 (12)

2dγ2 − 2dx2 + cx4 + 2cγ2x2 + cγ4 � 0 (13)

By integrating the square term on the left side of (13), the (15) is obtained

cx4 + 2
√

cx2
(√

cγ2 − d√
c

)
+

(
cγ4 − 2dγ2 +

d2

c

)
+

(
4dγ2 − d2

c

)
� 0 (14)

(√
cx2 +

(√
cγ2 − d√

c

))2
+ σ2

(
4γ2 − d

c

)
� 0 (15)

Then the following inequalitie is obtained

4γ2 − d
c
≥ 0 (16)

The condition for the convexity of the objective function J(x) is

γ ≥
√

d/4c (17)

The above conditions require DHD to be in diagonal form. For more general cases,

the Cauchy proximal mapping operator objective function J2(u) =
‖x−u‖2

2
2 − µϕc(u) can

maintain convexity by parameter setting. The derivation process of preserving the convexity
of J2(u) is similar to the above derivation process. Finally, it is obtained that the condition
of preserving convexity is γ ≥ √µ/2.

2.3. Improved Alternating Direction Method of Multipliers

Firstly, we give a brief description of variable splitting. Consider the following opti-
mization problem, which consists of two functions

minimize f1(a) + f2(p(a)) (18)

The core idea of variable splitting is to create a new variable v and impose the constraints
v = p(a) on the function f2(·). Therefore, there is the following optimization problem

minimize f1(a) + f2(v)
subject to v = p(a)

(19)

It is equivalent to the unconstrained optimization problem (18). The reason for variable
splitting is that solving a constrained optimization problem (19) is usually simpler than
solving an unconstrained optimization problem (18).

Next, we will explain the augmented Lagrange method (ALM). The augmented
Lagrange multiplier method approximates the constrained optimization problem by adding
a penalty term to the Lagrange function, which is zero for any feasible vector and makes
it converge under more general conditions. The constrained optimization problem is
as follows

minimize F(s)
subject to Hs− b = 0

(20)

The augmented Lagrange function of (20) is

LA(s, w, λ) = F(s) + wH(b−Hs) +
λ

2
‖Hs− b‖2

2 (21)
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where w is the Lagrange multiplier and λ > 0 is the penalty parameter. ALM consists of
two steps: first, solve s by fixing w, and then update the Lagrange multiplier w. The above
two steps are repeated until the stop condition is satisfied [44]. The general algorithm form
of the ALM is shown in Algorithm 1.

Algorithm 1: ALM
Input: k = 1; w0; λ > 0.
Repeat

sk ∈ arg min LA(s, wk−1, λ)
wk = wk−1 + λ(Hsk − b)
k = k + 1

Until the stopping condition is satisfied

ALM also has a deformation algorithm. By sorting (21) into the form of square term
and a constant, the deformation algorithm is shown in Algorithm 2.

Algorithm 2: ALM2
Input: k = 1; w0; λ > 0.
Repeat

sk ∈ arg min F(s) + (λ/2)‖Hs− dk−1‖2
2

dk = dk−1 − (Hsk − b)
k = k + 1

Until the stopping condition is satisfied

Then, we combine ALM with variable splitting. The optimization problem becomes
the following form

minimize f1(a) + f2(v)
subject to Ga = v

(22)

Through the following definition, (22) can be rewritten into the form of (20)

F(s) = f1(a) + f2(v)

b = 0, H =
[

G −I
]
, s =

[
a
v

]
(23)

The two repeated steps in Algorithm 2 become

(ak, vk) ∈ arg min f1(a) + f2(v) + λ
2 ‖Ga− v− dk−1‖2

2
dk = dk−1 − (Gak − vk)

(24)

It is difficult to solve (24) directly. Therefore, we use ADMM to solve a and v alternately.
ADMM is a special form of ALM, which uses a divide and conquer approach to transform
the optimization problem of the primal variable into the multiple sub-optimization prob-
lems. These subproblems can be solved independently and in parallel, which are suitable
for solving large-scale optimization problems. The main steps of ADMM are shown in
Algorithm 3.
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Algorithm 3: ADMM
Input: k = 1; v0; d0; λ > 0.
Repeat

ak ∈ arg min f1(a) + λ
2 ‖Ga− vk−1 − dk−1‖2

2
vk ∈ arg min f2(v) + λ

2 ‖Gak−1 − v− dk−1‖2
2

dk = dk−1 − (Gak − vk)
k = k + 1

Until the stopping condition is satisfied

The optimization problem of SAR image reconstruction (2) can be written as follows

f1(x) =
1
2
‖y−Dx‖2

2, f2(x) = ϕc(x), G = I (25)

minimize 1
2‖y−Dx‖+ dϕc(v)

subject to x = v
(26)

A variant of the ADMM algorithm, SALSA, is proposed to solve the above optimization
problem [40]. The main steps of SALSA are shown in Algorithm 4.

