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Abstract: Under low to medium wind speeds and no rainfall, the retrieved vector wind from a
scatterometer is accurate and reliable. However, under high wind conditions, the currently used
geophysical model function (GMF), such as NSCAT-2, for wind vector retrieval has the disadvantage
of overestimating the backscattering coefficient, which leads to a decrease in the quality of the
retrieved ocean surface winds. To enhance the wind retrieval precision of the HY-2A scatterometer
under high wind conditions, a new GMF for high wind (HW-GMF) is established by using the
neural network method based on the backscattering coefficient data of the HY-2A scatterometer
combined with the wind speed data of the Special Sensor Microwave Imager (SSM/I) and the Final
(FNL) operational global analysis wind direction data from the National Centers for Environmental
Prediction (NCEP). The absolute value of the mean deviation between the predicted o° by the
HW-GMF and the measured o by the HY-2A scatterometer is less than 0.1 dB, indicating that the
HW-GMF has high accuracy. To verify the HW-GMF performance, the wind field inversion accuracy
of the HW-GMF is compared with that of the NSCAT-2 GMF, a GMF currently used in the data
processing of the HY-2A scatterometer. The experimental results show that the deviation between the
HW-GMEF retrieved wind speed and the SSM/I wind speed is within 2 m/s in the high wind speed
range of 15-35 m/s, indicating that the HW-GMF improves the precision of the wind speed inversion
of the HY-2A scatterometer under high wind speed conditions.
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1. Introduction

The sea surface wind stress is the largest source of momentum that directly drives
the movement of seawater at various scales, which ranges from sea surface waves to the
ocean current system. The sea surface wind couples the atmosphere and the ocean and
regulates the global and regional climate by promoting the exchange of heat, water, and
chemicals between the atmosphere and the ocean. Knowledge of the ocean wind is the
basis for understanding the principles and mechanisms of many oceanic, meteorological,
and climatic phenomena, and this information also plays a vital role in predicting changes
in air-sea interactions [1]. Therefore, the ocean surface wind observation data can be used
in regional and global numerical weather prediction systems to expand forecast capability
and improve forecast accuracy of future weather at different scales.

Before microwave radars were widely used, the ocean surface wind observation
was generally performed by traditional methods, and the platforms equipped with the
anemometer mainly include ships, offshore buoys, and coastal stations. Sea surface wind
observation data based on buoy or ship measurements have high accuracy at low and
medium wind speeds, but these real-time wind measurement devices can only observe the
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wind vector at a particular point, and the spatial and temporal distribution is uneven and
cannot cover the global ocean [2]. After the introduction of microwave radar observation
methods, the satellite microwave scatterometer was proven to be one of the effective
instruments that is capable of measuring the ocean surface wind speed and direction
simultaneously, under almost all weather conditions. Seasat-A was the first marine satellite
launched by the National Aeronautics and Space Administration (NASA) in 1978, and it
was equipped with a Ku-band scatterometer. In the study of the Seasat-A scatterometer,
it was found that under the conditions of moderate wind speeds, the retrieved wind
vectors were consistent with the instrument design specifications, which demonstrates
that the Ku-band scatterometer has a high feasibility for measuring the sea surface wind
field with moderate wind speeds [3,4]. In contrast, the scatterometer series developed by
the European Space Agency (ESA) are the C-band spaceborne microwave instruments.
The first operational C-band scatterometer was carried onboard the European Remote
Sensing (ERS) satellite ERS-1. Quilfen and Bentamy tested the accuracy of the wind field
product of the ERS-1 scatterometer and found that the wind inversion accuracy of the
ERS-1 scatterometer was reliable except for in the case of a low incidence angle [5]. Early
Ku-band and C-band scatterometers have been testified to be effective sensors for ocean
surface wind observation.

Relying on the data obtained in the laboratory, many researchers have conducted
theoretical studies on the relationship between the wind and backscattering coefficients [6].
Due to the complexity of the interaction between the ocean surface and microwave, these
geophysical model functions (GMFs) based on theoretical research cannot be fully applied
to operational wind field inversion [7]. Therefore, at present, a GMF based on empirical
fitting is usually used in the operational wind vector inversion of a scatterometer [8-13].
By comparing the normalized radar cross section (NRCS) measured by the airborne C/Ku
band scatterometer and the NRCS predicted by COMD4, SASS 2, and NSCAT-1, Carswell
et al. found that all three GMFs overestimate the backscatter coefficients to some extent
compared with the measured NRCS when the wind speed exceeds 15 m/s [14,15]. In
addition to research on the measurement accuracy of airborne scatterometers under high
wind speed conditions, researchers have also studied the performance of spaceborne
scatterometers in high wind speed range. Because the synchronous observation data under
different conditions is limited, there are fewer on-site verification data for spaceborne
scatterometers. However, the research results show that the spaceborne scatterometer
has the same trend as the airborne scatterometer in the inversion of the wind field; that
is, under high wind conditions, the wind inversion precision by the scatterometer in Ku
band and C band decreases. In the study of satellite ERS-1, Zeng and Brown pointed
out that due to the errors in the buoy data or numerical weather prediction wind data
used for modelling and verifying the GMF, for wind speeds greater than 20 m/s, the error
inherited from the buoy data or numerical model wind data causes the retrieved wind
speed by the ERS-1 scatterometer to be underestimated relative to its actual value [16].
In strong wind conditions, the NRCS measured by the scatterometer still contains wind
speed information. Zec and Jones found that when the wind speed does not exceed
15 m/s, that is, under the moderate wind speed conditions, the wind retrieval accuracy of
NSCAT is reliable, but when the wind speed exceeds 20 m/s, the NSCAT scatterometer
underestimates the retrieved wind speed. To solve this problem, a specific GMF for tropical
cyclone wind retrieval (TCGMF) was established to improve the precision of high wind
speed inversion of NSCAT [17]. Yueh et al. studied and verified the performance of the
QuikSCAT scatterometer in the wind inversion of typhoon Floyd. The results showed
that the NSCAT-2 GMF used in wind field inversion causes the inverted wind speed to be
underestimated. To solve this problem in the NSCAT-2 GMF, they proposed an improved
GMF that can enhance the performance of the QuikSCAT scatterometer for typhoon wind
observation [18]. In the follow-up study, Yueh et al. improved the second harmonic
coefficient A2 of the QSCAT1 GMF representing the ratio of the backscatter coefficient
under the conditions of upwind and crosswind and proposed a GMF, which can be used for
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wind field inversion with wind speeds above 23 m/s. The results show that the proposed
GMEF is effective for improving the wind inversion precision under the condition of high
wind speeds [19].

In summary, ocean surface wind inversion under strong wind conditions by a scat-
terometer has already been one of the difficult problems in scatterometry. The reasons
for the decline of high wind speed inversion precision of a scatterometer may include the
following aspects:

(1) Declined sensitivity in backscatter

Relevant studies have shown that C and Ku-band scatterometers both have the prob-
lem of a reduced sensitivity in the backscattering coefficients for the wind speeds above
30 m/s. For C-band, when wind speed is above 35 m/s, the backscattering coefficient
starts to become saturated, which means that different wind speeds may produce very
similar backscattering coefficients, which will eventually lead to a degradation of wind
inversion precision.

(2) Rain effect

Strong winds and rain often accompany each other. Rainfall has a direct impact on
backscatter measurement of scatterometer, by backscattering the forward signal from the
rain-droplets, and by attenuating the returned signal. Rainfall also impacts the observa-
tions that are often used as inputs for building a GMF, resulting in a bad GMF at high
winds. Therefore, very strict rain flagging of these observations has to be performed in
wind retrieval.

(8) Scarcity of observations

There is a scarcity of observations at very high winds to use as ground truth to develop
the GMFs. GMFs based on empirical methods are usually obtained by statistical fitting
of the sea surface backscattering coefficients and the synchronously measured sea surface
wind field or numerical forecast wind field. Because there are few data samples with high
wind speeds on the sea surface, most of the GMF curves for high wind speed segments are
constructed by empirical extrapolation, which usually results in the underestimation of the
wind speeds retrieved by these GMFs in high wind speed conditions. Moreover, the noise
due to the scarcity of observations results in wrong estimates of the GMF coefficients.

The HY-2A scatterometer was put into operation in October 2011, which adopts
dual-polarized pencil beam, conical scanning mode, and works in Ku band with a center
frequency of 13.256 GHz. The scatterometer makes observations from two incident angles
with two polarizations: the inner beam corresponds to HH polarization, and the outer beam
corresponds to VV polarization, and the incident angles are 41° and 48°, respectively, which
can provide a global ocean wind observation at a spatial resolution of 25 km. The NSCAT-2
model is currently used to retrieve ocean surface wind from the HY-2A scatterometer
measurements [20]. Since the launch of the HY-2A satellite, many scholars have evaluated
or improved the wind measurement accuracy of its scatterometer. In their study of the
HY-2A scatterometer radiometric calibration, Mu and Song considered that GMF has
a great influence on the calibration process. It is found that there is some systematic
deviation among different GMFs when using an ocean target method for radiometric
calibration [21]. Using the ocean target calibration technique, Peng et al. found that the
calibration coefficient of the HY-2A scatterometer NRCS is 1.7 dB for both VV and HH
polarizations, and they further verified the stability and reliability of the scatterometer
measurement by the Amazon rainforest. Accordingly, the RMS errors of the retrieved
wind speed and direction are approximately 1.19 m/s and 18.74°, respectively [22]. Wang
et al. validated the wind inversion precision of the HY-2A scatterometer by comparing
the retrieved winds with the collocated International Comprehensive Ocean-Atmosphere
Data Set ICOADS), and found that in conditions of medium and low wind speed, HY-2A
wind speed is similar to ICOADS wind speed, while in high wind speed conditions, the
HY-2A scatterometer tends to underestimate the wind speed [23]. Xing et al. verified the
retrieved wind field data of HY-2A scatterometer during 2012 to 2014 by using buoy data,
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ECMWF wind field data, and ASCAT scatterometer wind data. It was found that the RMSE
error of wind speed was less than 2 m/s in the range of 224 m/s, which could meet the
designed quality requirement [24]. Wang et al. conducted a first quality assessment of
HY-2A SCAT wind products through the comparison of the first six months operationally
released SCAT wind products with in situ data and found that HY-2A wind speed has an
increased negative bias with increasing wind speed above 3 m/s compared against oceanic
buoy data [25]. Wu and Chen made a validation and intercomparison HY-2A, Metop-A,
and Oceansat-2 scatterometers based on buoy wind data and concluded that the HY-2A
scatterometer nearly meets the mission requirement with RMSE 1.23 m/s for wind speed
and 22.85° for wind direction and no seasonal variation was found [26]. Yang et al. found
that the wind speed residuals of HY-2A are higher in low and high wind speed ranges
than in moderate wind speeds when compared with in situ observations [27]. Zheng et al.
demonstrated that both bias and RMSE of wind speeds between HY-2A and WindSat show
latitude dependence and have significant latitudinal fluctuations [28]. Xu et al. proposed
an artificial neural network to retrieve wind field by combining the observations of the
radiometer and scatterometer onboard the HY-2A satellite and obtained a better result than
using scatterometer data alone [29]. Xie et al. attempted to build a rain effect correction
model based on neural network for the HY-2A scatterometer in rainy conditions and
found that the neural network can effectively reduce systematic deviation in backscatter
coefficients as well as in the retrieved wind speed caused by rain [30]. Zhang et al. made an
evaluation of the performance of HY-2B scatterometer with the Amazon Forest observations
and found that the scatterometer instrument had met all the design requirements [31].
Wang et al. validated the wind products of the HY-2C scatterometer by comparing them
to collocated buoys and ECMWF winds and showed that the HY-2C winds have a good
agreement with the HY-2B winds in the wind speed range of 4-17 m/s [32].

