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Abstract: Advances in unmanned aerial systems (UASs) have increased the potential of remote
sensing to overcome scale issues for soil moisture (SM) quantification. Regardless, optical imagery
is acquired using various sensors and platforms, resulting in simpler operations for management
purposes. In this respect, we predicted SM at 10 cm depth using partial least squares regression
(PLSR) models based on optical UAS data and assessed the potential of this framework to provide
accurate predictions across dates and sites. For this, we evaluated models’ performance using several
datasets and the contribution of spectral and photogrammetric predictors on the explanation of SM.
The results indicated that our models predicted SM at comparable accuracies as other methods relying
on more expensive and complex sensors; the best R2 was 0.73, and the root-mean-squared error
(RMSE) was 13.1%. Environmental conditions affected the predictive importance of different metrics;
photogrammetric-based metrics were relevant over exposed surfaces, while spectral predictors were
proxies of water stress status over homogeneous vegetation. However, the models demonstrated
limited applicability across times and locations, particularly in highly heterogeneous conditions.
Overall, our findings indicated that integrating UAS imagery and PLSR modelling is suitable for
retrieving SM measures, offering an improved method for short-term monitoring tasks.

Keywords: volumetric water content; unmanned aerial vehicle (UAV); vegetation indices;
microtopography; multi-spectral; machine learning

1. Introduction

Soil moisture (SM) refers to the water content in the soil compared to its porous space at
a specific period. Usually, it is defined as the water content within the plant root zone, which
is immediately available for plant metabolism [1,2], defining diversity patterns [3] and their
functional, biochemical, and structural features [4]. In such a way, it constitutes the major
factor controlling the status of drought stress and hence, ecosystem production in most
vegetated areas worldwide [5]. For this reason, this variable has been used for hydrological
modelling, early drought warnings, food security, and carbon flux modeling, amongst
others [6,7]. SM affects vegetation distribution [8], soil microbial activity [9], vegetation
resistance, and proneness to some disturbances (e.g., wildfires [10,11]), and especially car-
bon cycling balances [12,13]. In this regard, variations in the water availability in peatland
ecosystems can affect their role as a carbon sink, switching them to sources of greenhouse
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gases (GHG) such as methane [13]. Given the growing concern of the potential increase
of GHG emissions in these ecosystems due to climate changes [14–16], a comprehensive
understanding of SM may offer more sustainable alternatives for guiding the definition
of proper management strategies [6]. Fatichi et al. [17] compared the influence of abiotic
and biotic factors on SM variability and verified that the contribution of affecting factors is
changeable across space and time. Hence, SM presents complex and highly variable spatial
patterns [18], which makes the direct in situ measurement expensive, time-consuming, and
constrained to short scales (usually providing point measurements) [2,6,18,19]. For this
reason, accurate characterization of SM conditions along spatial and temporal gradients
is critical for reducing prediction uncertainties, allowing for the choice and execution of
appropriate management actions [20]. Despite the improved accuracy of this framework,
regional and global-scale assessments require better representations of the spatiotemporal
patterns and dynamics of this variable [19,21].

In this perspective, there are three main approaches for obtaining SM measurements:
in situ measurements, physically based predictions, and remote sensing (RS)-based pre-
dictions. In situ techniques retrieve point measurement of soil moisture and are usually
applied as reference data for model calibration and testing. Physically based predictions
rely on the parameterization of equations and models that represent different processes
and structures of a targeted system. Besides the higher accuracy, the first approach lacks
spatial representativeness while the second is highly dependent on the quality of the input
data (e.g., meteorological observations, and soil hydraulic parameters) [6,22]. In contrast,
RS-based methods present increased suitability for addressing the issues regarding the
spatial and temporal variability of SM, providing measurements at broader spatial scales
and systematically repeated along time [21]. However, despite a higher spatial-temporal
coverage promoted by RS, they can only describe moisture conditions in the most su-
perficial soil layer [6]. The application of these technologies for measuring SM involves
using optical, thermal, passive, and active microwave sensors integrated into different
levels of platforms [2,23,24]. In this way, this approach relies on the relationship between
SM and surface reflectance and emissivity properties in the case of optical and thermal
methods [24] and on the differences of measured intensities between soil and water content
for microwave-related methods [2,22]. Some studies (e.g., [2,6,24]) compared the most
common RS methods for SM prediction. The microwave-based products are the most used
RS methods for this purpose [6]. Recently, the employment of unmanned aerial systems
(UAS) expanded the potential of RS to overcome issues related to spatial resolution for SM
prediction [18] and consequently improve the quality of some already established satellite-
based modelling approaches [25]. In this regard, Senyurek et al. [26] demonstrated the
feasibility of using GNSS-R signals obtained using an UAS to retrieve SM predictions; their
predictions showed a correlation coefficient of 0.93 when compared to field measurements.
In such a way, active and passive microwave methods demonstrate being well-suited
and established as appropriate techniques for SM prediction. On the other hand, optical
and thermal frameworks still require further investigation about the factors influencing
electromagnetic response and improvements regarding surface penetration [2], especially
in dense vegetation covers [6].

The main application of optical data involves the use of satellite-obtained single
spectral wavelengths or vegetation indices for reflecting the surface conditions under SM
gradients (e.g., [1,19,27–29]). Vegetation indices have been extensively used as a proxy
variable for the vegetation status for RS-derived SM predictions due to their ability to
describe plant physiological status (e.g., [30–32]), which respond to variations in soil wa-
ter content [4], amongst other factors. Optical imagery can be obtained through a broad
combination of sensors and platforms, which offers enhanced operability [24] and provides
data with improved spatial resolution [2], which is especially important for detecting the
dynamics and processes related to SM in highly heterogeneous environments [18]. For
example, West et al. [29] assessed SM using vegetation indices representing water stress
features across distinct habitat types. Their results showed that these indices might accu-
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rately describe the water content in varying soil depths. However, the relationship between
these variables is relatively complex. Moreover, Ahmed et al. [1] observed differential
response lags of plant physiology according to SM fluctuation. Their findings imply that
plant physiology should be considered in frameworks for evaluating SM. Multispectral
sensors have recently been integrated into UASs to capture high-resolution imagery and
characterize moisture patterns. Using the same multispectral sensor as in the present study
(i.e., a Parrot Sequoia), Araya et al. [25] predicted SM with reduced error thresholds (i.e.,
mean absolute error = 3.8%). This sensor captures monochrome images at the green, red,
red-edge, and near-infrared spectral wavelengths. Thus, they demonstrated that UAS-
based imagery is suitable for describing fine-scale variations in the moisture content. In
addition to spectral-based applications, tridimensional products obtained from optical UAS
imagery offer an additional information source for micro-scale topographic modelling for
SM retrieval [33]. For example, digital aerial photogrammetry uses Structure-from-Motion
(SfM) and multi-view stereopsis algorithms on overlapping images to identify and match
image features and then reconstruct elevation models [34,35]. In this way, statistical models
can apply this information as input variables to represent the topography influence on
SM [28]. Besides the benefits regarding spatial resolution, the improved flexibility for data
collection using UASs allows optimizing and strengthening synergies between field obser-
vations, RS data, and modelled data [6,21]. In this way, SM gradients could be detected
and processed at the scale required for the decision-making process [21]. Few examples
illustrate that UAS-based SM predictions are relatively accurate. In this regard, UAS-based
models were able to explain between 55% [18] and 86% [23] of SM variability. However, fur-
ther knowledge on the potential of different optical data types is still necessary (especially
tridimensional data [25]) for understanding the controls on the fine-scale spatial variability
of SM and further enhancing its accuracy.