Algorithm 4: SALSA
Input: k = 1; v0; d0; λ > 0.
Repeat

xk ∈ arg min‖y−Dx‖2
2 + λ‖x− vk−1 − dk−1‖2

2

⇒
(
DHD + λI

)−1(DHy + λ(vk−1 + dk−1)
)

vk ∈ arg min ϕc(x) + λ
2 ‖xk−1 − v− dk−1‖2

2
dk = dk−1 − (ak − vk)
k = k + 1

Until the stopping condition is satisfied

In Algorithm 4, the first sub-optimization problem involves matrix inversion, which
brings high computation burden. For 3D imaging, the burden is intolerable. Hence, the
GSALSA is presented with two modifications to reduce the computation complexity. The
first modification is to linearize the original problem [45], which can hence avoid the matrix
inverse operation.

xk = argminxk‖y−Dxk‖2
2 + λ‖xk − vk−1 − dk−1‖2

2
≈ argminxk f (xk−1) +∇H f (xk−1)(xk − xk−1) + L‖xk − xk−1‖2

2

= argminxk

∥∥∥xk − xk−1 +
1

2L∇H f (xk−1)
∥∥∥2

2

(27)

xk = xk−1 −
1
L

[
λxk−1 + DH(Dxk−1 − y)− λ(vk−1 + dk−1)

]
(28)

The second modification is to introduce the imaging operator I(·) and inverse imaging
operator I−1(·). The following relationship is established, I(y) ≈ DHy, g(x) ≈ Dx, I · g ≈ I.
More details can be found in [46]. The research work in [7,47] shows that using the above
criteria and taking the MF image data yMF as the input, the result obtained is similar to
those with echo data as input, and the calculation time is reduced. Finally, the 3D sparse
SAR image reconstruction method combining Cauchy proximal mapping operator and
GSALSA is shown in Algorithm 5.
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Algorithm 5: GSALSA-Cauchy
Input: k0 = 1; Maximum number of iterations kmax; Error parameter ε; v0 = 0;

d0 = 0; λ > 0.
Repeat

xk = xk−1 − 1
L [λxk−1 + I(g(xk−1))− yMF − λ(vk−1 + dk−1)]

vk = Proca(xk − dk−1)
dk = dk−1 − (xk − vk)
Res = ‖xk − xk−1‖F
k = k + 1

Until Res < ε or k > kmax
Output: xk

3. Experiments and Analysis

In this part, simulation and experiments based on real data are presented to verify the
effectiveness of the proposed method. Firstly, we give the simulation results of the aircraft
model which can be seen in the next subsection. Secondly, the data processing results of
two different SAR systems are given. We compare the proposed method with MF, FIST,
SCAD and MCP. The results of quantitative evaluation and visualization are presented,
which fully verifies the effectiveness of the proposed method. We use three indicators to
evaluate the performance of different methods, namely peak signal-to-noise ratio (PSNR),
normalized mean square error (NMSE) [48] and the relative error (RE) [49].

3.1. Aircraft Model

Firstly, an aircraft model is used for simulation, whose length, width and height are
16, 12 and 8 m, respectively. The main simulation parameters are as follows. the carrier
frequency is 37.5 GHz and the bandwidth is 0.164 GHz. The size of the virtual scanning
array is 3 m × 3 m. We fixed the SNR to 20 dB to analyze the performance of different
methods. Figure 3 shows the 3D reconstruction results of MF, FIST, SCAD, MCP and
GSALSA–Cauchy under full sampling conditions. Figure 4 shows the 3D reconstruction
results of MF, FIST, SCAD, MCP and GSALSA–Cauchy at 75% sampling rate. The results
show that the proposed method can effectively improve the quality of 3D SAR image. In
addition, as expected, as the sampling rate decreases, the image quality decreases.