The NSCAT-2 GMF is a semiempirical model based on numerical weather prediction
(NWP) wind data. Due to the scarcity of NWP wind data in high wind speed range, the
NSCAT-2 model is established by the extrapolation method when the wind speed is above
20 m/s [18]. Therefore, the ocean surface wind vector values retrieved by this GMF also
have poor wind speed accuracy under strong wind conditions. To improve the HY-2A
scatterometer accuracy in wind measurement under strong wind conditions, the SSM/1
wind speed data and the FNL wind direction data are collocated and used to establish a
neural network-based high wind speed GMF based on its observation characteristics in this
paper. The novelty of this paper is to refine the geophysical model function of an HY-2A
scatterometer at high wind speed by using a neural network.

This paper is organized as follows. The datasets, data validation, and the methods of
GMF modeling and wind vector retrieval are introduced in Section 2. The experimental
results as well as some preliminary explanations and analysis are described in detail in
Section 3. Sections 4 and 5 present the discussion and conclusions, respectively.

2. Data and Methods

In this section, first, the HY-2A scatterometer backscattering coefficient data, SSM /1
sea surface wind field data, FNL sea surface wind field data, TAO buoy measurement
wind vector data, and NII typhoon data for GMF modeling are briefly described; then, the
accuracy of SSM/I data and FNL data used to establish the GMF are validated; finally, the
BP neural network for modelling the HW-GMF and the wind vector retrieval method by
scatterometer are presented.

2.1. DataSet
2.1.1. HY-2A Scatterometer Data

One of the data sets used in this study is the level 2A data product of the HY-2A
scatterometer with temporal coverage from 1 January 2013 to 31 December 2013. The
parameters of the data product include the acquisition time of each measurement of the
HY-2A scatterometer, the longitude and latitude of the center of each beam footprint, angle
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of incidence, observation azimuth, backscatter coefficient (¢9), and quality flag. Eight
months of the data are used for modeling and four months for verification. The data set
is divided into two parts according to the polarization mode; one corresponds to the VV
polarization, and the other corresponds to the HH polarization. The unit of ¢ is the decibel
unit (dB).

2.1.2. SSM /I Wind Field Data

The Special Sensor Microwave Imager (SSM/]) is a spaceborne microwave radiometer.
Since 1987, the near polar orbit Defense Meteorological Satellite Program (DMSP) has been
equipped with the SSM/I series radiometers. The SSM/I sensor contains seven microwave
radiation channels that can be used to measure the microwave radiation from both the
ground and atmosphere at the same time. According to the obtained microwave radiation,
the radiant brightness temperature of the atmosphere, and that of the sea or land surface,
can be estimated. The main parameters observed by the radiometer include the sea surface
wind speed, sea surface temperature, water vapor in the atmosphere, liquid water in clouds,
and rain rate.

In this study, the SSM/I data used in modeling and validation are from the remote
sensing systems (RSS) website. The SSM/I data of RSS are generated by using a constantly
improved inversion algorithm. For the SSMI radiometer, a radiative transfer model (RTM)
is used to retrieve the ocean and atmosphere parameters. The general RTM function
expression for a radiometer measurement can be written as follows [33]:

TB,p = TBU + T’Ep'Ts + T-TBQ

1
Tpa = RP‘[TBD + T'Tcold] + TB,scat,p/ )

In the above formula, Ty represents the brightness temperature measured by the
radiometer, p denotes the polarization, Tpy; is the brightness temperature of the upward
radiation from the atmosphere, T is the transmittance of the atmosphere, Ep is the total
emissivity of the ocean surface, Ts denotes the sea surface temperature (SST), Tp(, is the
brightness temperature of the downward sky radiation scattered by the ocean surface, Ry,
is the reflectivity of the ocean surface, Tpp is the brightness temperature of the downward
atmospheric radiation reflected by the ocean surface, T, is the effective brightness tem-
perature of the cold space, and T sca1, is the atmospheric path length correction term for
the downward radiation of the sky.

The emissivity of the ocean surface E can be expressed as the sum of the following
three parts:

E =Ey+ AEw + AEy, 2)

where Ej is the specular component of the ocean surface emissivity, AEyy is the isotropic
component induced by wind, and AE is the wind direction-related emissivity component.

The algorithm has been refined, improved, and verified for more than 20 years and has
high reliability. This study uses version 7 of the SSM/I data for modeling and verification.
The SSM/I data are organized in the form of regular global latitude and longitude grids
divided by 0.25 degrees, including the neutral wind speed at 10 m height above the ocean
surface, water vapor in the atmosphere, liquid water in clouds, and rain rate, with a time
interval of 0.2 h. This study uses the wind speed data of the SSM /I radiometer as one of
the inputs to establish the high wind speed GMF for the HY-2A scatterometer. Because the
SSM /I radiometer can only provide wind speed data, wind direction information from
other data sources will be used in GMF modeling.

2.1.3. FNL Data

This study uses the FNL wind data from NCEP for GMF modeling. The FNL data
are a global meteorological forecast data set generated by the Global Data Assimilation
System (GDAS). Its time resolution and spatial resolution are 6 h and 1° x 1°, respectively.
It provides various meteorological parameters, such as sea level pressure, sea surface
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temperature, ice cover, relative humidity, ocean surface wind (u and v components), and
ozone. This study uses u and v components of the FNL 10 m neutral wind to derive
wind direction for GMF modeling. The main reason why the FNL wind speed is not used
for modeling is that, when compared with NII wind data at high wind speeds, the FNL
wind speed is systematically lower. The detailed validation information is presented in
Section 2.2.

2.1.4. TAO Data

The measurement wind data from 27 TAO buoys are used for wind quality verification.
The measurement data of the TAO buoys, which are deployed and maintained by the
National Data Buoy Center (NDBC) can provide various types of oceanic and atmospheric
parameters, such as shortwave radiation, longwave radiation, rain rate, ocean surface
vector wind (wind speed and direction), relative humidity, temperature of the air, sea
surface pressure, sea surface temperature, temperature, salinity, and density of sea water.
Most of the ocean surface wind vector data of TAO buoys are measured at a height of 4 m
above the sea surface. Therefore, the wind speed measured at a height of 4 m must be
converted to that at a height of 10 m, which is the reference height of the SSM/I and FNL
data. The conversion formula is as follows [34,35]:

U, = %-Zrz(z/zo), 3)

where U, is the wind speed at a height of z, m, and u+ denotes the friction velocity such that
Uy, = allnyg + b, (4)

where Uy is the neutral wind speed at 10 m height; a and b are constant coefficients. In
Equation (4), for Un19 <8 m/s,a =0.0283, b = 0.00513 m/s; and for Uy19 > 8 m/s, a =0.051,
b= —0.14 m/s [36,37]. The Uy can be calculated by following equation:

U
uNlO = ?ln(lo/zo), (5)

where zj is the roughness length, and k is the von Karman constant, which is usually
assigned a value of 0.4 in practical applications. Using the Equations (3)—(5), the neutral
stability winds at 10 m height, Uy, can be accurately computed through an iterative process.

2.1.5. NII Typhoon Data

The NII typhoon historical data provided by UNISYS Weather are the reanalysis data
after assimilation based on the National Oceanic and Atmospheric Administration (NOAA)
marine meteorological observation data. The NII typhoon data provide the position and
maximum wind speed of each typhoon moving center that occurs in the Atlantic, Pacific,
and Indian Oceans every year. The accuracy of the wind speed is 5 knots (about 2.57 m/s),
and the time frequency of acquisition is every 6 h.

2.2. Data Validation

This study is aimed at establishing a high wind GMF for the HY-2A scatterometer.
Building such a GMF requires accurate external reference data for modeling and validation.
To ensure the accuracy of the established GME, there are certain requirements for the data
volume. The TAO buoy data and the NII typhoon data described in the previous section
are reliable in accuracy, but the amount of data is small, so it cannot be used as the reference
data to construct the GMF. Therefore, in this study, these two kinds of data are used as
validation data to evaluate the precision of the modeling data and to ensure the accuracy of
high wind speed data used for modeling. Based on the above modeling data requirements,
the authors use SSM/I and FNL data as inputs to establish the high wind speed GMF and
use the TAO and NII data to verify the accuracy of these two data directly or indirectly.
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First, the authors should evaluate the accuracy of the FNL wind data to determine
whether it can meet the requirements of building a high wind speed GMF for the HY-2A
scatterometer. The adopted method matches the FNL wind field data with the Tao buoy
data in time and space and performs a statistical analysis on the errors. FNL data provide
global gridded wind data of 1° x 1° every 6 h. The measurement interval of the TAO buoy
data is 10 min, and the positions of the TAO buoys are distributed near the equator. FNL
data and TAO data can be completely matched in time and space during the matching
process. After matching the data from January to December 2013, a total of 18,766 match-up
pairs of FNL and TAO spatiotemporal synchronous data were obtained, and the error of
the FNL wind direction data was statistically analyzed.

When performing error statistics on the matched wind directions, the 360-degree
periodicity of the wind direction data must be considered [38]. The numerical jump from
360° to 0° will lead to a discrepancy between the calculation result and its real value.
Therefore, the wind direction deviation must be converted to a value between —180° and
180°. The conversion formula is as follows:

dirrao — dirpnt + 360°, dirrao — dirpny, < —180°
ditey = < dirrao — dirpng, 180° > dirpap — dirpng > —180° 6)
dirtao — direng, — 360°, dirpao — dirpng > 180°

where dirpyy, is the FNL wind direction, dirao is the TAO wind direction, and dir,, is the
wind direction deviation between TAO and FNL (FNL wind direction minus the TAO
wind direction). After a statistical calculation of the error, the average wind direction error
of TAO and FNL is —0.3433°, and the root mean square error (RMSE) is 11.0203°. The
statistical results show that the FNL wind direction and TAO wind direction have high
fitting degrees and that the FNL wind direction has high accuracy. Figure 1a is a scatter
plot between FNL and TAO matched wind direction data pairs. The wind direction trend
reflected in the scatter plot is consistent with the statistical results. The scatter distribution
of the FNL and TAO wind directions is concentrated, which shows that the difference
between them is small.

