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Abstract: Aerosol optical and chemical properties play a major role in the retrieval of PM2.5 concen-
trations based on aerosol optical depth (AOD) data from satellites in the conventional semiempirical
model (SEM). However, limited observation information hinders the high-resolution estimation
of PM2.5. Therefore, a new method for evaluating near-surface PM2.5 at high spatial resolution is
developed by coupling the SEM and the chemical transport model (CTM)-based numerical (CSEN)
model. The numerical model can provide large-scale information for aerosol properties with high
spatial resolution at a large scale based on emissions and meteorology, though it can still be biased in
simulating absolute PM2.5 concentrations. Therefore, the two crucial aerosol characteristic parameters,
including the coefficient integrated humidity effect (γ′) and the comprehensive reference value of
aerosol properties (K) in SEM, have been redefined using the WRF-Chem numerical model. Improved
model performance was observed for these results compared with the original SEM results. The
monthly averaged correlation coefficients (R) by CSEN were 0.92, 0.82, 0.84, and 0.83 in January, April,
July, and October, respectively, whereas those of the SEM were 0.80, 0.77, 0.72, and 0.72, respectively.
All the statistical metrics of the model validation showed significant improvements in all seasons.
The reduced biases of estimated PM2.5 by CSEN indicated the effect of hygroscopic growth and
aerosol properties affected by the meteorology on the relationship between AOD and estimated
PM2.5 concentrations, especially in winter and summer. The better performance of the CSEN model
provides insight for air quality monitoring at different scales, which supplies important information
for air pollution control policies and health impact analysis.

Keywords: PM2.5; WRF-Chem; hygroscopicity; coupling method; CSEN model

1. Introduction

Fine particulate matter (PM2.5) consists of a complicated mixture of chemical com-
pounds, mainly including organic carbon (OC), elemental carbon (EC), nitrate, sulfate,
ammonium salt, sodium salt (Na +), and water [1,2]. Although Chinese government au-
thorities have implemented strict atmospheric pollution control measures in recent years,
significant pollution episodes and haze events still occur frequently in several regions in
China. In most cases, the concentration of PM2.5 in various areas can also reach values
higher than the WHO standard (5 µg/m3). PM2.5 is related to various environmental and cli-
mate effects and adverse human health impacts [3–7]. Although nationwide ground-based
PM2.5 monitoring networks have already been implemented around China, generating
larger-scale high-resolution PM2.5 estimation is still challenging, hindering the under-
standing of the PM2.5 variation at diverse spatial scales. Therefore, to further understand
the spatiotemporal distribution, transport paths, and formation mechanisms of PM2.5, it
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is imperative to develop a ground-based higher spatial resolution PM2.5 concentration
estimation method at a large scale [8].

Satellite remote sensing observations cannot directly provide PM2.5 concentrations
even though they can obtain high spatial resolution aerosol extinction information at a
large scale [9–13]. Previous studies attempt to retrieve PM2.5 from aerosol optical depth
(AOD) data and supplementary data by different AOD-PM2.5 models. Most of these
current models are still based on statistical methods or machine learning methods [12–18].
Although these models can quickly convert AOD into PM2.5 via meteorological and land-
use parameters, the generalization of these models to different areas is still limited due to
the lack of physical interpretability and predictability [12].

The semiempirical model (SEM, i.e., a physical model) does not rely on geographical
data but instead relies on the physical mechanism of the relationship between AOD and
PM2.5 [19] In SEMs, aerosol characteristics, such as hygroscopic growth, particle mass
extinction efficiency, and size distribution, affect the relationship between the AOD and
PM2.5 concentration. This relationship can be obtained based upon long-term observations,
including AOD, PM2.5, and meteorological data. The SEM combines meteorological data
with the PM2.5 measurement to estimate indicators describing the integrated humidity
effect, which is mainly affected by the aerosol composition and size distribution [20–27].
The updated SEM proposed by Li et al. (2015) showed that the accuracy of PM2.5 estimation
was improved markedly by incorporating the aerosol characteristics into the physical
model [19]. Because of its robustness, relatively low computational cost, and the same
degree of accuracy compared with other empirical models, the updated technique is
suitable for operational use. However, since the SEM model relies heavily on ground-based
observations at discrete locations, it is difficult to obtain high resolution temporal and
spatial variability in aerosol properties [12].