The index evaluation under full sampling and 75% sampling are listed in Tables 1 and 2,
respectively. Under the condition of full sampling, the PSNR of FIST, SCAD, MCP and
GSALSA-Cauchy are 42.9033 dB, 45.5338 dB, 45.6318 dB and 46.1380 dB, respectively.
Compared with FIST, the PSNR of the proposed method is improved by about 3 dB. The
NMSE of FIST, SCAD, MCP and GSALSA–Cauchy are 0.3340, 0.2026, 0.1852 and 0.1367,
respectively. The NMSE of the proposed method is reduced by nearly half compared
with FIST. The RE of FIST, SCAD, MCP and GSALSA–Cauchy are 2.0070, 0.2853, 0.2661
and 0.2383, respectively. It can be seen that the RE of the non-convex penalty function is
significantly less than that of the L1 penalty function.

For 75% sampling conditions, among the four different methods, the PSNR of FIST is
the smallest, which is 42.3921 dB, and that of the proposed method is the highest, which is
45.0526 dB. The NMSE of the proposed method is the smallest of the four methods, which
is 0.1673. The RE value of FIST is the largest, 2.0820, while that of the proposed method is
only 0.2667.
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(a) (b) (c)

(d) (e)

Figure 3. The imaging results of the aircraft with full sampling. (a) The MF result. (b) The FIST result.
(c) The SCAD result. (d) The MCP result. (e) The GSALSA–Cauchy result.

(a) (b) (c)

(d) (e)

Figure 4. The imaging results of the aircraft corresponding to the 75% sampling rate. (a) The MF
result. (b) The FIST result. (c) The SCAD result. (d) The MCP result. (e) The GSALSA–Cauchy result.
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Table 1. PSNR, NMSE and RE of aircraft model with full sampling.

Method FIST SCAD MCP GSALSA–Cauchy

PSNR 42.9033 45.5338 45.6318 46.1380
NMSE 0.3340 0.2026 0.1852 0.1367

RE 2.0070 0.2853 0.2661 0.2383

Table 2. PSNR, NMSE and RE of aircraft model under 75% sampling.

Method FIST SCAD MCP GSALSA–Cauchy

PSNR 42.3921 44.7422 44.7776 45.0526
NMSE 0.3579 0.2316 0.2148 0.1673

RE 2.0820 0.3648 0.3466 0.2667

3.2. The Corner Reflector Experiment

The 3D measured data of the corner reflector is processed and analyzed to verify the
effectiveness of the method in a real scene. The experimental scenario is shown in Figure 5a.
The main parameters of the system are as follows. The center frequency is 81 GHz, and
the signal bandwidth is 4 GHz. The 3D imaging results of MF, FIST, SCAD, MCP and
GSALSA-Cauchy at full sampling and 75% sampling rate are shown in Figures 6 and 7,
respectively. The results show that the reconstructed 3D SAR image quality is better than
MF. Tables 3 and 4 list the quantitative analysis under different sampling rates.

(a) (b)

Figure 5. The experimental scenario. (a) The corner reflector. (b) The pistol.

Table 3. PSNR, NMSE and RE of the corner reflector with full sampling.

Method FIST SCAD MCP GSALSA–Cauchy

PSNR 39.5480 41.6442 42.1289 43.3540
NMSE 0.4860 0.3599 0.3382 0.3065

RE 2.5810 0.3913 0.3687 0.2872

Table 4. PSNR, NMSE and RE of the corner reflector with 75% sampling.

Method FIST SCAD MCP GSALSA–Cauchy

PSNR 39.4820 41.2316 42.0484 43.1757
NMSE 0.4902 0.3801 0.3729 0.3235

RE 2.6013 0.4095 0.3857 0.3165
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(a) (b) (c)

(d) (e)

Figure 6. The imaging results of the corner reflector with full sampling. (a) The MF result. (b) The
FIST result. (c) The SCAD result. (d) The MCP result. (e) The GSALSA–Cauchy result.

(a) (b) (c)

(d) (e)

Figure 7. The imaging results of the corner reflector corresponding to the 75% sampling rate. (a) The MF
result. (b) The FIST result. (c) The SCAD result. (d) The MCP result. (e) The GSALSA–Cauchy result.