Machine learning techniques have arisen as a promising modelling alternative for
handling and providing predictive models based on the large datasets retrieved from RS,
allowing for a description of spatial and temporal changes in environmental conditions [36].
In contrast to linear mathematical models, machine learning usually can describe non-linear
relationships between predictor and response variables [37]. However, most techniques
demand substantial parameterization, which increases the complexity of model training and
can lead to overfitting and interpretability issues [36–38]. Despite that, there are techniques,
such as partial least squares regression (PLSR), which can handle high-dimensional datasets
while still producing statistically meaningful results. The PLSR is a machine learning
method [38,39] and consists of a multivariate statistical method designed to handle datasets
containing a small sample size but a large number of predictor variables [40], reducing
the dimensionality, collinearity, and overfitting issues in data analysis [41]. The PLSR,
like principal component regression, extracts orthogonal variables from a set of predictor
factors but is designed to maximize the predictive power of the response variables [40,42].
Additionally, this approach has two key advantages: there are no requirements for data
distribution and it also provides meaningful and robust estimations of importance for
different inputs [42,43]. Consequently, the PLSR offers explicit outputs that benefit simpler
interpretations of the interaction of variables [43]. In this regard, Ainiwaer et al. [44] used
this method for identifying the most appropriate hyperspectral indices for modelling soil
moisture and subsequently demonstrated the applicability of these indices in different RS
sensors. Their highest performance was a coefficient of determination (R2) of 0.831 and
root-mean-squared error (RMSE) of 4.09%. Thus, this modelling approach can offer an
important opportunity for generating wide-scale models using platforms at different levels
of operation, which can benefit SM monitoring over large spatial scales.

Given these points, a framework for integrating field observations and different types
and levels of RS data would benefit the development of models for SM prediction [2]. It
would provide an improved outlook on the sources of SM variability while addressing the
interrelationships among predictors and increasing spatial representativeness. Additionally,
modelling and identification of influencing factors on SM based on RS data still require
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appropriate sampling through space and especially time [20] in order to produce transfer-
able models [25]. For this reason, optimizing frameworks for modelling SM from optical
data may help to retrieve better and more reliable predictions when considering UASs as
tools for supporting the link between field observations and satellite images [21,45] and for
providing input or validation information for physically based predictions [17,20]. In this
perspective, our study aimed to predict surface soil moisture at 10 cm depth using PLSR
models based on optical UAS data and field measurements, and assess the potential of this
framework to provide accurate predictions. For this, we (1) evaluated the interaction of
environmental factors and their influence on SM, (2) evaluated the models’ ability to predict
SM, (3) compared the explanatory contribution of spectral and SfM-derived datasets, and
(4) compared the models’ applicability to predict SM across dates and sites.

2. Study Area

The study area focused on two sites within the Lavassaare Nature Reserve (Pärnu
County, West Estonia, Figure 1). A fire that started on 31 May 2020 from a peat extraction
field, spreading in direction to Lake Lavassaare and burning approximately 87 ha, affected
the northern location. In total, study sites had an area of 95 hectares.
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Figure 1. The location of the study sites and sampling plots within the Lavassaare Nature Reserve in
West Estonia; background imagery is an average Sentinel-2 RGB-composite mosaic of the month of
June 2020, highlighting the in situ conditions of vegetation after the fire event; site BRN = the area
damaged by the fire, and REF = the undamaged area.

The study area is separated from the peat extraction mining by a peat embankment
10 to 15 m wide. The thickness of the peat layer in the area is reported to be 0.5 to 1.4 m,
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composed mainly of Sphagnum angustifolium (Russ.) C. Jens., S. magellanicum Bridel., and
S. rubellum Wilson. The height of the water table varies seasonally: in the dry season, it
ranges between 5 and 15 cm below the surface, and in rainy and snow melting seasons, it
varies from 5 to 20 cm above the ground level [46]. The terrain is mostly flat in the study
sites (∆h ≈ 4 m). The vegetation in the area is composed of low-moss vegetation with
sparse trees and shrubs [46]. A preliminary assessment of the sampling plots showed that
vegetation is mostly constituted by the following plant species: Calluna vulgaris (L.) Hull;
Rhynchospora alba (L.) Vahl; Andromeda polifolia L.; Rhododendron groenlandicum (Oeder) Kron
and Judd; Betula nana L.; B. pubescens Ehrh.; and Pinus sylvestris L.

According to the weather data from the Estonian Meteorological and Hydrological
Institute [47], the long-term average annual temperature in Pärnu County was 6.3 ◦C,
varying between −4.5 and 18 ◦C, and the average annual precipitation was 746 mm
(monthly varying between 37 and 83 mm). Previous studies in Estonian wetlands have
reported average soil moisture values around 60% [48] and 86% [49]. Ward et al. [48]
recorded SM values of approximately 70% in several locations, even observing a super-
saturated soil with an SM of 98%.

3. Methodology
3.1. Data Acquisition

Three field measurements were conducted in each site: on 16 July 2020 in both sites,
on 25 September 2020 in the undamaged site (REF), on 2 October 2020 in the fire-damaged
site (BRN), and on 16 May 2021 in both sites. Sample collection followed an unsystematic
design (Figure 1) due to site remoteness and difficult accessibility in some regions. In
each field sampling campaign, 30 samples per site of soil moisture at 0–10 cm profile were
measured using a Delta-T WET Sensor (Delta-T Devices Ltd., London, UK; precision of
±3%) within a 30 × 30 cm quadrat, calculated from the average of three records per sample.
The WET sensor calculates the volumetric water content in the soil, which is the ratio
between the weight of water and the solids in a given mass of soil sample, and therefore
retrieves measurements of soil moisture as a percentage [48–50]. We used the manufacturer-
suggested parameters for organic soil since it returns similar values to using media-specific
calibration [51]. The X, Y, and Z coordinates were recorded within all quadrats using a
Trimble R10 dGPS (Trimble, Sunnyvale, CA, USA). Additionally, aboveground biomass (AGB)
samples of vascular plants were collected within the quadrat in order to describe the extent of
vegetation cover at the sites; however, this variable was not included in the modelling.