Chemical transport models (CTMs) have already been applied to simulate PM2.5 in
many areas globally [28]. CTMs can supply extensive gridded simulated data of meteorol-
ogy and physical and chemical properties of particulate matter. CTM-based approaches con-
sider both meteorology (i.e., the height of the boundary layer and relative humidity (RH))
and aerosol physical properties (i.e., aerosol size distribution and aerosol types) [1,28,29].
These data are further combined into a simple empirical model to acquire the PM2.5 con-
centrations from AOD. However, CTM-based approaches are mainly used in global PM2.5
estimation. They are rarely used in non-global-scale research, mainly because the high
operational cost and uncertainties of long-term CTM outputs [12]. However, with detailed
emission information at high spatial resolution driven by realistic meteorology, the overall
aerosol characteristic pattern simulated could be relatively reliable [30–36].

Given the respective advantages of SEMs and CTMs, we propose a new coupled model
taking advantage of the improved physical mechanism between the AOD and PM2.5 in
SEM and the numerical models in providing high spatial resolution of aerosol properties
to optimize the aerosol parameters required for the PM2.5 estimation by the SEM. The
rest of this paper is described below. The Materials and Methods section introduces the
data used, including the observational meteorological and air quality dataset, satellite
data, and Weather Research and Forecasting with Chemistry (WRF-Chem model) data.
The difference between the CSEN method and the SEM is also discussed. The estimated
aerosol parameters by conventional SEM and CSEN are analyzed in the Results section. In
addition, satellite-derived PM2.5 results based on the SEM and CSEN are compared with
the ground-based observations. Furthermore, the seasonal variation in spatial distribution
and major cluster distribution are also presented. In the Discussion and Conclusion section,
we compare satellite-derived PM2.5 results based on the SEM and CSEN concerning the
overall accuracy.
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2. Materials and Methods
2.1. MODIS AOD Data

The MODIS sensors aboard NASA’s satellites named Terra and Aqua have a return
visit period of 1–2 days, offering daily near-global observations of the Earth. Terra and
Aqua pass the equator at local times of approximately 10:30 am and 1:30 pm, respectively,
therefore providing sustained daily monitoring of aerosols around the Earth. The 1-km-
resolution MODIS AOD retrieved by the aerosol retrieval algorithm proposed by Lin et al.
(2015) is used in this study [25]. The retrieved AOD is validated by AERONET version
3.0 level 1.5 at seven observed stations (Table A1) (see Appendix A). The positions of the
seven observed stations are shown in Figure A1 (see Appendix A). Here, the observation
times of MODIS and AERONET are consistent. Thus, we proposed a collocation method
of spatiotemporal consistency. The space configuration standard is a 10 km radius at each
AERONET site for a MODIS AOD value spatial average. AERONET AODs are interpolated
to 0.55 µm to match the MODIS product wavelength and then temporally averaged within
a window of ± 30 min of the satellite transit time. Figure A2 (see Appendix A) illustrates
the relationship of paired AOD at all the AERONET sites over the study region (100◦E to
125◦E, 18◦N to 45◦N) in 2019. The scatter plots show a good agreement between MODIS
AOD and AERONET AOD, with a correlation coefficient of 0.88 and mean bias (MB) of
0.19 (N = 278).

2.2. Ground Monitoring Data

The hourly concentrations of PM2.5 data, measured at Air Quality Monitoring Stations
(AQMS), in mainland China, Hong Kong, and Taiwan were obtained from the Ministry
of Environmental Protection of China (MEPA), the Hong Kong Environmental Protec-
tion Department, and the Taiwan Environmental Protection Administration, respectively.
Hourly measurements, including the RH and visibility (L), were obtained from the national
China Meteorological Administration (CMA) surface observation network, which includes
297 global telecommunication system (GTS) stations in the study region. The locations of
the PM2.5 AQMS and GTS stations are presented in Figure 1a,b.
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Figure 1. (a) Spatial distribution of PM2.5 monitoring sites (AQMS) included in this research (the red
dots indicate the sites for calibration, and the green dots indicate the sites for validation). (b) Spatial
distribution of meteorological data monitoring sites (GTS) included in this research.