In the case of full sampling, the PSNR of FIST, SCAD, MCP and GSALSA–Cauchy are
39.5480 dB, 41.6442 dB, 42.1289 dB and 43.3540 dB, respectively. It can be seen that the PSNR
of the proposed method is the highest. For NMSE, GSALSA–Cauchy is the smallest of the
four methods. The RE of FIST, SCAD, MCP and GSALSA–Cauchy are 2.5810, 0.3913, 0.3687
and 0.2872, respectively. It can be seen that the RE of GSALSA–Cauchy is the smallest,
which shows the reconstruction accuracy of the proposed method is the highest compared
with FIST, SCAD and MCP. For 75% sampling conditions, the PSNR of FIST, SCAD, MCP
and GSALSA–Cauchy are 39.4820 dB, 41.2316 dB, 42.0484 dB and 43.1757 dB, respectively.
It can be seen that the PSNR of FIST is the smallest and the PSNR of the proposed method
is the highest. The NMSE of the proposed method is only 0.3235. The RE of FIST, SCAD,
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MCP and GSALSA–Cauchy are 2.6013, 0.4095, 0.3857 and 0.3165, respectively. Compared
with FIST, the RE of the proposed method is significantly reduced. The results show that
the reconstructed image quality and accuracy of the proposed method are improved at
different sampling rates.

3.3. The Experiment of Pistol

The pistol data of another SAR system are used to further analyze and verify the
performance of the method. The experimental scenario is shown in Figure 5b. The main
parameters of the system are as follows. The center frequency is 78.8 GHz, signal bandwidth
is 3.599 GHz, and the array size is 0.4× 0.4 m. Figures 8 and 9 show the 3D results of
pistols at different sampling rates. It can be seen that the image quality of the MF is poor,
and the sidelobe and noise are obvious in the imaging results. After sparse reconstruction
of SAR image via the proposed method, the image quality is improved. The quantitative
analysis at different sampling rates with PSNR, NMSE and RE is listed in Tables 5 and 6.
At full sampling, the PSNR of FIST, SCAD, MCP and GSALSA–Cauchy are 37.6217 dB,
40.2308 dB, 40.9578 dB and 41.4718 dB, respectively. Compared with FIST, the PSNR of
the proposed method is improved by approximately 3 dB. The NMSE of FIST, SCAD,
MCP and GSALSA–Cauchy are 0.1442, 0.1038, 0.0712 and 0.0524, respectively. Among the
four methods, the RE of the proposed method is the smallest, only 0.1703, which shows
that the reconstruction accuracy of the GSALSA–Cauchy is higher than that of the other
three methods.

When the sampling rate is 75%, the performance of GSALSA–Cauchy is also better
than that of FIST. The PSNR, NMSE and RE of FIST are 34.8553dB, 0.2473 and 2.3088,
respectively, while the PSNR, NMSE and RE of GSALSA-Cauchy are 37.2201dB, 0.1592 and
0.3359, respectively. Simulation and real data experiments show that the proposed method
can reconstruct 3D SAR images more accurately.

(a) (b) (c)

(d) (e)

Figure 8. The imaging results of the pistol with full sampling. (a) The MF result. (b) The FIST result.
(c) The SCAD result. (d) The MCP result. (e) The GSALSA–Cauchy result.
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(a) (b) (c)

(d) (e)

Figure 9. The imaging results of the pistol corresponding to the 75% sampling rate. (a) The MF result.
(b) The FIST result. (c) The SCAD result. (d) The MCP result. (e) The GSALSA–Cauchy result.

Table 5. PSNR, NMSE and RE of pistol model with full sampling.

Method FIST SCAD MCP GSALSA–Cauchy

PSNR 37.6217 40.2308 40.9578 41.4718
NMSE 0.1442 0.1038 0.0712 0.0524

RE 1.6972 0.2386 0.1925 0.1703

Table 6. PSNR, NMSE and RE of pistol model under 75% sampling.

Method FIST SCAD MCP GSALSA–Cauchy

PSNR 34.8553 36.1121 36.4466 37.2201
NMSE 0.2473 0.2104 0.1793 0.1592

RE 2.3088 0.3854 0.3693 0.3359

4. Discussion

In this part, we analyze the imaging results and the method performance under dif-
ferent SNR conditions. Figures 10 and 11 show the aircraft imaging results with SNR of
15 dB and 10 dB, respectively. The results show that the image quality and reconstruction
accuracy of the proposed method are improved compared with L1 regularization. The
performance deterioration caused by the reduction in SNR cannot be visually reflected.
Therefore, we list the quantitative analysis in Table 7. It can be seen that with the decrease
in SNR, the PSNR of the four methods decreases, and the NMSE and RE increase. Never-
theless, under different SNR conditions, the performance of GSALSA–Cauchy is still better
than FIST, SCAD and MCP.