This study used SSM/I wind speed and FNL wind direction as inputs for GMF
modeling. The main reason for choosing SSM /I wind speed instead of FNL wind speed in
modeling is that the FNL wind speed is lower than its corresponding real value under high
wind conditions. To ensure the reliability of the GMF, the SSM /I wind speed data with
higher accuracy should be used in modeling.

The data of wind speed retrieved by SSM/I and provided by RSS are obtained from
the inversion of the sea surface brightness temperature model established by Wentz [39].
With the aid of the in situ data, the model has been continuously adjusted and improved
through changes in the radiometer instrument parameters [40]. The retrieved sea surface
wind speed has high accuracy and reliability. In the operational inversion model of the
radiometer, the wind speed increases with the increase of brightness temperature, and they
show a single value function relationship. As a result, the radiometer is still sensitive to the
change of wind speed under the condition of high winds [33]. The wind speed retrieved
from the SSM/I radiometer, which is provided by RSS, have been subjected to accurate
atmospheric correction and data verification. When the wind speed is lower than 40 m/s,
it has high inversion accuracy. To verify the accuracy of wind speed retrieved by the SSM/I
radiometer, TAO data and SSM/I data are collocated temporally and spatially, and an
error assessment is performed. The time range of data used for validation is 12 months,
from 1 January 2013 to 31 December 2013, and 13,978 data pairs were obtained. The wind
speed retrieved by the SSM/I radiometer is 10 m above the sea surface, while the wind
speed measured by TAO is 4 m above the sea surface. Equation (3) can be used to convert
the wind speed from 4 m height to 10 m height. The bias of wind speed is defined as the
difference between SSM/I wind speed and TAO wind speed (SSM/I minus TAO). Through
statistical calculation, the average bias error of SSM/I wind speed against TAO wind speed
is —0.2579 m/s. Figure 1b shows the scatter plot between the wind speed retrieved by
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SSM/I radiometer and the wind speed measured by TAO buoy. From this figure, it can
be seen that the distribution of the matching data points is basically near the diagonal,
indicating that the deviation between the wind speed retrieved by SMM/I radiometer and
the wind speed measured by TAO buoy is small, and the SSM /I radiometer wind speed is
accurate in the range of low and medium wind speed. Table 1 shows the statistical results
of the bias and standard deviation between FNL wind direction and TAO wind direction,
and between SSM/I wind speed and TAO wind speed.

360 102 15
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S 180 @
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o 107 = 5 10
2 90 -
.;-._ :. - . T
1 - - - - - "
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Figure 1. Scatter plots of the TAO paired data. (a) Scatter plots of the FNL wind direction. (b) Scatter
plots of the SSM/I wind speed. The dashed line in this figure is the diagonal line.

Table 1. FNL and SSM/I wind field data and TAO sea surface wind velocity data statistical analysis.

Bias Standard Deviation
FNL wind direction (°) —0.3634 14.4150
SSM/I wind speed (m/s) —0.2579 0.9554

This study attempts to construct an improved GMF of high wind speed for the HY-2A
scatterometer; therefore, the high wind speed segment of the data used for modeling also
needs to be tested for accuracy. Due to the limitation of the wind measurement mechanism
and performance of the sea surface buoy, there are very few TAO wind vector data, of which
the wind speed is larger than 15 m/s. Therefore, the Tao buoy data can only verify the
SSM /I wind of low and medium wind speed, while for the condition of high wind speed,
it is necessary to use other sea surface wind data with high wind speed for validation. The
6-h historical records of the NII typhoon data provided by the UNISYS weather contain
the geographical locations of the typhoon track and its maximum sustained wind speed.
Unlike gusts, the sustained wind speed is obtained by averaging the wind speed within
one minute of sampling. According to the international unified standard, the maximum
sustained wind speed is measured at a height of 10 m above the sea surface from the
typhoon eye wall (around the typhoon center). As a consequence, the maximum sustained
wind speed represents the highest average wind speed in one minute near the eye of a
tropical cyclone [41,42].

Due to the large temporal and spatial differences in data acquisition of SSM/I and
NII, the collocated paired samples used to test the high wind speed accuracy of SSM/I are
insufficient. For validating the high wind speed accuracy of SSM/1, the authors use an
indirect verification method to test its quality. In the study, the authors found that the FNL
data and SSM/I data have good spatial-temporal consistency, and there are 306 matched
data samples between them. Therefore, FNL data can be used as intermediate data to verify
the reliability of the SSM/I high wind speeds by calculating and comparing the wind speed
bias of NII and SSM/I against FNL, respectively.

Figure 2a,b show the scatter diagram of NII and FNL wind speeds and SSM/I and
FNL wind speeds in the wind speed range of 10-35 m/s, respectively. It should be noted
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that since the NII wind speed gives a wind speed value every 5 knots (about 2.57 m/s),
the scattering of data points in Figure 2a is relatively sparse. From Figure 2, the authors
can find that the wind speeds of NII and SSM/I are both greater than FNL at wind speed
higher than 15 m/s, indicating that the FNL wind speed may be underestimated in the
high wind speed range, while the wind speeds of NII and SSM/I are consistent with each
other. Therefore, the wind speed of SSM/I is more reliable than that of FNL in the range of
high wind speed. To further evaluate the accuracy of SSM/I wind speed in the high wind
speed range, the authors statistically calculated the wind speed bias errors of SSM /I and
NII relative to FNL. Table 2 presents the statistical results. It can be found that the average
wind speed of NII and SSM /I in the high wind speed range is 0.6758 m/s and 0.5402 m/s
larger than that of FNL, respectively. According to the statistical results, the wind speeds
of NII and SSM/I maintain a good consistency in the high wind speed range. Thus, the
authors can draw a conclusion that in the high wind speed range, the wind speed accuracy
of SSM/1 is higher and more suitable for establishing the GMF than FNL.
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Figure 2. Scatter plots of the NII, FNL, and SSM/I paired data. (a) Scatter plots of the FNL and NII
wind speed. (b) Scatter plots of the FNL and SSM/I wind speed. The dashed line in this figure is the
diagonal line.

Table 2. NII, SSM/I, and FNL sea surface wind velocity data statistical analysis.

Bias Standard Deviation
SSM /I Wind Speed (m/s) 0.5402 2.2347
NII Wind Speed (m/s) 0.6758 4.3049

2.3. Methods

The observation of ocean surface wind by a scatterometer is an indirect process.
To invert the vector wind from scatterometer measurements, the radar backscattering
coefficient (0) must be quantitatively related to ocean surface wind. Although GMF is not
generally given in analytical form, it plays a very important role in the development of
scatterometer instruments and the design of a data processing system. The performance
of GMF has a strong constraint and impact on the wind retrieval accuracy. This study
attempts to apply the BP neural network model to the construction of the HW-GMF for the
HY-2A scatterometer. The BP neural network is one of the most commonly used machine
learning methods, which has the strong ability of nonlinear modeling and complex function
fitting. The GMF correlating o” and the sea surface wind vector is highly nonlinear, and
neural network training is suitable for GMF modeling. Obtaining the sea surface wind
vectors from 0¥ measured by the scatterometer requires a process of inversion. Remote
sensing inversion is usually defined as the process of deriving the best estimation of one or
more corresponding geophysical variables for a given observation set under the condition
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of observation errors. The appropriate algorithm is helpful to further improve the accuracy
of wind field inversion of scatterometer.

2.3.1. Geophysical Model Function

Researchers have made many attempts to establish a theoretical GMEF. Since there is
incomplete knowledge about the sea surface topology and the backscattering mechanism
of electromagnetic waves from sea surface, the physical modeling of Bragg scattering and
specular reflection has not been completed. Thus far, the results of the physical modeling
are not satisfactory and cannot be used for operational wind field retrieval. Another way is
to build the GMF through an empirical method. The empirical GMFs are usually used in
the practice of retrieving sea surface wind vectors from radar backscatter measurements.
Different researchers have used different data to establish a variety of GMFs and adjusted
them according to the characteristics of different radar instruments. However, for side-
looking radars, many researchers assume that the relationship between the backscatter
coefficient and the relative azimuth in GMF satisfies the biharmonic relationship and take it
as the basic form for an empirical GMF in modeling. The sea state variables, such as wind
speed and direction, are related to the observed radar backscatter. Such a GMF is generally
defined as:

o’ =M(w,x,...,0,p) = Agp (1+ Aypcos x + Azpcos2y), 7)

where ¢ represents the radar backscattering coefficient of the ocean surface. w and x denote
wind speed and the relative azimuth between upwind direction and radar observation
direction, that is, the relative wind direction. “ ... ” represents other geophysical variables
other than the wind vector that affect the 0” measured by the scatterometer, including sea
surface temperature, long wave, atmospheric boundary layer, and so on. 6 and p represent
the incident angle and polarization mode, respectively. The coefficient of Ay, is a function
of incidence angle 6, wind speed w, and polarization p [43,44].

2.3.2. BP Neural Network Modeling

A BP neural network generally contains multi-layer neurons. The learning mechanism
of a BP network is when the signal is transmitted forward, and the error propagates
backward. In the forward transmission, the signal enters the neural network from the
input layer, then is processed layer by layer, and finally reaches the output layer. In this
process, each neuron calculates its output according to its current weight and threshold
and transmits the output to the next layer of neurons. The residual at the output is the
main criterion for the termination of network training. If the residual error at the output is
greater than the given threshold, the error will propagate backward, and the weight and
threshold of each neuron will be adjusted accordingly. This training process is iterative
until the residual at the output meets the requirements, or the number of iterations exceeds
the preset maximum value. According to the above analysis, the BP network is suitable
for solving problems with complex internal mechanisms. In the training process, the
following aspects have an important impact on the training effect of the neural network,
namely, distribution of training samples, neural network structure, activation function, and
termination conditions.

Data distribution determines whether the sample features can be fully learned during
the neural network training process. The input data are randomly divided into 3 parts:
training samples, test samples, and confirmation samples. Balanced data can ensure that
the data of different features are evenly distributed in the three samples in the process of
training, and the neural network learns the features of all different types of data and can
better check these features.