Digital images were taken using a fixed-wing eBee X (SenseFly, Cheseaux-sur-Lausanne,
Switzerland) equipped with a Sensor Optimized for Drone Applications (SODA), and a
Parrot Sequoia in individual acquisition flights. The SODA is designed for photogrammet-
ric analysis and has the following settings: 20 megapixels; global shutter from 1/30 s to
1/2000 s; 10.6 mm focal length; ISO range 125–6400; and exposure compensation in ±2 steps
increments. The Parrot Sequoia sensor retrieves 4 distinct 1.2-megapixel spectral bands:
green (530–570 nm); red (640–680 nm); red-edge (REG; 730–740 nm); and near-infrared
(NIR; 770–810 nm). Flight planning, operation, and post-processing were performed on
eMotion Release 3.16.0 (SenseFly, Cheseaux-sur-Lausanne, Switzerland), which enables the
operation of autonomous flight missions and post-processing. Flights using SODA camera
were set using the following parameters: expected spatial resolution of 3.5 cm/pixel; 80%
lateral overlap; and 90% longitudinal overlap. On the other hand, multispectral flights
with Parrot Sequoia were set using the following parameters: the expected resolution of
10 cm/pixel; 65% lateral overlap; and 80% longitudinal overlap. Moreover, flights were
planned along parallel lines with inclination from north-south direction; with minor on-site
adjustment for wind direction before the flight to ensure consistency in image capture
spacing, motion blur, and to reduce impairments on subsequent processing effectiveness.
We collected images containing an Airinov white-balance target (Airinov, Paris, France) for
radiometric correction before each flight with Parrot Sequoia. The used unmanned aerial
system (UAS) platform also had an on-board Global Navigation Satellite System Real-time
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Kinematic/Post-Processed Kinematic (GNSS RTK/PPK) receiver activated. In this way,
data recorded during the flight were post-processed in the software using differential
correction data provided by the Estonian Land Board’s virtual reference stations [52]. The
choice for this approach is based on Tomaštík et al.’s [53] findings, who reported higher
horizontal and vertical accuracies using PPK than using ground control points. In addition,
multispectral images were taken on the same date as the soil moisture (SM) measurements
to ensure that moisture conditions in both soil and vegetation were the same as the field
measurements. Further details about flight missions and weather conditions are presented
in Table 1.

Table 1. Summary of imagery acquisition schedule and meteorological conditions during the UAS
flights, according to the Estonian Meteorological and Hydrological Institute [47].

Date 7-Day Rainfall
Accumulation (mm)

Average Air
Temperature (◦C)

Average Relative
Humidity (%) Sensor Site Starting Time

(UTC)

16 July 2020 2.6 18.7 60 SODA BRN 7:50
Sequoia BRN 8:53
SODA REF 12:57

Sequoia REF 13:36

25 September 2020 5.9 17.9 79 SODA BRN 8:44
SODA REF 9:36

Sequoia REF 10:58

2 October 2020 0.2 12.9 70 Sequoia BRN 8:09

16 May 2021 0.6 13.7 76 Sequoia BRN 6:50
SODA BRN 7:31
SODA REF 11:36

Sequoia REF 12:11

BRN = the area damaged by the fire, REF = the undamaged area, and UTC = universal time coordinated.

3.2. Data Processing

We executed distinct workflows for processing the UAS images to generate 3D dense
point clouds and reflectance maps using the software Pix4D Mapper v. 4.3.27 (Pix4D,
Lausanne, Switzerland). To process the S.O.D.A dataset and generate the 3D point clouds,
we set a full tie-point image scale for initial processing, high point density, a minimum of
three tie-points per processed image, and point densification based on half of the image
scale. The high-density option for this task was chosen to minimize the occurrence of
occlusions in scene reconstruction and reduce data variability in the outputs [54,55]. To
process the Parrot Sequoia images and generate reflectance maps, we set a full tie-point
image scale, a target for 10,000 keypoints and geometrical verification of matches for initial
processing, an optimal point density, a minimum of three tie-points per processed image,
and radiometric calibration using the collected images with the Airnov target for camera,
solar irradiance, and sun angle correction.

The 3D dense point clouds were classified using the cloth simulation filtering algo-
rithm within the CloudCompare [56] interface. In such a way, points were classified as
either ground or off-ground. Based on visual inspection, we applied the following param-
eters: “Relief” option, disabled slope processing, and set the cloth resolution to 1 m and
classification threshold to 0.1. Subsequently, the classified point clouds were processed
using the “lidR” [57] package for R software [58]. Initially, we generated digital terrain
models (DTM) using a triangulated irregular network interpolator to the ground points at
a spatial resolution of 15 cm. The DTMs were used for point clouds’ height normalization
and calculation of the following models and metrics: canopy height model (CHM), mean
height, median height, range, interquartile range (IQR), standard deviation (SD), and height
at the 95th, 90th, 85th, 80th, and 75th percentiles of height distribution (ZQ95, ZQ90, ZQ85,
ZQ80, and ZQ75, respectively). Additionally, DTMs were also used to calculate a set of
topographical indices to describe microtopographic heterogeneity related to overland water
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flow (based on the findings of Moser et al. [59]); using SAGA GIS’s [60] tools, we calculated
the convergence index (CI), terrain ruggedness index (TRI), length-slope factor (LS), and
topographic wetness index (TWI) using default parameters. All point cloud-based metrics
were generated at 15 cm spatial resolution.

Lastly, vegetation indices were calculated using reflectance maps generated from the
radiometrically corrected Parrot Sequoia imagery; Table 2 summarizes the spectral indices
used in this study. We selected these indices considering the varying degrees of vegetation
and water stress conditions, as well as the suitability with Parrot Sequoia multispectral
bands. Therefore, we used both reflectance maps of the spectral bands (RED, NIR, GREEN,
and REG) and vegetation indices as explanatory variables. Spectral metrics were also
generated at the spatial resolution of 15 cm.

Table 2. List of vegetation indices used in the present study as input variables in the partial least
squares regression models for predicting soil moisture.

Vegetation Index Equation Reference

Normalized difference vegetation index (NDVI) (ρNIR − ρRED)/(ρNIR + ρRED) [32]
Green normalized difference vegetation index (GNDVI) (ρNIR − ρGREEN)/(ρNIR + ρGREEN) [30]

Simple ratio (SR) ρNIR/ρRED [61]
Green difference index (GDI) ρNIR − ρRED + ρGREEN [62]

Green red difference index (GRDI) (ρGREEN − ρRED)/(ρGREEN + ρRED) [62]
Red-edge simple ratio (SRRE) ρNIR/ρREG [63]

DATT4 ρRED/(ρGREEN × ρREG) [64]
Red-edge greenness vegetation index (REGVI) (ρREG − ρGREEN)/(ρREG + ρGREEN) [65]

Red-edge vegetation stress index (RVSI) ((ρRED + ρNIR)/2) − ρREG [66]

ρNIR refers to the reflectance at the near-infrared waveband, ρRED refers to the reflectance at the red waveband,
ρGREEN refers to the reflectance at the green waveband, and ρREG refers to the reflectance at the red-edge waveband.

3.3. Statistical Analyses

We grouped the samples within 11 datasets according to the sites and field measure-
ment dates; these datasets were described in Table 3. We performed an exploratory data
analysis using Spearman’s correlation coefficient (r) to assess relationships, and coefficient
of variation (CV) to describe the magnitude of variability across SM, spectral, and Structure-
from-Motion (SfM) derived metrics. Moreover, Figure 2 presents a simplified illustration of
the workflow for the partial least squares regression (PLSR) modelling used in this study.

Table 3. Description of the datasets used for predicting soil moisture and their respective sample size.