Additionally, we analyze the performance of the method at lower sampling rates
(50% and 25%). The imaging results are shown in Figures 12 and 13. As the sampling
rate decreases, the image quality also decreases, which is consistent with the quantitative
analysis in Tables 8 and 9. Although the image quality decreases with the decrease in sam-
pling rate, the image quality of the proposed method is significantly improved compared
with MF. Compared with L1 regularization, GSALSA–Cauchy can reconstruct the image
more accurately.
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(a) (b) (c)

(d) (e)

Figure 10. The imaging results of the aircraft with SNR of 15 dB. (a) The MF result. (b) The FIST
result. (c) The SCAD result. (d) The MCP result. (e) The GSALSA–Cauchy result.

(a) (b) (c)

(d) (e)

Figure 11. The imaging results of the aircraft with SNR of 10 dB. (a) The MF result. (b) The FIST
result. (c) The SCAD result. (d) The MCP result. (e) The GSALSA–Cauchy result.
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(a) (b) (c)

(d) (e)

Figure 12. The imaging results of aircraft corresponding to the 50% sampling. (a) The MF result.
(b) The FIST result. (c) The SCAD result. (d) The MCP result. (e) The GSALSA–Cauchy result.

(a) (b) (c)

(d) (e)

Figure 13. The imaging results of aircraft corresponding to the 25% sampling. (a) The MF result.
(b) The FIST result. (c) The SCAD result. (d) The MCP result. (e) The GSALSA–Cauchy result.
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Table 7. PSNR, NMSE and RE of aircraft model under different SNR.

SNR Method PSNR NMSE RE

20

FIST 42.9033 0.3340 2.0070
SCAD 45.5338 0.2026 0.2853
MCP 45.6318 0.1852 0.2661

GSALSA–Cauchy 46.1380 0.1367 0.2383

15

FIST 42.8691 0.3360 2.0079
SCAD 45.4755 0.2049 0.2989
MCP 45.5686 0.1876 0.2724

GSALSA–Cauchy 46.0555 0.1391 0.2465

10

FIST 42.7557 0.3417 2.0264
SCAD 44.9194 0.2118 0.3399
MCP 45.2047 0.1944 0.2907

GSALSA–Cauchy 45.7885 0.1465 0.2786

5

FIST 42.4084 0.3578 2.0773
SCAD 44.7494 0.2320 0.4236
MCP 44.7860 0.2151 0.3473

GSALSA–Cauchy 45.0355 0.1685 0.3227

0

FIST 41.4968 0.4082 2.2554
SCAD 43.0364 0.2922 0.5921
MCP 43.3931 0.2771 0.5004

GSALSA–Cauchy 43.6851 0.2332 0.4721

Table 8. PSNR, NMSE and RE of aircraft model under 50% sampling.

Method FIST SCAD MCP GSALSA–Cauchy

PSNR 41.6101 43.2581 43.5891 43.6651
NMSE 0.3994 0.2788 0.2632 0.2146

RE 2.2343 0.5095 0.4844 0.4623

Table 9. PSNR, NMSE and RE of aircraft model under 25% sampling.

Method FIST SCAD MCP GSALSA–Cauchy

PSNR 40.0131 41.2218 41.3731 41.4339
NMSE 0.4939 0.3728 0.3660 0.2953

RE 2.5984 0.5992 0.5865 0.4767

Then, we illustrate the computational complexity of the algorithm. All the above
algorithms’ computation complexities are summarized in Table 10. The related details can
be found in the Appendix A. From the summarization, it can be seen that the proposed
algorithm has the lowest complexity. Compared with Algorithm 4, the improved one
reduces the complexity from O

((
Nx NyNz

)3
)

to O
(

Nx NyNz
)
.

Table 10. Computational complexity of different algorithms.

ALM ALM2 ADMM SALSA GSALSA

O
(

K
(

Nx Ny Nz
)2
)

O
((

Nx Ny Nz
)3
)

O
(

Nx Ny Nz
)

Finally, there is one factor that we have not considered in the simulation, that is, there
may be multiple features in the scene. Hence, we consider using multiple penalty functions
to further improve the image quality in future work, which has been proved to be feasible
in two-dimensional images [50].
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5. Conclusions

In this article, a 3D SAR image reconstruction method combining the Cauchy penalty
function and improved ADMM is proposed. Compared with the L1 penalty function,
the Cauchy penalty function is a non-convex function, which can reconstruct the image
more accurately. At the same time, the objective function retains convexity, so it can
avoid falling into suboptimal local solutions. In addition, we combine gradient descent
with SALSA, which is suitable for solving large-scale and high-dimensional optimization
problems. Finally, we make a quantitative and qualitative analysis of the proposed method.
Compared with MF, the presented method can effectively improve the image quality.
Compared with L1, the estimation deviation can be reduced. The simulation and real
SAR data experimental results show that this method can effectively improve the quality
and reconstruction accuracy of the 3D SAR image, and is conducive to the subsequent
application of the image, such as RCS measurement. Our future research work is mainly
to integrate deep learning into 3D sparse SAR image reconstruction, so as to get a more
automatic and efficient image reconstruction method.
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Appendix A. Computation Complexities of Different Algorithm

Computation complexities of Algorithms 1–5 are analyzed as follows.