The backscattering coefficient data measured by the HY-2A scatterometer, SSM /I wind
speed data and FNL wind direction data with a temporal coverage from 1 January 2013
to 31 December 2013 are used for modeling. After the spatiotemporal matching of these
three types of data, a total of 4,133,723 data samples were obtained. Among them, the data
of 8 months (1, 3, 4, 6,7, 9, 10, 12) are used for neural network modeling, and the data
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of the remaining 4 months (2, 5, 8, 11) are used to verify the established HW-GMF. Lin
and Portabella found that rain contaminates the scatterometer measurement leading to
overestimation of wind speed, which makes it difficult to discern between rain and high
winds for the Ku-band scatterometer [45]. To ensure the quality of the HY-2A matched data,
the authors use the SSM/I rain rate data as a reference to exclude the data contaminated
by rain. When the rain rate is higher than 0 mm/h, the data will be identified as rain and
removed from the modeling data set. There were 3,011,150 data samples that remained
after rain screening. When the wind speed of SSM/I is above 35 m/s, there is not enough
matched data for the model input. The wind speed range of SSM/I data used for modeling
is 1-35 m/s. To make the input data evenly distributed, the strategy of data sampling is to
classify the original matched data samples by polarization, wind speed, and relative wind
direction. In the classification, the wind speed interval and relative wind direction interval
are 1 m/s and 1°, respectively. To reduce the amount of data and make the distribution of
input data balanced, 50 data samples are randomly selected for each classification interval
to form a dataset for modeling. If there are less than 50 data samples in one classification
interval, repeated extraction is performed to ensure that each classification interval contains
50 data samples for modeling. Finally, 526,500 groups of the matched wind speed, wind
direction, and sigma naught for HH polarization and 532,000 groups of the matched wind
speed, wind direction, and sigma naught for VV polarization were obtained for neural
network training.

In this study, two neural networks are trained to establish the HW-GMF for HH and
VV polarization by using matched data with different polarizations. Figure 3 shows the
topology of the neural network model used for training. The neural network consists of an
input layer, two hidden layers, and an output layer. The input layer includes three inputs,
namely, the SSM /I wind speed, represented by symbol w; the sine of relative wind direction,
represented by the symbol siny; and the cosine of relative wind direction, represented by
the symbol cosx. Each of the two hidden layers includes six neural nodes. The output
of the neural network is the HY-2A ¢°. The BP neural network uses the gradient descent
algorithm for optimization, so it is more convenient to normalize the data of the input and
output and keep the range of all input and output nodes between [—1, 1]. Normalization
of input and output data can make the learning and convergence of the neural network
easier to obtain. The normalization formula is as follows:

Y = (Ymax — Ymin) * (X — Xpnin) / (Xmax — Xmin) + Ymin, (8)

where, x represents the input value; y is the normalization result of x; 4y is the maximum
value after normalization, set to 1 in this study; y,,;, is the minimum value after normaliza-
tion, set to —1 in this study; and x4y and x,,;,, are the maximum value and the minimum
value of the original input data, respectively.
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Figure 3. Schematic diagram of BP neural network topology.
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For neural networks, neurons in each layer need an activation function to transfer
information to the next layer, which is responsible for mapping the input of the neurons
to the output. If there is no activation function, the output of a neuron in each layer is
the linear summation of the inputs of the previous layer, and the output of the whole
neural network is the linear summation of the input of the neural network. As a result,
in this case, the neural network will lose its approximation ability to complex nonlinear
functions. By introducing nonlinear factors into neurons, the activation function enables
the neural network to approach any nonlinear function, so that it can be applied to a variety
of nonlinear modeling. In this study, the neurons in the first hidden layer use sigmoid or
logistic function as their activation function, which can convert an input number to the
range of 0-1. The sigmoid function is suitable when the feature difference is complex, or
the difference is not particularly large. The sigmoid function is as follows:

1

T ire ®)

sigmiod(z)

The activation function used between the two hidden layers is Identity. The advantage

of the Identity function is that the amplitude of the output will not increase significantly

with increasing depth, thereby making the network more stable and the gradient can be
returned more easily. The identity function formula is as follows:

identity(z) = z, (10)

The activation function between the last hidden layer and the output layer is Tanh,
which is also called a hyperbolic tangent function, and the output range is [—1, 1]. Tanh’s
effect will be very good when the difference in features is obvious, and the feature effect
will continue to expand during the cycle. The Tanh function formula is as follows:

2

tﬂnh(z) - m -

1, (11)

Different from the traditional empirical modeling method, the specific formula form of
GMF is not assumed in advance in neural network modeling. The quantitative relationship
between the backscatter coefficient and wind speed, relative azimuth, and radar observation
parameters is completely determined by neural network training with modeling data. As a
result, the GMF obtained by neural network is more objective.

2.3.3. Wind Vector Retrieval

There are many methods for geophysical variable inversion from remotely sensed
data, and the Bayesian method is one of the most commonly used methods. Due to the high
nonlinearity of the inversion process, the Bayesian method is also suitable for wind vector
inversion of scatterometer. Several algorithms, such as the maximum likelihood and the
least sum of squares, have been developed, which can be used for Bayesian optimization
and are based on the expected statistical objects. Maximum likelihood estimation (MLE)
is one of the most widely used algorithms in the operational wind field inversion of the
scatterometer [46]. The formula of MLE objective function is as follows:

N1 (zi — M(w, @))?
w,P) = — —_
Jmie (w, ) ;:1‘, AK;

+ In Ak; (12)

In the above equation, Jy g is the value of MLE objective function, which depends
on wind speed w and direction ®; N is the independent observation times of radar beam
within the current wind vector cell (WVC); z; is the i-th measurement of 00: M is the model
value of ¢° obtained from the GMF; w is wind speed; ® is the wind direction; and Ak
represents the variance of 0¥ measurement.
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Due to the nonlinearity of the objective function, the numerical method is used to
retrieve the sea surface wind vector of the scatterometer. The specific steps of wind vector
retrieval are as follows:

(1) Take the wind direction as 0 degrees, give a starting wind speed (such as 7 m/s), find
the wind speed that makes the objective function obtain the maximum value according
to the wind speed interval, and record the wind speed and the corresponding objective
function value.

(2) Increment wind direction, take the wind speed determined at previous wind direction
as the starting wind speed, determine and record the wind speed and associated
objective function value for the current wind direction.

(8) Move to the next wind direction, repeat step (2) until all the wind speeds and objec-
tive function values are found for every wind direction within the range between 0°
and 360°.

(4) Search and rank the local maxima of Equation (12) along wind direction. Record
the local maxima and their corresponding wind speeds and wind directions as wind
vector ambiguities.

In this study, a search is conducted with a wind speed resolution of 0.1 m/s and a
wind direction resolution of 2°.

According to Bayes’ theorem, the mathematical meaning of MLE objective function is
the probability that a wind vector solution is the real solution. The maximum likelihood
estimation alone cannot solve the unique wind vector solution. For multiple measurements
with small azimuth differences, different wind vectors may produce a set of identical
likelihood values. Even if there are enough measurement values obtained from different
azimuths, theoretically, multiple solutions can be eliminated, but the presence of noise may
still cause the occurrence of multiple solutions. After the maximum likelihood calculation,
up to four MLE maxima are usually selected as the wind vector ambiguity solutions. To
determine the unique wind vector from the wind ambiguity solutions, a spatial filter
algorithm is generally used for ambiguity removal (AR).

In the wind inversion of the HY-2A scatterometer, the circle median filter algorithm is
used to remove the ambiguous wind vector solutions. The formula of the two-dimensional
discrete circle median filter function is as follows [47].

k 1 i+h j+h
Zm:ifh Zn:jfh Wit

Uy

where Effj is the wind vector residual sum in the filter window. The sliding window of the

, (13)

Aﬁfj — Vi

median filter isa N x N grid, the coordinates of the center grid is (i, j), and Aijk is the set
of wind solutions. Vy;;, is the most probable wind vector solution corresponding to the
maximum likelihood estimation on the grid point (m, n) in the window, h = INT(N/2) — 1,
INT means to take an integer, W, is the distance weight from the current position (m, n)
to the center of the window (i, j) (im' =m —i,n' =n —j), (Lkl-j)P is the maximum likelihood
estimation corresponding to the k-th wind vector solution in grid (i, j), and p is the weight
coefficient. For each window, in the center grid (i,j), Aijl is replaced by the wind vector
solution V;;* corresponding to the smallest filter function value Eijk . In this way, the sliding
window is repeatedly calculated until V;;* does not change.

3. Results

This section provides a detailed description of the experimental results and gives some
preliminary explanations and analysis.

In the last section, taking the observation data of TAO buoy as a reference, the wind
speed accuracy of SSM/I and the wind direction accuracy of FNL are analyzed and sta-
tistically validated. The results show that the error of SSM/I wind speed relative to TAO
wind speed is small at low and medium wind speeds, and the FNL wind direction is also
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highly consistent with the TAO wind direction, indicating that the FNL wind direction has
a high accuracy. The SSM/I data in the high wind range have been indirectly validated
with the FNL wind speed and NII typhoon data, indicating that wind speed of SSM/1
over 15 m/s have high reliability and can be used to establish the HW-GMF of HY-2A
scatterometer. After confirming the quality of SSM/I and FNL data, the data sets of HH
and VV polarization for training and verification are obtained by matching them spatially
and temporally with the measured backscattering coefficients of the HY-2A scatterometer.
Through neural network training, the authors obtained the HH and VV polarized HW-GMF
by using wind speed of SSM/I and wind direction of FNL. In this section, the established
HW-GMF will be tested.

The GMF used for operational wind field inversion of the HY-2A scatterometer is
the NSCAT-2 model, which is developed based on NSCAT scatterometer data. Similar to
the QuikSCAT scatterometer, the HY-2A scatterometer also works in Ku-band. However,
some technical parameters of the HY-2A scatterometer differ from those of QuikSCAT.
For example, the incident angles of horizontal polarization and vertical polarization of
QuikSCAT are 46° and 54°, respectively, while those of HY-2A are 41° and 48°, respectively.
Their frequencies are also different. The frequency of QuikSCAT is 13.402 GHz, while that
of the HY-2A scatterometer is 13.256 GHz. Therefore, errors arise when the NSCAT-2 GMF
is used in wind vector inversion of the HY-2A scatterometer. In this study, the NSCAT-2 is
taken as the main contrast object to verify the applicability of the established HW-GMF to
the HY-2A scatterometer.