The hourly PM2.5 concentration and hourly meteorological parameters were measured
at different stations over the study region. Since PM2.5 mass concentration and meteorolog-
ical parameter values generally change smoothly at the regional scale, PM2.5 monitoring
sites and GTS stations in a window of 5 km distance can be matched. For this study, the
meteorological data at 11:00 am and 2:00 pm were extracted to match the passage times of
Terra and Aqua, respectively. We found that 271 GTS observation sites could be matched
with 301 PM2.5 sites. As a result, each site pair (2 × 365 days) has a maximum of 730 valid
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data points. The meteorological and PM2.5 data obtained from the 301 matching stations
were administered as a calibration database applied to build the AOD–PM2.5 model. The
ground-measured PM2.5 data at 11:00 am and 2:00 pm were used to validate the satellite-
derived hourly PM2.5 data. The data from the remaining 1695 AQMS monitoring sites were
used as a validation database to evaluate the accuracy of the estimated concentrations of
PM2.5 mass. Various monitoring stations are superimposed on a map (Figure 1a). This map
shows that the PM2.5 monitoring sites are concentrated in the main urban areas, whereas
the coverage rate in rural areas is much lower.

2.3. The SEM

In the SEM, the aerosol hygroscopic growth effect, and the mass extinction efficiency
(MEE) are the main elements linking the ground-level PM2.5 mass concentration and
satellite-retrieved AOD [19,25–27]. To make the paper self-contained, we briefly summarize
the key equations of the SEM model in this section. The details of the derivation process
can be found in Lin et al. (2015) and Li et al. (2015) [19,25].

The physical relationship between the PM2.5 concentration and aerosol extinction
coefficient at ground level driven by the hygroscopic growth can be described using
Equation (1):

PM2.5 =
ext

α′ext,10
F ×

(
1−RHi
1−RH0

)−γ′
=

ext

K×
(

1−RHi
1−RH0

)−γ′
(1)

where ext is the ground-level aerosol extinction coefficient, which is calculated based on
the observed visibility. α′ext,10 represents the reference mass extinction efficiency (MEE)
of mixed aerosols at 0.55 µm under the condition of RH = RH0. RH0 is the reference RH
value, which generally is set at 40% to represent dry conditions. F represents the fine mode
fraction (FMF), which is equal to the ratio of PM2.5 and PM10 mass concentration and can
represent the effect of aerosol size distribution. Similar to the Hänel growth coefficient [24],

γ′ is the coefficient of the integrated humidity effect (IHE).
α′ext,10

F , denoted as K, represents
the integrated mass extinction efficiency.

By assuming a negatively exponential form for the vertical distribution of the aerosol
extinction coefficient, AOD can be derived using the following Equation (2), where H is the
scale height, which indicates the effect of the aerosol vertical structure. At the individual
GTS monitoring station, the H can be derived by the ratio of the AOD and ext, while the
spatial ext can be derived according to the gridded AOD from satellite observations and
the spatial interpolation of H.

ext =
AOD

H
(2)

Following Equation (1), the values of γ′ and K (
α′ext,10

F ) at the monitoring stations can
be calculated with the matched observed values of the ext, RH, and PM2.5 concentrations.
Thereafter, by spatial interpolation, the spatial variation in the PM2.5 concentration can be
estimated using Equation (3):

PM2.5 =
AOD

H

K×
(

1−RHi
1−RH0

)−γ′
(3)