Dataset Sites Dates Training Samples (n)

Specific

BRN1 BRN 16 July 2020 30
BRN2 2 October 2020 30
BRN3 16 May 2021 30
REF1 REF 16 July 2020 30
REF2 25 September 2020 30
REF3 16 May 2021 30

Date-merged
DAY1

BRN + REF
16 July 2020 60

DAY2 25 September 2020 + 2 October 2020 60
DAY3 16 May 2021 60

Site-merged BRNALL BRN 16 July 2020 + 2 October 2020 + 16 May 2021 90
REFALL REF 16 July 2020 + 25 September 2020 + 16 May 2021 90

BRN = the area damaged by the fire, REF = the undamaged area.
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Figure 2. Simplified flowchart of the methodological framework used in this study. It illustrates
the input data obtained at the data acquisition tasks, model fitting, optimization and validation
(i.e., cross-validation and independent validation), and the outputs of each step of the partial least
squares regression (PLSR) implementation; SfM = Structure-from-Motion, RGB = red-green-blue,
LOOCV = leave-one-out cross-validation, RMSE = root-mean-squared error, and VIP = variable in-
fluence in projection.

For this purpose, we fitted PLSR models in R [58] using package “pls” [67]. A priori,
all pixels within each sample quadrat were assigned to their respective average SM from
the field measurements. We also scaled the variables to zero mean and unit variance. In
the first training step, the models for predicting SM used all the SfM-derived metrics and
vegetation indices calculated in previous steps as explanatory variables, which generated
28 potential latent variables. We assessed the performance of models using a different num-
ber of components by using a leave-one-out cross-validation (LOOCV) procedure [68,69].
Considering the root-mean-squared error of the predictions (RMSE; Equation (1)), we chose
the optimal model size based on Mevik and Cederkvist’s [70] approach. The RMSE allows
the comparison between datasets and models with different ranges of predicted values and
provides an unbiased indicator of prediction error. In such a way, we selected the model
with one dimension less than the model with the smallest RMSE, which provides a simpler
and operationally improved alternative model that reduces data dimensionality and over-
fitting issues [70]. Subsequently, we fitted the optimized models using a reduced number of
components, which were then assessed, validated, and discussed. Supplementary Material
S1 provides the specification files for each model fitted in the present study; these files can
be loaded into R software for further applications.

RMSE =
1
n

√
∑(yi − y)2 (1)

where: n = number of observations, yi = observation i value of the prediction, and y = mean
value of observations.
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To assess the importance of variables for modelling the SM, we calculated the variable
influence in projection (VIP) scores. The VIP score provides estimations of the contribution
of each predictor to the model based on the correlation with the response variable and the
variance explained by the latent variables [71]. For this purpose, we used the R-package
“plsVarSel” [71], which provides interfaces and methods for supporting variable selection
within PLSR frameworks. This package uses Equation (2) for calculating the VIP scores.
According to Galindo-Prieto et al. [72], VIP values greater than 1 indicate the most relevant
variables, while VIP values less than 0.5 are considered irrelevant in the model.

VIP =
√

∑
[
SSa
(
waj/

∣∣∣∣wa
∣∣∣∣2)]/ ∑ SSa (2)

where: SSa = sum of squares explained by the ath dimension (i.e., latent variable); waj = the
loading weight of the jth variable at the ath dimension; and wa = the loading weight of the
ath dimension.

In addition to the cross-validation procedure, we assessed the performance of models
when applied to independent datasets to evaluate the transferability potential across dates
and sites. To illustrate the independent validation, the SM values for site REF on the first
measurement date (i.e., REF1 dataset) were predicted using the models trained using the
datasets REF2, REF3, BRN1, BRN2, BRN3, etc. For this, we took into account the RMSE as
well as the coefficient of determination (R2) of the fitting between predicted and observed
SM values. Lastly, we considered values smaller than 0.50 weak model fit, values between
0.50 and 0.75 as moderate fit, and values larger than 0.75 as a good fit.

4. Results
4.1. Description of the Sampled Data

We present the summarized soil moisture (SM), aboveground biomass (AGB), spectral
(Figure 3), and Structure-from-Motion (SfM)-derived data (Figure 4) for the 1st, 2nd, and
3rd dates of field measurements for both sites. The SM values ranged from 9.5% and 88.2%
along with the study (Figure 3a). The undisturbed site (REF) consistently had higher SM
values than the fire-damaged site (BRN). Figure 3a shows that SM values varied mostly
between 20 and 75%. In this context, the observed values in the present study seem to
agree with the values reported in the literature for wetlands in different biomes [18,48,49].
Considering SM’s coefficient of variation (CV) within quartiles of sample distributions,
no obvious pattern manifested. In site BRN, the upper interval of values (i.e., above the
4th quartile) had high CV values; 15.76%, 22.87%, and 28.54% for BRN1, BRN2, and BRN3,
respectively. On the other hand, the lowest quartiles (i.e., below the 1st quartile) had
variability in site REF. In these intervals, CV values were 21.38%, 44.04%, and 25.43% for
BRN1, BRN2, and BRN3, respectively. Regarding the AGB, it varied between 44.4 and
79.6 g/m2 at site BRN and between 278.8 and 357.2 g/m2 at site REF. Among the spectral
metrics, the NDVI had high variability within the lowest quartiles, ranging from 9.56%
(below the first quartile of REF3) to 20.46% (below the 1st quartile of BRN2). Furthermore,
RVSI showed high CV values within quartiles, with a maximum observed CV of 175% in
the 4th quartile of BRN2.