3.1. Comparison of GMFs

In the previous section, the BP network was used to construct the HW-GMEF. Establish-
ing such a GMF aims at solving the problem that the retrieved wind speed is underestimated
by the NSCAT-2 when it is applied to wind field inversion of the HY-2A scatterometer. To
more intuitively explain the difference between the established high wind GMF (HW-GMF)
and the NSCAT-2 GMEF, the variation curves of the backscattering coefficients of HW-GMF
and NSCAT-2 GMF with the relative wind direction are plotted separately for HH and
VV polarization. The HW-GMF and NSCAT-2 model curves under different polarizations
are shown in Figure 4, in which the wind speed range is 5-35 m/s. The model curves are
presented every 5 m/s in terms of wind speed. Figure 4a,b show the HH polarization model
curves of the HW-GMF and NSCAT-2 GMF, respectively, and Figure 4c,d show the VV
polarization model curves of the HW-GMF and NSCAT-2 GME. It is very obvious in the HH
polarization and VV polarization model curves that, compared with NSCAT-2 GMF, the
backscatter coefficient of HW-GMF is still differentiated under the condition of high wind
speed, and hence can reflect the higher wind speed. By comparing (a), (b), (c), and (d), it can
be seen that for wind speed exceeding 20 m/s, the model value of HW-GMEF is significantly
lower than that of NSCAT-2. This result indicates that, compared with NSCAT-2 GME, the
backscattering coefficient of HW-GMF can still be distinguished at high wind speed, and
a higher wind speed can be retrieved. Figure 5 shows the variation curve of the average
backscattering coefficient of HW-GMF and NSCAT-2 with wind speed. In this figure, the
backscattering coefficient is the average value of the backscattering coefficient at all azimuth
angles and the wind speed range is 1-35 m/s. For a given wind speed, the backscattering
coefficient is averaged in the range of 0-359° of the relative wind direction, and the interval
of the relative wind direction is 1°. Figure 5a shows the HH polarization, and Figure 5b
shows the VV polarization. In Figure 6, the solid red line represents the NSCAT-2, and
the dashed blue line represents the HW-GMF. It can also be clearly seen from this figure
that for wind speed exceeding 20 m/s, the HW-GMF improves the overestimation of the
backscattering coefficients in the NSCAT-2 model. For wind speed above 30 m/s, the
backscattering coefficient of HW-GMF rises slowly and there is still room for inversion of
wind speed.
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Figure 4. Backscatter coefficient curves of HW-GMF and NSCAT-2 GME. (a) Curves of HW-GMF for
HH polarization. (b) Curves of NSCAT-2 GMF for HH polarization. (c) Curves of HW-GMF for VV
polarization. (d) Curves of NSCAT-2 GMF for VV polarization.
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Figure 5. Mean backscatter coefficient curves of HW-GMF and NSCAT-2 GMF,; the red solid line
corresponds to NSCAT-2 GMF, and the blue dashed line corresponds to HW-GMF. (a) HH polarization.
(b) VV polarization.
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Figure 6. Scatter plots of NSCAT-2 GMF oY and HY-2A o paired data. (a) HH polarization. (b) VV
polarization. The dashed line in this figure is the diagonal line.

3.2. Model Backscattering Coefficient Verification

In Section 3.1, by comparing the models of HW-GMF and NSCAT-2, it is preliminarily
shown that the HW-GMF can solve the problem in which the backscattering coefficient
is overestimated under high wind conditions, and the backscattering coefficient is in
good agreement with the measured value. At the same time, the backscatter coefficient
at high wind speed (up to 35 m/s) is still sensitive to wind speed. To further verify
the improvement effect of HW-GMEF, the authors substitute wind speed of SSM/I and
wind direction of FNL into HW-GMF and NSCAT-2, respectively, to forward calculate the
backscattering coefficient model values under HH and VV polarization. The authors also
perform a statistical test with the HY-2A measured backscattering coefficients. Figure 6
shows a scatter plot between the model o forward simulated by the NSCAT-2 GMF given
the SSM/I wind speed and FNL wind direction and the corresponding measured o° of
HY-2A scatterometer. Figure 6a shows the HH polarization, and Figure 6b shows the VV
polarization. As reflected in the scatter plot, the data pairs of the model o° predicted by
NSCAT-2 and the measured ¢” acquired by HY-2A scatterometer basically show a linear
diagonal distribution in the low and medium range of ¢°, with most of the data pairs
concentrated near the diagonal line. However, when the HY-2A measured ¢° gradually
increases to close to —10 dB, the model ¢° appears to be higher than the measured o°. The
larger o is, the higher the inversion wind speed. Thus, when the model ¢ is larger than
the measured 07, the inversion of the measured o” with the NSCAT-2 model will cause
wind speed to be underestimated under high wind speed conditions. The scatter plot of
the o predicted by NSCAT-2 and the ¢ measured by HY-2A indirectly reflects such a fact
that the retrieved wind speed by the NSCAT-2 GMF is lower than its actual value under
high wind conditions.

Figure 7 shows a scatter plot of the ¢° predicted by HW-GMF and the ¢” measured
by HY-2A. Figure 7a corresponds to HH polarization, and Figure 7b corresponds to VV
polarization. In these two figures, the scatter distribution is aggregated in accordance with
the diagonal line. When o” is low, the distribution of a few data points is discrete because
the signal-to-noise ratio (SNR) is low under the condition of low wind speed, leading to
larger deviations in the measured ¢°. When o” gradually increases, most of the data points
are distributed diagonally, and even when the measured o? is greater than —10 dB, the
scatter distribution is still diagonal centered and there is no obvious systematic deviation
between the model ¢” and the measured o°. These figures indicate that the o predicted
by HW-GMF and the ¢ measured by HY-2A maintain a good fit at high wind speed, and
the wind speed retrieved by HW-GMEF is more real and reliable than that retrieved by the
NSCAT-2 GME
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Figure 7. Scatter plots of HW-GMF 0% and HY-2A oY paired data. (a) HH polarization. (b) VV
polarization. The dashed line in this figure is the diagonal line.

Through a comparison of the scatter plots, the fitting trend between the model pre-
dicted 0 of NSCAT-2 GMF and HW-GMF and the HY-2A measured ¢ shows that the
HW-GMF has better applicability to the HY-2A scatterometer than the NSCAT-2 GMF does,
especially when the wind speed is high. The model ¢° of HW-GMF is more consistent
with the HY-2A measured ¢ than the NSCAT-2 GMF is. To further compare the difference
between the model 0 of NSCAT-2 GMF and HW-GME, the error between the model o?
and measured o is classified and statistically validated. The correctness of the model is
validated by calculating the average deviation between the model value and the measured
value of ¢ (model 6° minus measured ¢°) in each 1 m/s wind speed interval. Figure 8
shows a line chart of the mean value of the errors calculated for each wind speed interval.
Figure 8a shows the variation of the average bias between the model value and measured
value of ¢” with different wind speeds for HH polarization, and Figure 8b shows that for
VV polarization. As can be seen from these two line charts, the mean bias of the HW-GMF
is small, basically close to 0. In contrast, the mean bias error of the NSCAT-2 GMF deviates
greatly from the O-value line when the SSM/I wind speed is low and high. At low wind
speeds, the mean bias error decreases with increasing wind speed, while at high wind
speeds, the bias increases with the increase of wind speed. Additionally, the error of the
model 00 of HW-GMEF relative to the measured value is very small, close to 0, and the abso-
lute value of mean error is below 0.1 dB. In general, the mean bias error of the HW-GMF is
much smaller than that of the NSCAT-2 GMF. Although the model deviation of the two
polarizations is generally small, the fluctuation of VV polarization is larger than that of HH
polarization, which may be due to the larger incident angle of VV polarization, resulting
in a greater path loss and lower signal-to-noise (SNR) ratio of the backscattered power.
In addition, the neural network model is trained with the goal of global optimization, so
there may be some small deviations due to the influence of noise in the training data at
some local positions, such as a local small peak of VV polarization at 15-16 m/s position in
Figure 8b. As for the larger fluctuation of the 6” mean bias at the wind speed above 28 m/s,
it is mainly caused by the less collocated data points for modeling and validation.

To facilitate the practical application and further verification of the HW-GMF, the
specific backscattering coefficient values of HW-GMF are given in Tables 3 and 4. Table 3
shows HH polarization and Table 4 shows VV polarization. The wind speed interval
and relative azimuth interval in these two tables are 1 m/s and 5° respectively. The unit
of backscattering coefficient in these two tables is dB. Although in the tables, in order
to facilitate comparison with NSCAT-2 model, the authors only provide the backscatter
coefficient value at discrete positions, in fact, after the neural network converges, the
authors can use the weight coefficients of the neural network to calculate the backscatter
coefficient value at any given wind speed and relative azimuth, that is, the neural network
provides a continuous mapping relationship. In contrast, for the NSCAT-2 model, in the
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wind field inversion, the backscatter coefficient model value at the position of non-integer
wind speed needs to be obtained by interpolation.
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Figure 8. Dependence of the ¢° residual on the SSM/I wind speed. The red circle in the figure is the
mean value of deviation of the NSCAT-2 GMF model ¢° minus the HY-2A measurement ¢°, and the
blue asterisk is the mean value of deviation of the HW-GMF model ¢° minus the HY-2A measurement
V. (a) HH polarization. (b) VV polarization. The dashed line in the figure represents a ¢° bias of 0.

3.3. Validation of Retrieved Wind Vectors

In Section 3.2, by comparing the scatter plots and the statistical error results of the
model 6 of GMF and the measured o” of HY-2A, it was preliminarily verified that the
HW-GMEF is more suitable for wind vector inversion of HY-2A scatterometer than NSCAT-2.
To verify the effect of the HW-GMF in the HY-2A wind retrieval, the HW-GMF and the
NSCAT-2 GMF are applied to invert the wind vectors from the backscattering coefficient
data measured by the HY-2A scatterometer. The FNL wind direction is used as the reference
to remove the ambiguous wind vector solutions, and a total of 8993 data pairs of the
retrieved wind vectors are obtained. Taking the SSM/I wind speed as the reference,
the retrieved wind speeds of the HW-GMF and NSCAT-2 GMF are subtracted from the
corresponding wind speeds of SSM/I, and the average bias of the retrieved wind speed
against the reference wind speed is calculated statistically on each 1 m/s interval of SSM/1
wind speed. Figure 9a shows a line chart of the average bias error of retrieved wind speed
relative to SSM/I wind speed, and Figure 9b shows the histogram of the percentage of
data points falling into each wind speed interval of 1 m/s. As seen from Figure 9a, for
wind speed below 20 m/s, the average biases of the wind speed retrieved by the two GMFs
relative to the SSM /I wind speed are both small, and the retrieved wind speed bias error
is close to zero, without obvious deviation. By contrast, in the wind speed range above
20 m/s, the average bias error of wind speed retrieved by NSCAT-2 gradually deviates
from the zero-value line, and the deviation increases with the increase of wind speed,
which indicates that the retrieved wind speed by the NSCAT-2 is lower than that of SSM /I
under high wind speed. In contrast, the average bias error of wind speed retrieved by
HW-GMF always remains around the zero-value line. When wind speed exceeds 20 m/s,
the average bias error of the HW-GMF wind speed begins to fluctuate. This is probably
because when wind speed exceeds 20 m/s, the SSM/I data available for wind retrieval
verification decrease rapidly with increasing wind speed, which affects the statistical error
results. Compared with the NSCAT-2 GME, the error of the retrieved wind speed by the
HW-GMF under the condition of high wind is smaller, no more than 2 m/s, except for
30 m/s. Figure 9b intuitively reflects the distribution of the data points in different wind
speed intervals. Over 7 m/s, the percentage of data points decreases with the increasing
wind speed, which causes fluctuations and uncertainties in error statistics. Figure 10 shows
a line chart of the RMSE of retrieved wind speed relative to SSM/I wind speed. As can
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be seen from Figure 10, when the wind speed is lower than 15 m/s, the RMSE error of
the wind speed retrieved by the two GMFs is very close, and their variational curves
with the wind speed almost coincide. When the wind speed exceeds 15 m/s, both curves
show a certain degree of fluctuation, but they are also very close on the whole. In the
range of 1-35 m/s wind speed, the overall average error of RMSE retrieved by NSCAT-2
and HW-GMF is 1.25 m/s and 1.32 m/s, respectively. The difference between the two
GMFs is within 0.1 m/s, so it can be considered that the RMSE errors of the two GMFs are
approximately at the same level.