2.4. The WRF-Chem Model

The horizontal resolution of 9 km for the parent domain area (90◦E to 140◦E, 10◦N to
45◦N) was set for the WRF-Chem model analysis. Moreover, the domain was set up with
grid sizes of 188 × 149. Our current model settings cover most of China, including the
surrounding terrestrial and oceanic areas (Figure 2). We obtained the emission inventory
from the Multiresolution Emission Inventory for China (MEIC) and applied it with Final
Operational Global Analysis (FNL) to run the WRF-Chem model in this research. The MEIC
covers more than 700 anthropogenic sources of emissions in the Chinese mainland and
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contains five sectors (i.e., industry, power plant, transportation, residential combustion, and
agricultural activity) and more than 10 major atmospheric pollutants, including SO2, NOx,
CO, NMVOC, NH3, PM2.5, PM10, BC, OC, and carbon dioxide emissions [37]. For biogenic
species, the Model of Emissions of Gas and Aerosols from Nature was used [38]. From the
surface to the upper air limit of 50 hPa, there are 38 vertical layers, of which 12 layers are
located below 2 km to sufficiently represent the vertical structure of the boundary layer. The
model configuration and performance in the study domain can be found in our previous
publication [30].
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2.5. The CSEN Model

In the SEM, the parameters of aerosol characteristics (K and γ′) are generated based
upon long-term observed data regression and have relatively low spatial and temporal res-
olutions. Therefore, it is difficult to establish a high-resolution PM2.5 inversion with aerosol
parameters based on a large-scale ground-based observation network. We can expect
diminished model performance for the sites far from the ground-based observation sites.

To improve the SEM accuracy and evaluate the effect of aerosol characteristic varia-
tions, a new method for PM2.5 estimation based upon coupling the SEM and the CTM was
developed. As mentioned above, the CTM simulates both meteorological and aerosol chem-
ical and physical effects based on an emission inventory. In this research, the WRF-Chem
model was applied to provide simulated aerosol properties. As the WRF-Chem model
uses emission information with high temporal and spatial resolutions driven by reasonable
meteorology and basic chemistry, it is expected that the simulated overall aerosol prop-
erty pattern is relatively more reliable compared to interpolation of site-based regression,
although the uncertainty in absolute PM2.5 mass concentration simulation at individual
stations could be considerable.

Therefore, we first carried out a four-season simulation with WRF-Chem in this study.
The model provides simultaneous data, including hourly ext, RH, and PM2.5 concentrations
at the same grid cells. Linear transformation of Equation (1) by log-transforming both sides
at each grid cell, results in Equation (4) as follows:

ln
ext

PM2.5
= lnK− γ′ln

(
1− RH
1− RH0

)
(4)

which exactly satisfies a linear regression form as shown in Equation (5). γ′(i,j) and K(i,j)
can be fitted by the slope and intercept from the linear regression at each model grid
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(i,j) since X(i,j) and Y(i,j) are the previously known values. Thus, γ′(i,j) and K(i,j) can be
fitted by simultaneous measurements of ext (i,j) RH(i,j), and PM2.5(i,j) mass at the same grid.
The aerosol properties were derived once from each grid cell using the simulation of the
individual months in this study.

Y(i,j) = −γ′(i,j)·X(i,j) + lnK(i,j) (5)

Thus, the gridded γ′and K parameters based on CTM data can be derived. Combining
the observational ext and RH data, the PM2.5 mass concentration can be evaluated by
Equation (6) for the whole domain.

In summary, the spatial map of ext(i,j) and RH(i,j) can be achieved by the interpolation
of hourly ext(i,j) and RH(i,j) at GTS observational stations. Hour-specific AOD gridded data
are retrieved from the MODIS satellite, and H is calculated and interpolated based on the
observational visibility [24,25], while γ′ and K are gridded data estimated based on the
WRF-Chem simulation for each grid cell and for each month. The temporal and spatial
resolutions of the gridded γ′ and K could be further improved for downscaling issues.