Moreover, the correlation matrix diagrams from the exploratory data analysis (Figure 5)
showed that SM had moderate, negative correlations with SfM-derived and topographic
metrics. The spectral-derived metrics were often positively correlated with SM in site REF.
For example, RVSI and DATT4 had correlation coefficients of 0.62 and 0.60, respectively,
with SM in the second measurement date. On the other hand, we observed a negative
correlation of SM with NDVI (−0.74), SR (−0.74), and GRDI (−0.68). SM had a negative
relation with the AGB in site REF, with r varying between −0.69 and −0.48. In site BRN, this
relation was changeable across dates (−0.69–0.28). The correlation diagrams also indicated
the predictors were highly interrelated within their groups (i.e., spectral, height-related,
and topographic metrics), especially the SfM-derived metrics concerning height values.
Considering the relation between these groups, we observed a stable pattern at site BRN,
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with slight variations in the magnitude of correlations. Contrarily, the relationship between
some variables changed between dates. For example, the monochromatic bands (i.e., RED,
GREEN, NIR, and REG) had both positive and negative correlations with height metrics in
the first measurement (Figure 5a), only positive in the second (Figure 5b), and only negative
in the third (Figure 5c).
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Figure 3. Box plots of the sampled metrics at the BRN (i.e., fire damaged) and REF (i.e., undamaged)
sites and different field measurement campaigns; dataset BRN1 contains samples collected on site
BRN on 16 July 2020, BRN2 samples collected on site BRN on 2 October 2020, BRN3 samples collected
on site BRN on 16 May 2021, REF1 samples collected on site REF on 16 July 2020, REF2 samples
collected on site REF on 25 September 2020, and REF3 samples collected on site REF on 16 May 2021;
(a) soil moisture, (b) aboveground biomass (AGB), (c) NIR, (d) GREEN, (e) RED, (f) REG, (g) NDVI,
(h) GDI, (i) GRDI, (j) DATT4, (k) GNDVI, (l) SR, (m) RVSI, (n) REGVI, and (o) SRRE. Details about
the spectral-based metrics are provided in Table 2. The black dots refers to outlier values based on
the interquartile range of the box plots.
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Figure 4. Box plots of the sampled metrics at the BRN (i.e., fire damaged) and REF (i.e., undamaged)
sites and different field measurement campaigns; dataset BRN1 contains samples collected on site
BRN on 16 July 2020, BRN2 samples collected on site BRN on 2 October 2020, BRN3 samples collected
on site BRN on 16 May 2021, REF1 samples collected on site REF on 16 July 2020, REF2 samples
collected on site REF on 25 September 2020, and REF3 samples collected on site REF on 16 May 2021;
(a) CHM, (b) mean height, (c) median height, (d) 95th height percentile (ZQ95), (e) 90th height
percentile (ZQ90), (f) 85th height percentile (ZQ85), (g) 80th height percentile (ZQ80), (h) 75th height
percentile (ZQ75), (i) range of height, (j) interquartile range of height (IQR), (k) standard deviation of
heights (SD), (l) convergence index (CI), (m) length-slope (LS) factor, (n) topographic wetness index
(TWI), and (o) terrain ruggedness index (TRI). The black dots refers to outlier values based on the
interquartile range of the box plots.
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Figure 5. Matrix of Spearman’s correlation coefficients (r) between soil moisture (SM), aboveground
biomass (AGB), spectral, and Structure-from-Motion derived metrics. Panel (a) refers to correlations
in first measurement, (b) in the second measurement, and (c) in the third measurement. Values above
diagonal refer to the undamaged site (REF), and values below diagonal refer to the damaged site
(BRN). Blue values refer to positive correlations and red values refer to negative correlations.
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4.2. Model Performance according to the Empirical Datasets

Considering the performance of the models for explaining the empirical datasets,
RMSE values for models trained and optimized with BRN1 and REF1 datasets were 13.08%
and 13.29%, respectively. The optimization procedure reduced the number of dimensions
of these models to 18 and 13 for BRN1 and REF1, respectively. Based on the LOOCV
procedure, the R2 values for these models were 0.700 and 0.725. For BRN2 and REF2, the
RMSE values were 13.87% and 14.44%, respectively; R2 for these models were 0.577 and
0.553, respectively. The optimal number of dimensions for BRN2 was 27 and for REF2 was
14. In the third measurement round, the model trained using BRN3 had an R2 of 0.467,
while the model using REF3 showed an R2 of 0.668. The RMSE and the optimal number of
dimensions were 14.81% and 7 for BRN3, and 19.21% and 11 for REF3. When considering
date-merged datasets, the model DAY1 had an RMSE of 15.99% and an R2 of 0.586. The
model using the DAY2 dataset had an RMSE of 17.48% and an R2 of 0.520. For model DAY3,
the metrics were 18.23% and 0.203, respectively. The optimal number of dimensions for
these models were 11, 19, and 13. Considering the site-merged datasets, the RMSE was 17.44%
and the R2 was 0.316 for the model using the BRNALL dataset; for REFALL, the values were
18.94% and 0.443, respectively. These models included 19 and 14 dimensions, respectively.

Supplementary Material S2 provides the complete set of loadings for each model.
Considering the main latent variables obtained from the partial least squares regression
(PLSR) models, we observed that dimensions representing gradients of plant health and
biomass amount were the most frequent among models. For example, model BRN1’s three
major dimensions reproduce plant status gradients, accounting for 58.6% of SM’s explained
variability. Similarly, the most relevant dimensions in model DAY1 were related to health
and vegetation cover gradients (48.2%). Furthermore, representations of physical gradients
were common, particularly in models related to the REF site and merged models. Among
these models, the main dimensions related to microtopography accounted for 4.3% (i.e.,
REFALL) to 20.0% (i.e., DAY2) of SM’s variability. The VIP scores revealed distinct patterns
of variable importance across sites (Figure 6). For example, on the REF site, both predictor
types were the most relevant for model construction (i.e., VIP > 1.0). The exception was
model REF2, in which most of the relevant predictors were spectral-based. On the other
hand, the most influential predictor type was changeable across specific datasets in the BRN
site. Both types were relevant in the first measurement date (i.e., BRN1). On the second date
(i.e., BRN2), the SfM-derived metrics had greater importance, while the spectral metrics
were more important on the last date (i.e., BRN3). Finally, the date-merged models showed
a similar pattern of variable importance. The SfM-derived metrics were more relevant on
the first date (i.e., DAY1), while the spectral-derived indices were more expressive on the
third date (i.e., DAY3).

4.3. Model Assessment Using the Validation Datasets

The assessment of PLSR model performance against independent datasets showed
reduced potential for spatial and temporal transferability, especially for BRN datasets. As
shown in Figures 7 and 8, we observed that the models that included site-specific samples
outperformed those using fully independent samples. This condition was more evident for
predicting BRN datasets (Figure 7). The fully independent models could only explain up to
17% of the data variability in these datasets; the RMSE of these models ranged from 16.1%
to 23.9%. On the other hand, models that included the original datasets had moderate to
good performance (RMSE < 16.7%, and R2 > 0.52), and exceptions were for the dataset
BRN3 (RMSE > 14.3%, and R2 < 0.29).



Remote Sens. 2022, 14, 2334 14 of 23
Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 25 
 

 

 

Figure 6. The variable influence on projection (VIP) scores for all spectral indices and Structure-

from-Motion-derived metrics used as predictor variables in the partial least squares regression 

model. VIP values greater than 1 indicate the most relevant variables (highlighted in green), while 

VIP values less than 0.5 are considered irrelevant in the model (highlighted in red). 

4.3. Model Assessment Using the Validation Datasets 

The assessment of PLSR model performance against independent datasets showed 

reduced potential for spatial and temporal transferability, especially for BRN datasets. As 

shown in Figures 7 and 8, we observed that the models that included site-specific samples 

outperformed those using fully independent samples. This condition was more evident 

for predicting BRN datasets (Figure 7). The fully independent models could only explain 

up to 17% of the data variability in these datasets; the RMSE of these models ranged from 

16.1% to 23.9%. On the other hand, models that included the original datasets had mod-

erate to good performance (RMSE < 16.7%, and R2 > 0.52), and exceptions were for the 

dataset BRN3 (RMSE > 14.3%, and R2 < 0.29). 

Figure 6. The variable influence on projection (VIP) scores for all spectral indices and Structure-from-
Motion-derived metrics used as predictor variables in the partial least squares regression model. VIP
values greater than 1 indicate the most relevant variables (highlighted in green), while VIP values
less than 0.5 are considered irrelevant in the model (highlighted in red).