To show the entire distributions of wind speed of NSCAT-2, HW-GMEF, and SSM/1,
the probability density functions (PDFs) of these three wind speeds are plotted in Figure 11.
Figure 11 shows that the PDF curves of the three wind speeds are consistent in the overall
distribution shape, and there is no large deviation from the peak position, which indicates
that the wind speeds retrieved by the two GMFs do not produce significant errors in the
low and moderate wind speeds. It should be noted that due to the small proportion of
data in the high wind speed section, the distribution difference of retrieved wind speed
between NSCAT-2 and HW-GMF models in the high wind speeds cannot be well reflected
in this figure.
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Figure 9. Dependence of wind speed residual and percentage of the retrieved wind vectors on the
SSM /I wind speed. (a) The result of error verification. The red circle in the figure is the mean value
of deviation of the NSCAT-2 GMF retrieved wind speed minus the SSM/I wind speed, and the blue
asterisk is the mean value of deviation of the HW-GMF retrieved wind speed minus the SSM/I
wind speed. The dashed line in the figure represents a wind speed bias of 0. (b) The histogram of
percentage of the retrieved wind vectors.
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Figure 10. RMSE of the HY-2A retrieved wind vectors against the SSM/I wind speed. The red circle
in this figure is the RMSE of the NSCAT-2 GMF retrieved wind speed, and the blue asterisk is the
RMSE of the HW-GMF retrieved wind speed.
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Table 3. The backscattering coefficients in HW-GMF of HH pol.

0° 5° 10° 15° 20° 25° 30° 35° 40° 45° 50° 55° 60° 657 70° 75° 80° 85° 90° 95° 100° 105° 110° 115° 120° 125° 130° 135° 140° 145° 150° 155° 160° 165° 170° 175°
1m/s 354675 -355341 -356079 356889 -357765 -35.8702 359695 -36.0739 -36.1831 362971 -364161 -365398 -36.6668 ~—36.7945 369186 ~—37.0340 -37.1357 -372193 -37.2822 -37.3233 -37.3433 -37.3445 373305 -37.3061 ~—37.2763 -37.2455 372167 -37.1911 -37.1683 -37.1470 -37.1259 371035 -37.0788 -37.0510 -37.0195 -36.9839
2m/s —32.9884 0973 332198 333553 ~—33.5031 3.6621 —33.8312 340096 —34.1965 343916 345945 348042 -350181 352314 354377 -35.6295 5.8003 359446 360596 361442 361992 -36.2273 362328 -36.2215 -36.1999 —36.1739 1479 -36.1237 361012 —36.0790 —36.0549 6.0270 359940 359546 359081 —35.8539
3m/s —28.6308 —287200 -28.8434 -29.0041 292026 294369 -29.7019 -29.9911 -30.2976 -30.6165 —30.9465 —31.2900 —31.6501 —32.0240 323974 327462 —33.0460 332822 334540 -33.5709 -33.6477 337003 —33.7426 337841 338280 —33.8708 —33.9024 -339100 338843 -33.8251 337432 336541 -33.5701 -33.4958 334315 -33.3767
4m/s 247055 —247655 —248610 —249977 251782 —254026 -—256675 —259670 —262937 —266411 —27.0048 —27.3843 -—277810 —28.1940 —28.6134 —29.0189 —29.3845 -—29.6888 —299221 —30.0864 —30.1923 —302538 —30.2845 —30.2953 —302921 —30.2754 —30.2411 —30.1836 —30.1012 9.9992  —29.8878 —29.7764 —29.6683 —29.5617 —29.4540 —29.3453
5m/s 220130 220468 221144 -222224 223749 225731 228149 -23.0952 234066 -237415 240935 244590 -248369 252262 256209 -26.0061 263596 -—26.6588 -26.8880 ~-27.0426 271270 -27.1515 -27.1286 -27.0699 269845 268786 -267559 266208 264799 -263423 262156 261022 -259980 258964 257929 -25.6875
6m/s —20.0895 -20.1149 -20.1732 202717 -204153 -20.6060 —20.8425 -21.1203 214325 -21.7704 221258 224924 228662 —23.2442 236215 239872 -24.3238 246104 248296 249717 250358 250283 249593 -24.8410 -24.6853 —24.5040 -24.3088 —24.1122 -23.9271 237641 -23.6277 -235151 234176 -23.3262 232348 -23.1424
7m/s —185452 185713 —18.6304 —18.7297 —18.8748 —19.0683 —19.3098 —19.5955 —19.9187 -20.2706 —20.6417 —21.0235 -21.4091 -217933 —221704 -225314 -228623 -23.1451 -233626 —23.5025 -—23.5601 235377 -—234435 -23.2890 -—23.0887 228584 226157 -—22.3785 —22.1632 -21.9804 -—21.8326 217142 -21.6152 -21.5252 -214376 —21.3501
8m/s —17.2028 172329 —17.2957 —17.3986 —175475 —17.7455 —17.9929 —182867 —186206 —189860 —19.3727 —19.7707 —201710 —205660 —20.9486 ~—213102 —21.6389 —219194 —221360 —222756 —223311 —223022 —22.1949 —220204 —217942 215350 —21.2638 -—21.0014 —20.7653 —20.5660 —204052 —20.2769 —20.1710 —200776 —19.9895 —19.9031
9m/s ~160019 -160367 -161037 -162101 ~16.3619 ~168135 171117 174517 —17.8254 —182224 186318 ~—19.0429 ~-19.4463 -19.8333 -20.1948 -205201 207959 -—21.0081 -21.1444 —21.1966 -21.1629 -21.0479 -20.8622 -20.6218 ~20.3465 200589 ~—19.7806 ~19.5294 ~—19.3155 ~—19.1410 ~-19.0007 ~—18.8858 ~—187870 ~18.6971 —18.6114
10m/s 149258 -14.9655 ~-15.0363 —15.1455 ~—15.2989 —157513 —-16.0498 163912 —16.7674 —17.1686 —17.5834 —18.0000 184076 187961 —19.1556 —19.4756 —19.7444 199493 -20.0792 -20.1262 -20.0878 —19.9677 —19.7759 —19.5283 —19.2449 189482 —18.6595 -18.3963 —18.1689 179802 ~—17.8268 ~—17.7017 —17.5965 —17.5041 —17.4188
11m/s —139692 —14.0135 —14.0877 —141988 —14.3526 148016 —150972 —154357 —158099 —162102 —166250 —17.0423 —17.4502 —17.8373 —18.1930 —185067 ~—18.7674 —189640 —19.0863 —19.1271 —19.0842 —189607 —187662 —185159 —18.2292 —17.9276 —17.6319 —17.3586 ~—17.1186 —169160 —167493 ~—16.6131 —165005 —164045 —163188
12m/s —131268 —13.1753 —132524 —133647 —135178 —139601 —142504 —145832 —149518 —153471 —157579 —161721 —165769 —169603 —17.3110 —17.6180 —17.8707 —18.0589 —18.1738 ~—182089 ~—18.1621 —18.0368 ~—17.8419 —175917 —17.3046 —17.0010 —167004 —164189 —161676 —159519 —157721 —156247 —155040 —154034 —153161
13m/s 123909 -124430 -125224 —126353 127869 ~132201 —135035 -13.8283 —14.1888 ~—145763 149801 153880 -157872 161651 —165097 —16.8099 —17.0551 ~—17.2350 ~—173442 —17.3744 -17.3251 —17.1993 -17.0056 -—167574 -164719 -16.1681 -—158644 —155765 -153156 ~—150884 ~—14.8967 —147385 ~—14.6093 —145031 —14.4131
14m/s -117517 -11.8069 —11.8880 ~—12.0008 ~—12.1502 —125728 128480 -13.1635 135140 -13.8916 -14.2861 —14.6855 ~—15.0771 54479 157857 —-16.0789 163173 —164916 —165944 —16.6211 165702 —16.4451 —162539 160090 —157265 —154240 151189 —14.8264 145581 —14.3213 —14.1192 -13.9513 -13.8139 137018 —13.6083
15m/s —11.1989 —11.2566 —11.3388 —114509 —11.5976 —120081 —122745 —125797 —129191 —13.2853 —13.6688 —140580 —14.4403 —148028 —151330 —154193 —156511 —158198 —159183 —159423 —158910 —157677 ~—155798 —153392 —150607 —14.7608 —144560 —14.1610 —138874 —13.6433 —134328 —132565 —13.1118 —129938 —12.8963
16m/s —107220 —107815 —10.8642 —109750 —11.1185 115163 —11.7733 —120676 —123950 —127490 ~—13.1203 —134981 —13.8700 —14.2231 —145450 —14.8240 -—150497 —152133 153082 -—153306 —152797 151587 —149750 —147394 —144658 —141698 —13.8668 —13.5712 —132947 —13.0456 —12.8288 ~—126458 —124947 —123714 —122698
17m/s —103111 -103717 -104543 -105635 —10.7034 ~11.0878 —113352 116183 ~—119334 -122744 126328 -129982 -133587 ~14.0148 142862 —145057 —14.6646 —147566 147779 —147280 -146101 -144310 -142010 -139332 136421 -—133425 -13.0482 -127708 ~—125189 122980 ~—121100 -119539 —11.8259 ~—11.7207
18m/s 99570 -10.0183 -10.1004 —10.2075 ~—10.3435 —10.7142  —109519 -11.2236 —11.5261 —11.8538 —12.1989 —12.5514 —12.8998 —135357 —13.7993 140126 —14.1670 —14.2563 —14.2770 —14.2286 —14.1142 -13.9402 -13.7163 134549 -13.1696 —12.8747 —12.5834 —123071 —12.0546 —11.8315 —11.6403 —11.4804 —11.3487 —11.2403
19m/s  —9.6518 —9.7944  —9.891  —10.0310 103879 —10.6158 —10.8762 —11.1661 —11.4804 —118119 —121510 —124870 —131019 —13.3574 —135643 137142 —138011 —138215 —137748 —13.6641 —13.4955 —132782 —130238 —127453 —124563 —121694 —11.8959 —11.6445 —114210 -—112282 —11.0659 —109316 —10.8207
20m/s  —9.3885 —9.5295  —9.6315  —9.7592 101022 -103205 —10.5696 —10.8470 —11.1481 —114658 —117916 —12.1148 —127080 —129551 —13.1555 -—133010 -13.3855 134056 -—133609 —132542 130912 -—128808 —12.6339 —12.3629 ~—120806 —117995 -—11.5303 —112816 —11.0592 -10.8662 ~—107028 —10.5669 —10.4542
21m/s  ~9.1609 92998 -9.3989 95222 ~9.8515 —10.0603 -10.2984 —105636 —10.8514 ~—11.1556 ~—11.4678 ~—11.7782 ~123493 125879 127817 —129226 -13.0047 130247 ~—129820 -12.8794 127222 125189 -122799 120169 ~—117423 114679 -11.2042 -109595 107396 -10.5477 -103844 102477 —10.1340
2m/s —8.9640 -9.1001  —9.1962 93151 —9.6308  —9.8304 100578 103109 105858 —10.8766 —11.1755 —11.4730 —12.0219 122517 124388 125751 —12.6548 126746 —12.6340 —12.5354 123842 —12.1882 119573 —11.7028 —11.4365 —11.1697 —109124 —10.6727 —104565 —10.2668 —10.1045 —9.9680 —9.8541
23m/s  —8.7931 —89261  —9.0191  —9.1336 —9.4359  —9.6266 —9.8436 —10.0850 —10.3473 —106250 —10.9107 —11.1955 —117221 —11.9432 —121234 122550 —12.3322 —123519 —123133 —122189 —120736 —11.8849 —11.6624 —11.4168 —11.1592 —109006 —10.6505 —10.4167 —10.2050 —10.0185 —9.8580 —9.7225
24m/s  —8.6446 87742 —88640 89741 —9.2634 94454  —9.6523 —9.8824 101325 -103974 —10.6702 —10.9424 114469 116592 —11.8326 —119594 —120342 120535 -—120170 -119266 —11.7872 —11.6060 —11.3920 —11.1554 -—109069 —10.6569 —10.4145 —101874 —9.9809 97982 —9.6405 —9.5065
25m/s ~85153 ~86412  -87278  —8.8335 ~9.1102 92837 94809  -97001  -9.9384 101908 ~—104510 107111 ~111937 113973 —11.5638 —11.6859 ~117580 117770 -—11.7424 —11.6561 115226 113488 ~—11.1433 109159 ~—10.6766 —104355 -102013 99813 —9.7806 -9.6024 -94479  -9.3162
26m/s —8.4024 —85244 86078  —8.7092 —89736  —9.1391  —9.3268 —9.7624  —10.0028 —10.2509 —10.4989 —109602 —11.1551 —11.3148 114320 115016 —11.5203 —11.4875 —11.4051 —11.2774 —11.1110 -109139 —10.6957 —10.4658 102338 —10.0081 —9.7954 —9.6009 94277 92769 —9.1479
27m/s  —83036 —84216  —85018 85990 88515  —9.0092  —9.1879 —9.6024  —9.8313 —10.3039 —107443  —109307 —11.0836 —11.1961 —11.2630 —112813 —112503 —11.1717 —11.0497 —10.8905 —10.7019 —104928 —102723 —10.0495 —9.8323 —9.6273 —9.4394 —92714 91247 —8.9988
28m/s  —82169 83309 —84079  —85010 —~87420 -88922  —9.0623 94565  —9.6743 —10.1243 —105443 107224 -10.8687 —109764 —11.0407 —11.0585 -—11.0292 —109543 -10.8379 —10.6858 ~—105055 —10.3054 ~—10.0942 -—9.8806 —9.6720 —9.4748 —9.2935 -9.1312 -—8.9889 —8.8663
29m/s 81407 ~82506 83245 84136 ~8.6435 87865  —8.9483 ~9.3232  -9.5302 ~9.9585 101660 103587 ~—10.5287 —10.6684 107715 -10.8332 -10.8505 ~-10.8227 ~—10.7515 —10.6405 ~-104953 -10.3231 -10.1319 -9.9299 97254 95254 93360 -9.1616 —9.0049 88672 —8.7482
30m/s —8.0736 —81794 82502  —-8.3354 —85547  —8.6907  —8.8447 —9.2009  -9.3977 —9.8050 —10.0025 —10.1861 —10.3482 104816 —10.5802 —10.6392 —10.6560 —10.6297 -10.5620 —104562 —10.3178 —10.1535 —9.9709  — —9.5824  —9.3909 92093 —9.0417 88908 87579  —8.6427
31m/s —80142 81160  —81838  —8.2652 —84743  —86037 —87501 —9.0886  —9.2756 —9.6627  —9.8506 —10.0254 —10.1798 —10.3071 —104011 —104576 —10.4738 —104490 —103846 —10.2839 —10.1521 —9.9954 —9.8213 — —9.4504  —9.2673 —9.0934 89326 87876 —8.6594 —8.5482
32m/s  ~7.9617 80594 81244  —82021 84013 —85244  —8.6635 89851  —9.1628 —9.5306 —9.7092  —9.8755 100226 —10.1438 -102335 102875 —10.3031 -102797 —102185 —10.1227 —9.9971 —9.8480 —9.6820 9. 93282 91534 —89870 88330 86938 85705 —84632
33m/s 79151 ~8.0089 80710 —8.1452 —8.3349 84520 -8.5842 —8.8896  —9.0583 -94076 ~ -9.5774  -9.7356  —-9.8755 -9.9909 100764 -10.1280 -10.1430 -10.1208 -10.0627 -9.9716 -9.8522 -9.7102 -9.5522  — —92150  —-9.0481 88892 87418 86083 84899 83866
34m/s —7.8736 —79635  —80229  —8.0937 —82743 8385  —85112 —8.8013  —89614 —9.2931 94544  —9.6047 97377 -9.8475 99290 99782 99926 99716 99165 —9.8299 7163  —9.5813  —9.4309 ! —9.1098  —89507 87989  —8.6581 85303 84167 83174
35m/s 78367 78756 79227 —79794  —8.0469 —82189 83247 84440 —8.7194  —88713 —9.1862  —9.3394 94822 —9.6086 —9.7130 97906 —9.8374 —9.8513 —9.8315 —9.7791 —9.6969 5889  —9.4605 —9.3176 —9.1661 —9.0119 —88603 —87156 —85810 —84588 —83499 —82546