PM2.5(i,j) =

AOD(i,j)
H(i,j)

K(i,j) ×
( 1−RH(i,j)

1−RH0

)−γ′
(i,j)

(6)

3. Results
3.1. Evaluation of Aerosol Characteristics from WRF-Chem: γ′ and K

According to Equations (4) and (5), the two integrated parameters of aerosol properties
can be derived by using the WRF-Chem data. The IHE of PM2.5 explains how visibility
deteriorates at a given PM2.5 level if the air humidity is higher than normal, which reflects
the dependence of the integrated light extinction ability of PM2.5 on RH. γ′ is the coefficient
of IHE. As demonstrated by Lin et al. (2015) [19], in addition to the RH dependence of the
hygroscopic growth effect of aerosol, we also include the RH dependence on FMF and MEE
factors, since the factors are also likely to depend on RH due to the variation in the aerosol
characteristics in various meteorological conditions.

The results presented in Figure 3 show that the γ′ values are affected by both anthro-
pogenic emissions and meteorological conditions. For the transition seasons (represented
by October and April), the overall absolute levels and spatial pattern of γ′ from the SEM
and WRF-Chem are similar, and the spatial pattern seems to be closely associated with emis-
sions [39,40]. We observed higher values of γ′ in the eastern parts of China than in other
regions. Guangxi, Jiangxi, Anhui, Shaanxi, Jiangsu, and Zhejiang were associated with sig-
nificantly larger γ′ values than other areas, related to the significant industrial development
in these areas in recent years. The lower values observed in the northern and central areas
and the Tibetan Plateau in China are mainly due to higher dust or biomass burning aerosol
loads [41], which are generally less hygroscopic than industrial aerosols [42]. A comparison
of the two results shows that, although the spatial patterns are similar, the CTM results
provide more details of the distribution of γ′ values at a much higher spatial resolution.
However, regarding the spatial pattern in the winter and summer seasons (represented by
January and July), the two γ′ results show considerable differences. Areas with the highest
γ′ in winter in the CTM results are missing in the SEM results.
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Regarding the seasonal variation in γ′ in the whole study domain, we observed
generally higher γ′ values in most of the southern areas in October, generally higher γ′

values in most of the northern areas in July, the lowest γ′ values in the whole domain in
spring, and a generally low γ′ background but highest γ′ values in specific areas, especially
in JJJ (Beijing–Tianjin–Hebei) and Shandong Province in winter. Generally, the widely
higher γ′ values in autumn and summer reflect the strong RH dependence of the IHE in
the wet season, while a lower background of γ′ reflects the weaker RH dependence of the
IHE in the dry season. Nevertheless, in specific regions, such as JJJ and Shandong Province,
the IHE can be significantly influenced by meteorological conditions.

More specifically, the dry season (i.e., spring and winter) is usually marked by lower
humidity, frequent cold fronts, and high wind speeds, which favor the formation of fugitive
dust and its advection [43–45]. Because of this fugitive dust or dust storms, the average
effective radius of particles in the dry season is larger, and the particles are generally less
hygroscopic than the fine particles [44–47]. As a result, the lowest γ′ values in the whole
domain occurred in spring, and a generally low γ′ background occurred in winter. The
significantly high γ′ values were observed in the JJJ and Shandong areas in January, which
should be related to the widely reported regional extreme haze events that frequently occur
in the winter [48]. During these extreme haze events, in addition to the pollution accu-
mulation due to stagnation and the significant decrease in the PBLH, abnormal southerly
winds bring airmasses laden with pollutants and moisture. The extreme haze events result
in an enhanced FMF, fine-mode effective radius, and volume concentration of PM2.5 due
to the hygroscopic growth effect of the particles and, after that, an increase in aerosol
extinction and total AOD [43,44]. However, this significant hygroscopic effect associated
with abnormal meteorological conditions, as shown in Figure 3a, cannot be reflected in the
SEM results (Figure 3e), which is likely due to the low resolution and poor representation
of the observation stations.