Comparing with site BRN, the performance of independent models improved slightly
on the REF site (Figure 8). In this way, some models that used training samples from
the REF but different dates achieved moderate prediction ability. For example, using
model REF2 to predict the REF1 dataset resulted in an RMSE of 16.3% and an R2 of 0.59.
Furthermore, including training samples from external sites improved prediction accuracy,
especially when collected simultaneously. For instance, for the REF3 dataset, both date-
and site-merged models had greater accuracy than the site-specific model. However, the
overall model performance for this dataset was poor; these models could explain up to
33% of the data variability, and the minimum RMSE was 18.6% for this dataset. Lastly,
Supplementary Material S3 provides the spatial prediction maps of the best performance
models for each site and measurement date.
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Figure 7. Summary plots of model validation using site-specific and independent datasets. The left
panels display the scatterplot of the three best performance models for (a) BRN1 dataset, (d) BRN2
dataset, and (g) BRN3 dataset. The center panels present the ranking of models’ root-mean-square
error (RMSE) for (b) BRN1 dataset, (e) BRN2 dataset, and (h) BRN3 dataset. The right panels present
the ranking of models’ coefficient of determination (R2) for (c) BRN1 dataset, (f) BRN2 dataset, and
(i) BRN3 dataset.
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Figure 8. Summary plots of model validation using site-specific and independent datasets. The left
panels display the scatterplot of the three best performance models for (a) REF1 dataset, (d) REF2
dataset, and (g) REF3 dataset. The center panels present the ranking of models’ root-mean-square
error (RMSE) for (b) REF1 dataset, (e) REF2 dataset, and (h) REF3 dataset. The right panels present
the ranking of models’ coefficient of determination (R2) for (c) REF1 dataset, (f) REF2 dataset, and
(i) REF3 dataset.
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5. Discussion
5.1. Models’ Ability for Predicting Soil Moisture Using Remote Sensing Optical Data

Overall, our partial least squares regression (PLSR) models had a limited ability to de-
scribe the relationship between soil moisture (SM) and environmental factors, with weak to
moderate explanatory power (i.e., 0.29 < R2 < 0.73). Other studies predicting soil moisture
had comparable findings with our upper limits. For example, Araya et al. [25] predicted
SM with an MAE of 3.8% and R2 of 0.71 using decision-tree-based models and multispec-
tral reflectance, terrain variables, rainfall, and potential evapotranspiration as predictors.
Amani et al. [27] obtained correlation coefficients varying between −0.65 and −0.34 with
field-measured soil moisture values, comparing different satellite-based dryness indices
and including thermal datasets. Furthermore, Wigmore et al. [18] had R2 between 0.55 and
0.76 using the triangular feature calculated from the relation between surface temperature
and NDVI (i.e., temperature-vegetation dryness index (TVDI)) predicted from unmanned
aerial system (UAS) data. Considering non-linear relationships, Hajdu et al. [28] modelled
SM using synthetic aperture radar metrics, topography, season, and NDVI as predictors
and obtained an R2 of 0.86 using random forests (RF) models. Similarly, Sharma et al. [11]
observed a high explanation ability for predicting soil moisture from NDVI using a logistic
model (R2 = 0.83). Altogether, the accuracy verified for our models was equivalent to other
UAS-based models [18,23,25,73] and satellite-based models [27,28,74,75], especially at the
first two measurement dates (i.e., BRN1, BRN2, REF1, REF2, DAY1, and DAY2).

In this regard, the literature shows that approaches assuming non-linearity achieved
better performance than linear relationships for predicting SM as a function of remote
sensing (RS) data. Machine learning techniques such as random forests [76] could han-
dle these complex relationships, improving the performance of predictive models [25,28].
However, to ensure unbiased and meaningful predictions, these techniques require rel-
atively large datasets for model training [25,77], possibly compromising the feasibility
of operationalizing a framework such as this. Aside from that, some of these methods
are considered black-box techniques, providing limited information about relationships
between inputs and outputs [25]. For this reason, PLSR emerges as a promising alterna-
tive for SM prediction using RS data. It provides a practical framework for dealing with
datasets with a small sample size but a large number of correlated predictor variables [43].
Furthermore, it provides reliable and consistent outputs for determining the magnitude
of variable influence and selecting relevant predictors, which improves understanding of
underlying phenomena [43].

5.2. The Explanatory Importance of Spectral and SfM-Derived Datasets for Predicting Soil Moisture

Our results indicated that the importance of spectral and Structure-from-Motion (SfM)-
derived metrics depends on a combination of environmental factors. In such a way, this
finding may suggest that SfM-derived metrics are the best predictors for representing soil
moisture over exposed surfaces, given the lesser vegetation cover in the area damaged by
the fire (i.e., site BRN) at the beginning of the monitoring period. It implies that these models
captured the influence of differences in microtopography on soil moisture, especially on
those dates closer to the fire event. Other studies verified the influence of microtopographic
features on SM moisture gradients in wetlands [59,78]. From this perspective, our findings
agree with Enwright et al. [79] who observed increased uncertainty of terrain modelling
under herbaceous and shrub vegetation cover. In addition, Moore et al. [33] stated that
vegetation cover also reduces the relative importance of peatland geomorphology on soil
heating and ecosystem fluxes, consequently affecting local hydrological fluxes [20,80].

In addition to SfM metrics, the consistent importance of spectral metrics for models
derived from the undamaged area (i.e., site REF) datasets suggests that vegetation indices
may be adequate to describe the plant health conditions associated with water stress. The
literature supports the significance of NDVI for this representation as this index is widely
applied to assess vegetation’s greenness and photosynthetic activity, cover fraction, and
status [11,31,32,74]. Low values of this index may also indicate disturbed conditions in
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our study area, such as exposed surfaces or desiccated vegetation [29]. Besides this, the
RVSI’s relevance to the models is also consistent with the literature; Perry and Roberts [81]
observed that NIR-based indices are sensitive to water content. For the model REFALL,
GRDI and DATT had the highest VIP scores. In this regard, some studies [65,82–84] verified
that red-edge and near-infrared spectral indices describe plant health and water stress. For
example, Fernández-Manso et al. [85] observed that the red-edge reflectance is sensitive
to different degrees of burn severity, thus describing conditions of chlorophyll content,
vegetation cover, and soil moisture.

Lastly, the PLSR dimensions also indicated that vegetation status patterns were the
most influential on SM variability on the first measurement date, particularly for the
dataset BRN1. This finding agrees with Kettridge et al. [86], who observed increased
water repellency caused by wildfire disturbance in a peatland. In such a way, it may
indicate that the differences between disturbed and undisturbed vegetation have the highest
association with the moisture conditions in site BRN, especially immediately after the fire.
Furthermore, Lendzioch et al. [36] observed that vegetation cover plays a critical role in
microclimate regulation of the soil surface, influencing temperature and thus moisture
content. On the other hand, topographical gradients were more important at the REF site
due to its homogeneous vegetation cover. Under these conditions, the micro-topographical
features most likely control the additional variability in SM. These features influence the
water distribution and availability in peatlands through different mechanisms, such as the
exposure of the water table [80] or the preferential routing of runoff [20,59].