Appendix A.1. Algorithms 1 and 2

In each iteration, two sub-problems are solved. The first sub-problem is

sk = argminsk F(s) + wH
k−1(b−Hs) +

λ

2
‖b−Hs‖2

2 (A1)

It can be solved by proximal algorithms like forward-backward (FB) algorithm [51],
which contains iterations of two steps.

skc = sk−1+µHH(b−Hsk−1) (A2)

s3
k − skcs2

k +
(

γ2 + 2µ
)

sk − skcγ2 = 0 (A3)

The main computation burden in the first step is matrix-vector multiplication. Thus,
the computation complexity is about O

((
Nx NyNz

)2
)

, where Nx, Ny and Nz are pixels of
3-D image along each axis. The second step is to solve a cubic function [43] that is executed
pointwise as in (6). The computation complexity is about O

(
Nx NyNz

)
. Normally, for 3-D

SAR imaging, according to our experience and others [8]. Thus, for this sub-problem, its
total complexity is about O

(
K
(

Nx NyNz
)2
)

, where K denotes the iteration times.
The second sub-problem is solved as

wk = wk−1 + λ(Hsk − b) (A4)
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The main computation burden is matrix-vector multiplication. Thus, the computation
complexity is about O

((
Nx NyNz

)2
)

.

In total, for Algorithm 1, its main computation complexity is about O
(

K
(

Nx NyNz
)2
)

.
Algorithm 2 is formed by emerging the linear term in (21) into the quadratic term. It’s

an alternative form of Algorithm 1. Thus, its computation complexity is roughly the same
as Algorithm 1, which is about O

(
K
(

Nx NyNz
)2
)

.

Appendix A.2. Algorithms 3 and 4

Algorithm 3 is a general framework of ADMM and Algorithm 4 is the specific instance
for our SAR image reconstruction. Thus Algorithm 3 and 4 share the same computation
complexity. Taking Algorithm 4 for example, in each iteration, three sub-problems are
solved. The first sub-problem is solved as

xk =
(

DHD + λI
)−1(

DHy + λ(vk−1 + dk−1)
)

(A5)

The main computation burden is matrix inverse operation, which has the complexity
around O

((
Nx NyNz

)3
)

.
The second sub-problem is

vk = argminvk ϕc(v) +
λ

2
‖xk−1 − v− dk−1‖2

2 (A6)

which can be solved via proximal operator with close-form expression as

v3
k − (xk−1 − dk−1)v

2
k +

(
γ2 + 2µ

)
vk − (xk−1 − dk−1)γ

2 = 0 (A7)

Similarly, to solve this cubic function point-wise, as in (6), the solution is obtained.
The computation complexity is about O

(
Nx NyNz

)
.

The third sub-problem is solved as

dk = dk−1 − (ak − vk) (A8)

The main computation burden is vector addition operation, which has the complexity
around O

(
Nx NyNz

)
.

In total, for Algorithm 3 or 4, its main computation complexity is about O
((

Nx NyNz
)3
)

.

Appendix A.3. Algorithm 5

Similar to Algorithms 3 and 4, the proposed algorithm solves the same three sub-
problems in each iteration. The second and third ones are solved by the same means.
Thus, it has the same computation complexity of O

(
Nx NyNz

)
. To reduce the complexity

from the matrix-vector multiplication and matrix inverse operations, two modifications
are proposed. The first one is to linearize the original problem and solve it with gradient
descent instead of matrix inverse. The second one is to embed the imaging operator and its
adjoint to approximate the system sensing matrix. Thus, the first sub-problem is solved as

xk = xk−1 − 1
L [λxk−1 + I(g(xk−1))− I(y)− λ(vk−1 + dk−1)]

≈ xk−1 − 1
L [λxk−1 + xk−1 − yMF − λ(vk−1 + dk−1)]

(A9)

The main computation burden is vector addition operation, which has the complexity
around O

(
Nx NyNz

)
. In total, for the proposed algorithm, its main computation complexity

is about O
(

Nx NyNz
)
.
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