In spring (Figure 3b), the lowest γ′might be associated with coarser particle generation,
mainly due to the influence of more fugitive dust and dust storm events leading to a further
decrease in aerosol hygroscopicity. During the wet season (i.e., summer and autumn),
humid weather conditions are likely to be associated with a lower surface wind speed and
sufficient humidity conditions conducive to the larger hygroscopic effect of aerosols. The
higher γ′ values observed in the northern part than in the southern part of eastern China in
summer (and vice versa in autumn) might be due to the variation in the relative abundance
of precipitation.
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K represents the integrated mass extinction efficiency, which is determined by the
ratio of MEE and FMF [25]. As shown in Figure 4e–h, the MEE value is not sensitive to
different scattering aerosol species [49]. Higher K values are observed in the southwest
(Yunnan-Guizhou Plateau), northwest (Gansu), and some coastal areas located in eastern
parts of China (i.e., Zhejiang), which are probably more affected by higher loading of
coarse particles. The desertification in the Yunnan-Guizhou Plateau [50], the dust area in
Gansu, and the increased sea salt aerosols in coastal areas may lead to a lower FMF [51]
and thereafter a higher K value there. Overall, the spatial distribution patterns of the two
models were comparable. However, a more detailed spatial distribution of K values was
observed for the WRF-Chem results compared with the SEM in all seasons.
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3.2. Validation of the Estimated PM2.5
3.2.1. Statistical Results

All the daily PM2.5 measurements from 1695 monitoring stations were used as valida-
tion to evaluate the CSEN model performance. Figure 5 shows the scatter plots between
the observations and the estimated PM2.5 mass concentrations of the CSEN and the SEM.

Based on the SEM method, the correlation coefficients (R) between the observed and
estimated values were 0.82, 0.77, 0.75, and 0.78, with moderate biases (root mean square
error (RMSE) = 21.01, 11.63, 12.21, and 7.11 µg/m3) for January, April, July, and October,
respectively. For the CSEN method, on the other hand, the R values between the observed
and estimated values were 0.92, 0.82, 0.84, and 0.83, with a much lower model bias (RMSE
= 13.71, 8.19, 5.59, and 6.26 µg/m3) for January, April, July, and October, respectively. All
the slopes based upon the CSEN model are closer to 1.

The mean absolute error (MAE) and mean relative error (MRE) between the predictions
and observations for the four seasons were also calculated. The comparison of the four
seasons of the two methods is shown in Table 1. Significant improvement in the PM2.5
estimation by CSEN compared to that of SEM is clearly shown. In addition, both results
are better than the CTM performance for PM2.5 (the RMSE of January on average is greater
than 21 µg/m3 and R is lower than 0.6 [30]).
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Figure 5. Spatial correlation coefficients between the monthly (January, April, July, and October)
average of the evaluated PM2.5 average and ground-based PM2.5 are estimated ((a) CSEN; (b) SEM).

Table 1. Comparison of the CSEN, SEM, and WRF-chem model performances.

Method Month R 1 RMSE 2

(µg/m3)
MAE 3

(µg/m3) MRE 4 (%)

CSEN

Jan 0.92 13.71 8.56 10.22
Apr 0.82 8.19 7.22 11.36
Jul 0.84 5.59 4.65 12.29

Oct. 0.83 6.26 5.71 15.88

SEM

Jan 0.8 21.01 21.11 21.32
Apr 0.77 11.63 9.40 23.17
Jul 0.72 12.21 10.03 37.32

Oct. 0.72 7.11 6.83 20.15

WRF-chem

Jan 0.59 21.56 22.41 22.55
Apr 0.67 13.25 11.21 23.94
Jul 0.73 11.89 10.13 22.21

Oct. 0.71 8.61 7.88 21.45
1 Correlation coefficient; 2 root mean square error; 3 mean absolute error; 4 mean relative error.

3.2.2. The Seasonal Variation in Spatial Distribution

The seasonal variations (represented by January, April, July, and October) in satellite-
retrieved PM2.5 with the corresponding near-surface observed data from all the sites in
eastern China are shown in Figure 6. Here, the monthly averaged PM2.5 estimation was
calculated based on the result of the daily PM2.5 estimation. The results show that the
PM2.5 levels are much higher in northern China than in other regions. According to the
estimated results in Figure 6a–d, the PM2.5 pollution still shows regional properties, as
reported by previous studies [8,25]. Regional heating and the industrial sectors are mainly
responsible for pollution episodes. The highest pollution levels occurred in winter, followed
by autumn, spring, and summer. The modeling results in Figure 6a–h illustrate that the
highest pollution levels are mainly concentrated in Northern China Plain (NCP) areas,
consistent with the results from the ground-based monitoring stations (Figure 6i–l).