Altogether, the observed factor relevance switch from SfM-derived metrics in the
first measurements to spectral metrics in the last field observation might reflect the effect
of vegetation regrowth on the surface coverage [87] after the fire event as well as differ-
ences in humidity conditions among measurement days. This finding is consistent with
Fatichi et al. [17] and Srivastava et al. [20]. The authors verified that the relative importance
of biotic and abiotic factors varied along the year according to humidity conditions, follow-
ing a hysteresis pattern (i.e., the differential relationship between soil water content and
potential during wetting and drying processes). In this regard, Srivastava et al. [20] verified
that vegetation is more influential on the temporal variability of SM, while topography
is more strongly related to the spatial pattern. Thus, our results present a similar pat-
tern: spectral metrics were more relevant in models merging different dates (i.e., BRNALL,
REFALL), and SfM-derived metrics were often more relevant in models merging different
sites within the same date (i.e., DAY1, DAY2, and DAY3).

5.3. The Transferability of Models across Dates and Sites

The assessment of the transferability potential of PLSR models showed unsatisfactory
results, especially for site BRN. The poor performance of merged models is consistent
with Millard et al. [21]. They verified that linear mixed-effect models were inefficient
for predicting SM at dates not used in the training step in a temporally homogeneous
grassland community; in their case, R2 was less than 0.3. Both findings can be attributed to
an incomplete representation of the lower and upper regions of the SM gradient spectrum,
which are typically poorly described within empirical datasets [19], resulting in increased
uncertainties in predictions within these intervals. In this regard, acquiring samples on
different ranges of SM variability is beneficial for constructing more robust and reliable
models [17,21,25].

Besides that, the low accuracy achieved at site BRN may indicate that model perfor-
mance may be affected by changes in vegetation cover. As discussed, vegetation regrowth
since the fire event seems to be switching the importance of the major indices and their
explanatory ability, following the hysteresis pattern described by Fatichi et al. [17]. In
this regard, independent models performed worse than others due to both the weaker
correlations between SM and VIs in low vegetation cover and the limitation of VIs to
describe immediate responses of the plant health caused by drought [1,7,24]. West et al. [29]
observed that a certain level of vegetation cover (i.e., 30–40%) is necessary to detect these



Remote Sens. 2022, 14, 2334 18 of 23

correlations. Given its increased vegetation cover and biomass, this threshold would
explain the slightly better potential for transferability at site REF.

5.4. Implications for UAS-Based Soil Moisture Modeling and Monitoring, and Limitations in
This Study

The use of PLSR models to predict SM using optical RS data proved that the method’s
outputs could be used to identify underlying patterns and variables of interest. As men-
tioned, Ainiwaer et al. [44] could identify the most relevant wavelengths for predicting SM
from a hyperspectral dataset using PLSR. As a result, the loading weights supported the
determination of the optimum wavelengths for their purpose. In this perspective, better
interpretability of the model’s output is a critical aspect in establishing functional linkages
between variables with a biological or physical meaning [43]. Furthermore, it has been
demonstrated that the weights of indicators produced by this method are robust indepen-
dent of sample size [42]. Additionally, the effect of vegetation heterogeneity illustrated
by the results highlights the role of choosing the appropriate variables to ensure accurate
results from optical UAS data. Thus, it appears to be a suitable method for evaluating and
monitoring SM. The main disadvantage of this method is that it employs linear combina-
tions of multidimensional space of predictor variables [88], which may oversimplify the
description of those relationships. The improvement in spatial resolution promoted by
UAS-based methods offers a better understanding of fine-scale processes related to SM
and modelling microtopographical features at appropriate spatial scales, which vary in
small horizontal and vertical scales (0.2–10 m) [33], and thus satellite-based models usually
fail to represent them due to the coarse resolution of their sensors [18]. In such a way,
our findings illustrated the limitations of optical remote sensing to predict SM due to the
complex relationship (i.e., non-linear) between this variable, surface temperature, and plant
physiology [2,19,24].

Lastly, it is worth mentioning that the study might have presented some limitations
regarding the sample design. The small sample size for training the models likely impaired
their performances. In this way, increasing sample sizes would improve the accuracy of
predictions and allow the retrieval more robust validations. In addition, the unsystematic
sampling design across the dates due to accessibility reasons might have affected the
representativeness of the whole area. However, this issue could be addressed by splitting
the study sites into sub-blocks and increasing the sample size to smaller extents. It would
contribute to the statistical replication of models, providing a better understanding of
model performance and factors affecting the framework. In this context, the integration of
both spectral and SfM-derived metrics would counterbalance the drawbacks of each type
of data, and they might be complementary for SM monitoring over homogenous vegetation
cover. The uncertainties related to optical RS methods remain the main challenge for
exploiting the full potential of SM predictions in hydrological applications. To reduce them,
carrying out a priori mappings of the land cover would guide and optimize data collection
and also reduce the risks of diminishing the importance of specific variables [29]. For this
reason, we recommend structuring fieldwork campaigns to account for probable SM value
extremes occurring within the study area based on early evaluations or previous reports
from the same place. Besides increasing model complexity, it is worth noting that using
ancillary data and covariates can improve model fitting by introducing weather, season, or
site-specific information to the models that are not present in the training data [21]. Hence,
the inclusion of surface temperature [36], meteorological variables, or vegetation cover [19],
for example, can improve the accuracy of our SM predictions.



Remote Sens. 2022, 14, 2334 19 of 23

6. Conclusions

This study demonstrated a conditional suitability of soil moisture (SM) modelling
from optical unmanned aerial system (UAS) data and provided general insights for future
research and applications across time and sites. More specifically, we used partial least
squares regression (PLSR) models to predict soil moisture from optical data acquired by
UAS. According to the previously defined objectives, our results demonstrated that:

(1) Microtopography and vegetation characteristics influenced SM. Following the effects
of the wildfire on vegetation cover, plant health gradients had a higher influence on
SM variability in the early phases of vegetation regeneration (e.g., BRN1 and DAY1).
Similarly, individual SfM-derived metrics in this site had decreasing relevance over
the monitoring period, with strong effect in models during the first two measurement
dates (i.e., datasets BRN1 and BRN2), illustrating the influence of vegetation growth
on the mechanisms of soil water distribution. On the other hand, physical gradients
were more influential in more homogeneous conditions (i.e., site REF and date-merged
datasets), illustrating its influence on SM spatial variability;

(2) The performance of the partial least squares regression (PLSR) models based on optical
data—namely spectral and SfM-derived metrics—was moderate but comparable
with techniques (i.e., microwave and satellite-based) that are more complex and
expensive. Compared to satellite-based approaches, UASs retrieve data at appropriate
resolutions, allowing observation of processes and dynamics related to SM. As a
result, these approaches may be able to overcome the impaired explanatory ability of
satellite-borne sensors caused by their coarser spatial resolution;

(3) A dominance of SfM-derived metrics for predictions over exposed surfaces. The
application of theses metrics for monitoring SM seems to be a promising and effective
alternative for evaluating the spatial distribution of SM over these surfaces. Thus, it
suggests that a single, low-cost, and consumer-grade camera should be sufficient for
rapid assessment at these sites. Moreover, it demonstrates that the spectral metrics
might be meaningful proxies for providing indirect measures of temporal variation
of moisture conditions, which explains the improved prediction accuracy of these
models for REF datasets, even using external samples. In this situation, frameworks
comprising two sensors could be appropriate for predicting SM in relatively preserved
and uniformly vegetated environments; and

(4) The models had unsatisfactory applicability across dates and places, particularly
in highly heterogeneous locations. The best results in this regard were observed at
the REF site, where vegetation structure was temporally and spatially more stable.
Under those conditions, extra samples from different areas and time frames would
likely improve prediction accuracy. Increasing the sample size to include the full
range of SM values can reduce the uncertainties caused by the complexity of SM
relationships. Therefore, we recommend developing specific models or carrying out
field measurements of SM in every monitoring step to include in merged models.