Table 4. The backscattering coefficients in HW-GMEF of VV pol.

0 5° 10° 15° 20° 25° 30° 35° 40° 45° 50° 55° 60° 65° 70° 75° 80° 85° 90° 95° 100° 105° 110° 115° 120° 125° 130° 135° 140° 145° 150° 155° 160° 165° 170° 175° 180°
1m/s 359378 -360155 -36.0955 —36.1738 ~—362475 —363145 —36.3749 -—364304 —36.4845 —365423 -—36.6099 —36.6934 —367976 36923 —37.0639 ~—37.2087 —37.3425 374509 -—37.5235 —37.5545 375433 374942 -37.4159 -37.3215 -—37.2256 —37.1408 —37.0742 -—37.0266 —369933 —369675 —36.9423 369119 -36.8724 -368221 367611 —36.6914 —36.6158

2m/s —333233 33408 —33.5035 —33.8083 339065 —34.0039 —34.1052 —34347 345005 -34.6782 -34.8728 350692 352488 353939 354917 -35.5356 248 354645 353655 352436 35117 35.0016 . —34.8332 347755 —34.7252 L6743 —34.5513 34477 343972 34316
3m/s —29.2501 —29.4524 -29.6204 —29.768 299106 —30.0632 -30.2386 —30.4454 —30.6872 —31.2643 315821 319025 —322106 324916 327322 329208 —33.0489 —33.1109 33105 —33.033 329003 327164 324937 32247 319924 —31.7453 5196 —31.3255 —31.1692 —309709 309183 —30.8835 —30.8535
4m/s 25014 —252307 -254233 256064 —257967 —2601 —262597 —26.5543 —26.8965 g —27.7025 —28.1406 —285778 289929 —29365 —29.6749 —29.9068 —30.049 —30.0951 —30.044 —29.8999 —29.6729 293777 —29.0332 —28.661 —282832 -—27.9208 -—27.5913 —27.3075 —27.0765 267717 26684 —266234 —265746
5m/s 21737 219375 -221225 223068 ~—225067 -227383 230149 -233453 -237323 241712 -246507 -25.1528 256546 -—261304 —26554 269015 -27.1528 -27.2933 —27.3154 -—27.2184 -27.0092 -267016 -263157 258761 —254098 24944 24503 241065 —23.768 —23.4943 231363 -23.0356 -—229693 —229213

6m/s —19.1936 -19.3943 195759 —19.7489 -19.9273 -20.127 -20.3633 -20.6496 209946 —21.4013 -21.8655 -22.3754 -229122 23451 239633 244194 -247916 250564 251968 25204 250777 -24.8267 —24.4681 -24.0258 235287 -23.0075 224922 -22.0088 -21.5776 -21.2118 209173
7m/s —17.4844 176631 —17.8286 —17.9908 —18.1628 —18.3596 —18.596 —18.8847 —19.2346 —19.6492 —20.1248 —20.6501 —21.2063 —21.7679 —223048 22785 —23.178 234578 —23.6054 —23.6107 —234736 —23.2041 228212 —223517 —21.8269 —21.28 207422 202401 —19.7938 —19.4158 —19.1111
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Figure 11. The probability density functions (PDFs) of HY-2A and SSM/I wind speed. The black
line in the figure is the PDF curve of SSMI wind speed, the red line in the figure is the PDF curve of
NSCAT-2 GMF retrieved wind speed, and the blue line in the figure is the PDF curve of HW-GMF
retrieved wind speed.