The PM2.5 concentration levels estimated by the SEM method in the NCP areas signifi-
cantly underestimated the observed concentration levels during winter. We also observed
a severe overestimation of the SEM results for the same region during autumn. The CSEN
model, on the other hand, provided a more robust result with higher levels of accuracy,
especially in the major polluted area.
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The spatial variation in the PM2.5 deviation as a percentage between the evaluated
PM2.5 average and ground-based PM2.5 average, including January, April, July, and October,
is shown in Figure 7. PM2.5 mass concentrations estimated by the CSEN model exhibit
much smaller MRE values than those analyzed by SEM. The MRE values calculated for the
ground-based monitoring stations were within the range from −50% to +50%, which were
on average 30% smaller, especially during winter and summer.
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Overall, significant improvements were observed in PM2.5 estimations by the CSEN
model specifically for January and July in terms of statistics and better spatial distribution
patterns. This better agreement should be attributed to the significant difference in the
estimated γ′ (especially in northern China) between WRF-Chem and the pure SEM method
(Figure 3a–c). On the other hand, the better agreement, and the reduced biases in the valida-
tion results, especially in winter and summer, showed that the CTM γ′ in the CSEN method
can provide more realistic aerosol properties, significantly improving model performance.

3.2.3. The Seasonal Variation in Major Clusters

To further explain the regional PM2.5 mass concentration variations, we mainly fo-
cused on four key clusters in China: Beijing–Tianjin, YRD, Sichuan, and PRD (Figure 8 and
Table 2). According to Figure 8, the PM2.5 concentrations retrieved by the two methods vary
significantly among different regions. January was the most polluted month in all four crit-
ical urban clusters in China. In the Beijing–Tianjin area, the PM2.5 concentrations dropped
from 58.85 µg/m3 in January to 38.27 µg/m3 in July, increasing slightly to 40.53 µg/m3 in
October. The mean PM2.5 concentrations retrieved by the CSEN model performed better
than those by the SEM in all four months, especially in January. On the other hand, neither
model performed well in October, with MREs of −20.94% and −23.71%, respectively. In
the PRD region, the mean PM2.5 concentration retrieved by the SEM method is seriously
overestimated, with MREs of 44.32%, 39.57%, and 38.76% in January, April, and July, re-
spectively. In the Sichuan area, both methods underestimated the PM2.5 concentration
in January, although the CSEN provided a closer value to the ground-based monitoring
stations. In the YRD region, the results from the CSEN method are slightly overestimated
in January (2.84%) and July (1.66%) and underestimated in April (−2.61%) and October
(−6.36%). In contrast, the results of the SEM are underestimated in January (−0.49%) and
October (−4.02%) and overestimated in April (12.57%) and July (29.08%). The overall
results obtained with the CSEN method provide more realistic values when compared with
the ground-based monitoring network data in the four clusters.
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Table 2. Performance of the AOD–PM2.5 algorithm with respect to the two methods in the four key
urban clusters.

Region Month In Situ (µg/m3) CSEN-MRE (%) SEM-MRE (%)

Beijing–Tianjin

Jan 58.85 1.69 −16.70
Apr 49.27 −3.97 −9.17
Jul 38.27 −5.58 −9.11

Oct. 40.53 −20.94 −23.71

PRD

Jan 40.71 0.59 44.32
Apr 21.09 −5.44 39.57
Jul 17.38 −3.86 38.76

Oct. 33.64 −9.15 −9.33

Sichuan

Jan 76.80 −7.18 −29.33
Apr 30.99 −3.93 4.05
Jul 18.85 −0.82 38.25

Oct. 22.49 −2.23 1.79

YRD

Jan 63.37 2.84 −0.49
Apr 33.10 −2.61 12.57
Jul 21.09 1.66 29.08

Oct. 32.16 −6.36 −4.02

4. Discussion and Conclusions

Large-scale high-resolution measurements of PM2.5 are fundamental to investigating
various environmental, climate, and adverse human health impacts. Although nationwide
ground-based PM2.5 monitoring networks are already implemented around China, limited
by the nature of in situ observations, reaching high-resolution PM2.5 retrievals at a larger
scale is still challenging and hinders understanding the variability of PM2.5 at different
spatial scales. State-of-the-art statistical and machine learning models combining ground
observations and satellite AOD have been applied to provide PM2.5 estimation. How-
ever, most of these are limited in the physical understanding between the model inputs
and outputs.