Overall, the moderate accuracy achieved in this study suggests that integrating UAS
data with PLSR models is a suitable framework for modelling SM at a fine resolution,
particularly because its increased interpretability appears to offset the limitations of linear
representation. The results showed that visible wavelength indices provided useful infor-
mation for SM modelling. Many optical RS applications rely on non-visible wavelengths,
which, although providing better performance, are more difficult and expensive to obtain.
We showed its feasibility for retrieving SM in field-scale investigations, encouraging an
improved cost-benefit ratio for short-term monitoring. It may reduce the need for more
complex, resource-consuming information (i.e., active RS approaches and ancillary data)
and benefit the application of resources and time flexibility for monitoring tasks. Further
research should focus on testing the methodology, including new indices and data sources
(e.g., temperature, weather, or site-related).
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36. Lendzioch, T.; Langhammer, J.; Vlček, L.; Minařík, R. Mapping the groundwater level and soil moisture of a montane peat bog
using uav monitoring and machine learning. Remote Sens. 2021, 13, 907. [CrossRef]

37. Ge, X.; Wang, J.; Ding, J.; Cao, X.; Zhang, Z.; Liu, J.; Li, X. Combining UAV-based hyperspectral imagery and machine learning
algorithms for soil moisture content monitoring. PeerJ 2019, 7, e6926. [CrossRef] [PubMed]

38. Mendez, K.M.; Broadhurst, D.I.; Reinke, S.N. Migrating from partial least squares discriminant analysis to artificial neural
networks: A comparison of functionally equivalent visualisation and feature contribution tools using jupyter notebooks.
Metabolomics 2020, 16, 17. [CrossRef]

39. Cheng, M.; Jiao, X.; Liu, Y.; Shao, M.; Yu, X.; Bai, Y.; Wang, Z.; Wang, S.; Tuohuti, N.; Liu, S.; et al. Estimation of soil moisture
content under high maize canopy coverage from UAV multimodal data and machine learning. Agric. Water Manag. 2022, 264, 107530.
[CrossRef]

40. Abdi, H. Partial Least Square Regression. In Encyclopedia of Measurement and Statistics; Salkind, N.J., Ed.; Sage: Thousand Oaks
CA, USA, 2007; pp. 741–744, ISBN 9781412916110.

41. Maimaitiyiming, M.; Ghulam, A.; Bozzolo, A.; Wilkins, J.L.; Kwasniewski, M.T. Early detection of plant physiological responses
to different levels of water stress using reflectance spectroscopy. Remote Sens. 2017, 9, 745. [CrossRef]

42. Haenlein, M.; Kaplan, A.M. A beginner’s guide to partial least squares analysis, Understanding Statistics”. Statistical Issues in
Psychology and Social Sciences, Volume 3. Underst. Stat. 2004, 3, 283–297. [CrossRef]

http://doi.org/10.1038/ncomms1523
http://doi.org/10.1002/2014WR016102
http://doi.org/10.1016/j.rse.2018.12.024
http://doi.org/10.1016/j.isprsjprs.2013.06.004
http://doi.org/10.1002/hyp.13990
http://doi.org/10.3390/rs10060903
http://doi.org/10.1016/j.pce.2015.02.009
http://doi.org/10.3390/w12092334
http://doi.org/10.3390/s16081308
http://www.ncbi.nlm.nih.gov/pubmed/27548168
http://doi.org/10.5194/hess-25-2739-2021
http://doi.org/10.1016/j.rse.2017.05.026
http://doi.org/10.1109/IGARSS.2018.8518657
http://doi.org/10.3390/w10070838
http://doi.org/10.1016/S0034-4257(96)00072-7
http://doi.org/10.1016/j.envexpbot.2019.01.005
http://doi.org/10.5194/bg-16-3491-2019
http://doi.org/10.1007/s40725-019-00094-3
http://doi.org/10.1016/j.geomorph.2012.08.021
http://doi.org/10.3390/rs13050907
http://doi.org/10.7717/peerj.6926
http://www.ncbi.nlm.nih.gov/pubmed/31110930
http://doi.org/10.1007/s11306-020-1640-0
http://doi.org/10.1016/j.agwat.2022.107530
http://doi.org/10.3390/rs9070745
http://doi.org/10.1207/s15328031us0304_4


Remote Sens. 2022, 14, 2334 22 of 23

43. Carrascal, L.M.; Galván, I.; Gordo, O. Partial least squares regression as an alternative to current regression methods used in
ecology. Oikos 2009, 118, 681–690. [CrossRef]

44. Ainiwaer, M.; Ding, J.; Kasim, N.; Wang, J.; Wang, J. Regional scale soil moisture content estimation based on multi-source remote
sensing parameters. Int. J. Remote Sens. 2020, 41, 3346–3367. [CrossRef]

45. Puliti, S.; Saarela, S.; Gobakken, T.; Ståhl, G.; Næsset, E. Combining UAV and Sentinel-2 auxiliary data for forest growing stock
volume estimation through hierarchical model-based inference. Remote Sens. Environ. 2018, 204, 485–497. [CrossRef]

46. Paal, J. Jääksood, Nende Kasutamine ja Korrastamine, 1st ed.; Paal, J., Ed.; Eesti Turbaliit: Tartu, Estonia, 2011; ISBN 978-9949-30-038-9.
47. Estonian Weather Service Climate Normals. Available online: http://www.ilmateenistus.ee/kliima/kliimanormid/

ohutemperatuur/?lang=en (accessed on 18 May 2021).
48. Ward, R.D.; Burnside, N.G.; Joyce, C.B.; Sepp, K. Importance of Microtopography in Determining Plant Community Distribution

in Baltic Coastal Wetlands. J. Coast. Res. 2016, 32, 1062–1070. [CrossRef]
49. Burnside, N.G.; Joyce, C.B.; Puurmann, E.; Scott, D.M. Use of vegetation classification and plant indicators to assess grazing

abandonment in Estonian coastal wetlands. J. Veg. Sci. 2007, 18, 645–654. [CrossRef]
50. Berg, M.; Joyce, C.; Burnside, N. Differential responses of abandoned wet grassland plant communities to reinstated cutting

management. Hydrobiologia 2012, 692, 83–97. [CrossRef]
51. Kargas, G.; Kerkides, P.; Seyfried, M.; Sgoumbopoulou, A. WET Sensor Performance in Organic and Inorganic Media with

Heterogeneous Moisture Distribution. Soil Sci. Soc. Am. J. 2011, 75, 1244–1252. [CrossRef]
52. Metsar, J.; Kollo, K.; Ellmann, A. Modernization of the estonian national gnss reference station network. Geod. Cartogr. 2018, 44,

55–62. [CrossRef]
53. Tomaštík, J.; Mokroš, M.; Surový, P.; Grznárová, A.; Merganič, J. UAV RTK / PPK Method—An Optimal Solution for Mapping
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