Under the influence of measurement noise and GMF periodicity, the MLE wind
retrieval algorithm will generally obtain several possible solutions. To obtain a unique
wind vector solution, an ambiguity removal procedure is required. This study used the
same circle median filter algorithm as in the HY-2A scatterometer data processing system
to perform the wind vector ambiguity removal. To obtain a better filtering effect, the FNL
wind direction is used to initialize the retrieved wind field before ambiguity removal. The
wind vector whose wind direction is closest to FNL is selected as the initial wind vector of
each wind vector cell. A statistical analysis was performed to examine the wind direction
errors of the HW-GMF model and NSCAT-2 model. Figure 12a shows the scatter plot of the
wind direction retrieved by NSCAT-2 and the FNL wind direction, and Figure 12b shows
a scatter plot of the wind direction retrieved by HW-GMF and the FNL wind direction.
In both figures, scatter points concentrated near the diagonal line means there are no
significant errors in NSCAT-2 and HW-GMF retrieval wind direction. In both figures, most
of the scattered points are concentrated near the diagonal line, which means that there
is no significant systematic deviation between the wind direction retrieved by the two
models and the FNL reference wind direction. Table 5 shows the error statistical results
of the wind direction retrieved by the two models relative to the FNL wind direction. As
shown in Table 5, the mean bias of wind direction between NSCAT-2 and FNL is 0.0719°,
and the mean bias between HW-GMF and FNL is —0.0377°. The mean absolute error of
wind direction of NSCAT-2 and HW-GMF is 9.5635° and 9.4481°, and the RMS error of
NSCAT-2 and HW-GMF is 16.2826° and 16.3213°, respectively. Scatter plots and error
statistics indicate that the errors of wind direction of the two models are very close and can
be said to have considerable retrieval accuracy.
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Figure 12. Scatter plots of the wind direction retrieved by the NSCAT-2 and HW-GMF and the
FNL wind direction. (a) Scatter plots of the NSCAT-2 GMF wind direction. (b) Scatter plots of the
HW-GMF wind direction. The dashed line in this figure is the diagonal line.
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Table 5. The errors of HW-GMF and NSCAT-2 GMF wind direction statistical analysis.
Bias Absolute Error Standard Deviation
NSCAT-2 wind direction (°) 0.0719 9.5635 16.2826
HW wind direction (°) 0.0377 9.4481 16.3213

4. Discussion

Measuring the wind vectors of the sea surface by scatterometers is an indirect process.
The scatterometer emits microwave beams to the ocean surface and receives and measures
the echo signals. The wind momentum makes the sea surface rough. A change in a wind
vector causes a change in the sea surface roughness, and then a change in the backscattered
energy from the sea surface. Based on the correlation of the backscattered energy with
the ocean surface wind, a scatterometer can extract the ocean surface wind information by
quantitatively measuring the NRCS or backscattering coefficient.

The HY-2A scatterometer works in Ku-band and is similar to QuikSCAT in design. At
low and medium wind speed, the accuracy of wind speed and direction measured by HY-
2A scatterometer meets the requirements. However, due to the limitations of the inversion
method and the performance of the scatterometer, the wind measurement accuracy of
scatterometer decreases under conditions of high wind speed. The main reasons for the
decline in the wind measurement accuracy of the scatterometer at high wind speed are:
(1) Under the condition of high wind speed, it is difficult to obtain sufficient measured data
of the sea surface, so there is not enough measured data of the sea surface to establish a
reliable high wind GMEF. (2) The area with high wind speeds is most likely the same area
where a tropical cyclone is located, and strong wind is usually accompanied by rainfall. The
effect of rainfall on the sea surface affects the backscattered energy and the corresponding
backscattering coefficient received by the scatterometer, thus resulting in a large error in
the wind measurement accuracy of the scatterometer at high wind speed. (3) The influence
of gradient wind under high wind conditions will also reduce the wind measurement
accuracy of the scatterometer. In addition, as wind speed increases, the sensitivity of the
backscattering coefficient to the change in wind speed will decline and finally saturate,
making it very difficult to obtain accurate wind vectors under strong wind conditions by
the scatterometer [48,49]. The NSCAT-2 GMEF, which is used to operationally retrieve ocean
surface wind from the HY-2A scatterometer measurements, is a semiempirical geophysical
model based partly on numerical weather prediction (NWP) wind field data. Because of
the insufficient amount of data with high wind speed in the NWP wind field data product,
the NSCAT-2 model is established by a numerical extrapolation method for high wind
speed above 20 m/s. Thus, using NSCAT-2 for wind vector retrieval will inevitably lead to
a poor accuracy of wind speed under strong wind conditions.

To improve the wind measurement accuracy of HY-2A scatterometer under high
wind conditions, this study combines and collocates the SSM/I wind speed data and
FNL wind direction data, and the BP neural network is used to establish a high wind
GMF based on the observation characteristics of the HY-2A scatterometer. The radiometer
achieves wind speed inversion by measuring the brightness temperature of sea surface
microwave radiation. In the radiation from the sea surface, the brightness temperature
of the calm sea surface is only affected by the dielectric constant and the temperature of
sea water. Therefore, the brightness temperature of the calm sea surface can be calculated
by measuring these two physical parameters of the sea water, and the variation part is
mainly the wind-induced sea surface radiation, which depends on wind speed. Based on
the above mechanism of radiometer wind measurement, the radiometer does not easily
lose the sensitivity or tend to saturation under the condition of high wind speed and hence
can accurately measure high wind speed [50,51]. This is the main reason why this study
uses radiometer wind speed instead of scatterometer wind speed as the reference for high
wind GMF modeling. In addition to SSM/I radiometer, although several other spaceborne
radiometers can provide sea surface wind speed measurement data, such as AMSR-2,



Remote Sens. 2022, 14, 2335

23 of 26

AMSR-E, WinSat, and so on, these radiometers either have poor space-time matching
with the HY-2A satellite, thus cannot obtain sufficient matching data for modeling, or the
data consistency and stability are not as good as SSM/I. Therefore, after comprehensive
consideration, the authors finally adopted SSM/I radiometer wind speed data for high
wind speed GMF modeling. By comparing with the FNL wind speed, this paper verified
the consistency of SSM/I wind speed and NII wind speed and found that the FNL wind
speed at high wind speed is obviously lower than the wind speed of NII typhoon data,
while the SSM /I wind speed does not exhibit this phenomenon, which indicates that the
wind speed of SSM/I at high wind speed is consistent with the NII wind speed. Moreover,
the reason why FNL wind direction was used as one of the modeling data in this study is
mainly based on the following two considerations: first, FNL reanalysis data is the final
wind product after integrating a lot of measured data, which has been used and validated
by many international researchers, and there is no obvious systematic deviation in its
wind accuracy; Second, it has been used for the absolute calibration and wind field quality
validation of the HY-2A satellite scatterometer. In order to ensure the consistency of the
reference wind field, the FNL wind direction is used as the reference wind direction for
HW-GMF modeling.

NSCAT-2 model can be considered as one of the most important and widely used
GMFs in the development of the Ku band scatterometer. It was applied to the operational
wind field inversion of the NSCAT scatterometer. Although it is specially developed for
NSCAT scatterometer, NSCAT-2 lays the framework and foundation of the GMF of the Ku
band scatterometer. Most of the following Ku band GMFs are based on it and obtained
through some improvement and optimization. For example, the Qscat-1 model is obtained
by optimizing the model values at the incident angles of 46° and 54° in the NSCAT-2 model,
while leaving the rest unchanged. NSCAT-3 and NSCAT-4 models are also derived from
NSCAT-2 by using buoy data as a reference to modify the retrieved wind speed, but the
adjustment coefficients of the two models are different. The adjustment formula of the
NSCAT-4 model is as follows [52]:

ONscAT4 = ONscar2 +0.20 <15m/s, (14a)

2
UNSCAT4 = 5 * ONscAT2 +5.20 > 15m/s, (14b)

where vnscars and vnscaT2 represent the wind speeds retrieved from NSCAT-4 and
NSCAT-2, respectively. This means that according to the above formula, a 24 m/s wind
speed from NSCAT-2 corresponds to a 21.2 m/s NSCAT-4 wind speed retrieval. In other
words, the retrieved wind speed of NSCAT-4 is lower than that of NSCAT-2 at the high
wind speeds greater than 15 m/s. Based on the above considerations, this study takes
the NSCAT-2 instead of NSCAT-4 model as the comparison object to test the effect of the
constructed HW-GMF in improving the accuracy of wind speed inversion in high wind
speed range.

Affected by the modeling data and the ocean surface microwave backscatter mech-
anism, this study has the following limitations. Firstly, because SSM/I radiometer wind
speed and FNL wind direction are used as the input data of neural network, the accuracy
and reliability of HW-GMF must be affected by the quality of these two datasets. Although
the data quality of SSM /I wind speed and FNL wind direction has been verified, improved,
and optimized for many years, they are also the results of inversion or prediction using
relevant models, so there are inevitably some errors in them. As a result, the reliability
of HW-GMEF depends on the reliability of SSM/I wind speed and FNL wind direction,
and more in situ measured data need to be used for long-term verification. Secondly,
through high wind speed modeling, the model value of the backscatter coefficient can be
more consistent with its measured value, and the systematic deviation between them can
be reduced, but the physical effect of decrease in the sensitivity of pol-polarization echo
signal of scatterometer in high wind speed cannot be changed. Therefore, the constructed
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HW-GMEF in this study can only eliminate the systematic deviation of the retrieved wind
speed, but cannot effectively reduce the RMSE error, as shown in Figure 10.

5. Conclusions

Studying the characteristics of the backscattering coefficient is an important field, and
its influence on wind field inversion under high wind speeds is a significant topic. In
this study, a high wind GMF is established for the HY-2A scatterometer to invert ocean
surface wind. The purpose is to improve the wind field inversion accuracy of the HY-2A
scatterometer under high wind speed conditions. Based on the temporally and spatially
synchronized data of the SSM/I wind speed, FNL wind direction and HY-2A measured
0¥, the HW-GMFs for HH polarization and VV polarization are established by neural
network training and validated. The test contents include the model comparison between
the HW-GMF and NSCAT-2 GMF, the accuracy test of the model predicted ¢, and the error
test of the retrieved wind field. All three tests prove that the established high wind GMF
improves the wind retrieval accuracy of HY-2A scatterometer and can effectively solve the
problem that the wind speed is underestimated under the condition of high wind speed
when the NSCAT-2 is used for wind retrieval.

Through this study, the authors can draw the following conclusions:

(1) The BP neural network used in this study can implement the GMF modeling of the
HY-2A scatterometer. When the data sample contains noise and the distribution is uneven,
it can still converge stably and obtain smooth model curves, achieving a good learning
effect. The experimental study in this paper proves the feasibility of applying the BP neural
network to the construction of scatterometer GMF.

(2) Through the analysis of the constructed HW-GMF for the HY-2A scatterometer, it
can be preliminarily concluded that under high wind speed conditions, the backscattering
coefficient increases gradually with the increasing wind speed. Even when wind speed is
above 35 m/s, the backscattering coefficient has enough sensitivity to the wind speed, and
there is no obvious saturation phenomenon, which means that HW-GMEF can be applied to
wind field inversion under high wind speed (15-35 m/s).

(3) Through the statistical test between the model ¢° of HW-GMF and NSCAT-2 and
the measured o¥ of HY-24, it is found that the model ¢° of HW-GMF is more consistent
with the measured o° of HY-2A. This result shows that the HW-GMF is more suitable for
wind field inversion of the HY-2A scatterometer than NSCAT-2, especially at high wind
speed. In addition, the experimental results of wind field inversion demonstrate that the
mean wind speed error between HW-GMF and SSM/1 is always lower than 2 m/s when
wind speed is above 20 m/s. The retrieved wind speed by HW-GMF is closer to the SSM /1
wind speed than that of NSCAT-2 GMF. It can be considered that the established HW-GMF
is reliable for the HY-2A scatterometer.
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