The physical-based SEM proposed in our previous study showed that the PM2.5
estimation accuracy could be greatly improved by combining the aerosol characteristics
into the physical model. In the SEM, the humidity coefficient (γ′) and an integrated
reference value (K) of aerosol characteristics could be obtained based on matched in situ
meteorological and air quality data, which are very sparse in spatial resolution and therefore
limit the resolution of PM2.5 estimation.

Therefore, in this research, we developed a new method for estimating surface PM2.5 by
coupling the SEM and a CTM-based numerical model (CSEN). The CSEN takes advantage
of the WRF-Chem model in providing high spatial resolution of aerosol properties to
optimize the aerosol parameters (γ′ and K) required for the PM2.5 estimation. Four months
of air quality were simulated with the WRF-Chem model to acquire the variation in aerosol
property parameters (γ′ and K).

Comparison of γ′ values and K values between the two methods show that their overall
spatial patterns are comparable, but the new method exhibits a significantly improved
resolution, and there is a significant difference in the γ′ values in winter and summer.
Validation results indicated that the correlation coefficient between the observed and the
estimated values increased to 0.92, 0.82, 0.84, and 0.83 with a much lower model bias by
CSEN, from 0.82, 0.77, 0.75, and 0.78, with a moderate bias by SEM for January, April,
July, and October, respectively. In addition, the RMSE was reduced by between 0.85 and
7.3 µg/m3.

The CSEN PM2.5 estimation is significantly improved in all seasons, especially in
winter and summer, which is because the CTM provides a more complete and more realis-
tic spatial distribution of aerosol properties with emission data at high spatial-temporal
resolution based on reasonable meteorology. However, the uncertainty in the absolute
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PM2.5 concentration simulated at individual stations could be primarily due to the exist-
ing model errors and uncertainties. The results prove that CSEN is valuable for PM2.5
evaluation at urban and regional scales, especially for regions lacking ground measure-
ments. It also provides valuable tactics for air pollution control strategies and health risk
assessment tactics.

Limitations remain in CSEN estimation mainly due to the following: (1) In this work,
we did not fill pixel gaps of AOD due to the existence of thick clouds, which might reduce
the model performance at these pixels. (2) The number of PM2.5 observed stations was
limited, and the PM2.5 observation stations were irregularly distributed, which might
reduce the performance of the model far from the monitoring station area. (3) Although the
results show that the CTM could provide a reasonably high spatial–temporal resolution for
γ′ and K values driven by emission and meteorology, the spatial resolution and accuracy
of meteorological field and aerosol parameters simulated by the WRF-Chem model are
still affected by model errors and uncertainties, which could be further improved by, for
example, more reliable parameterization schemes for the formation and the gas-particle
conversion of secondary aerosols. (4) The γ′ and K were fitted by one-month simulations
in this study to acquire the local average aerosol properties. The daily and synoptic scale
variation in aerosol properties due to the transport impact and abrupt emission variation
could be smoothed by using monthly period regression.
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Appendix A

Table A1. Longitudes and latitudes of the AERONET sites used in this study.

Site Latitude Longitude

Beijing 39.977◦N 116.381◦E
Beijing CAMS 39.933◦N 116.317◦E
Beijing_PKU 39.992◦N 116.31◦E
Beijing RADI 40.005◦N 116.379◦E

Xianghe 39.754◦N 116.962◦E
XuZhou_CUMT 34.217◦N 117.142◦E

Hong Kong Sheung 22.483◦N 114.117◦E
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