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Abstract: Object detection in remote sensing images (RSIs) requires the locating and classifying
of objects of interest, which is a hot topic in RSI analysis research. With the development of deep
learning (DL) technology, which has accelerated in recent years, numerous intelligent and efficient
detection algorithms have been proposed. Meanwhile, the performance of remote sensing imaging
hardware has also evolved significantly. The detection technology used with high-resolution RSIs
has been pushed to unprecedented heights, making important contributions in practical applications
such as urban detection, building planning, and disaster prediction. However, although some
scholars have authored reviews on DL-based object detection systems, the leading DL-based object
detection improvement strategies have never been summarized in detail. In this paper, we first
briefly review the recent history of remote sensing object detection (RSOD) techniques, including
traditional methods as well as DL-based methods. Then, we systematically summarize the procedures
used in DL-based detection algorithms. Most importantly, starting from the problems of complex
object features, complex background information, tedious sample annotation that will be faced by
high-resolution RSI object detection, we introduce a taxonomy based on various detection methods,
which focuses on summarizing and classifying the existing attention mechanisms, multi-scale feature
fusion, super-resolution and other major improvement strategies. We also introduce recognized
open-source remote sensing detection benchmarks and evaluation metrics. Finally, based on the
current state of the technology, we conclude by discussing the challenges and potential trends in the
field of RSOD in order to provide a reference for researchers who have just entered the field.

Keywords: object detection; deep learning; remote sensing; neural network; weakly supervised learning

1. Introduction

In recent years, considerable effort has been devoted to overcoming the challenge
of object detection in computer vision. Unlike image classification, object detection [1]
inherited from classification tasks not only needs to identify the category to which an object
of interest belongs, but also to locate the position of the object using a bounding box (BBox),
which makes the task more difficult and increases the requirements of the algorithm [2].

Large quantities of remote sensing data have been obtained from imaging optical
sensors on artificial Earth satellites and aerial platforms; such approaches have the ad-
vantages of being realistic and obtainable in real time. According to different imaging
spectral ranges, the data can be classified as visible, infrared, ultraviolet, multispectral,
hyperspectral, or SAR images [3,4]. These images make different contributions to the Earth
Observation System, promoting our understanding of the environment and facilitating
people’s activities. Recently, thanks to the rapid development of remote sensing platforms
and sensors, the fact that the quantity and quality of remote sensing data are improving
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has raised a new problem, i.e., how to effectively use existing data and maximize their
application value. Thus, object detection using RSIs, as a basic image analysis application,
is receiving more and more attention from researchers [5].

DL, which originated from research on artificial neural networks, can extract beneficial
information by stacking extremely deep network layers autonomously, thereby imitating
the learning mechanisms of the human brain. DL has undergone rapid development,
attracting a great deal attention due to its powerful data mining and analysis capabilities.
Compared with DL-based image classification [6,7], DL-based object detection was pro-
posed later but developed faster. Excellent object detection algorithms have emerged one
after another and have gradually extended to the remote sensing domain.

Due to the remote imaging of the Earth’s surface, RSIs have the characteristics of large
size, high viewpoint, and low spatial resolution compared with images acquired by ground
cameras. The major challenges for RSOD are as follows:

1. Complex object characteristics: First, the wide coverage of RSIs leads to the frequent
appearance of objects with large-scale variations, such as the coexistence of ships and
harbors in the scenarios. A top-down imaging view often causes objects to present a
disorderly directional arrangement, as shown in Figure 1a. Therefore, the detection
model not only has to be sensitive to the scale but must also be perceptive in terms
of orientation [8,9]. Second, the object size of some species may be small or even
occupy only a few pixels, as illustrated in Figure 1b. Such objects make up only a
very small part of the whole image and make extracting features from fewer pixels
more arduous [10]. Third, a high degree of similarity may occur among objects in
RSIs that are intensely similar [11], such as tennis courts and baseball fields, or roads
and bridges, as pictured in Figure 1c. The extracted similar features may confuse the
detector, resulting in incorrect judgments. Finally, RSIs may contain special categories
such as mountain roads and cross-sea bridges with extreme aspect ratios, such as in
Figure 1d; the slender appearance of such objects makes it challenging for the detector
to identify features accurately [12].

2. Complex image background: A major characteristic of RSIs is that the background
will occupy the majority of the scene. On the one hand, the extensive background
may overwhelm the object regions, causing the detector to fail to outline the object
effectively. On the other hand, the scene in which the image was taken can be relatively
cluttered and noisy, which can affect the detector’s ability to efficiently extract features
and correctly locate objects [13]. Therefore, searching and positioning objects from
highly complex scenes such as the one shown in Figure 1e turns out to be quite
demanding.

3. Complex instance annotation: DL-based models rely heavily on accurately labeled
training data. In general, a rich and high-quality dataset is more likely to provide rela-
tively satisfactory results in terms of training. Accurately annotating RSIs that often
present small and densely distributed objects is a time-consuming, labor-intensive
chore, and inaccurate labeling degrades the performance of the model [14]. Therefore,
complex sample annotations also inadvertently increase the complexity of detec-
tion implementation.

The above-mentioned possible complications hinder the development of the technical
path of RSOD. Urban monitoring, building planning, port management, disaster prediction,
post-disaster reconstruction, and various livelihood and military applications all require
accurate and efficient object detection technology. However, most existing reviews of RSOD
focus on the introduction of general-purpose detection algorithms and do not meticulously
summarize or review the significant strategies proposed to address the adaptation problems
arising from their application in the remote sensing field. For example, Ref. [15] was
published too early to capture the current trends. In [16], the authors focused on the
introduction of algorithms in the field of computer vision and proposed the DIOR data
set. The authors of [17] mainly researched aircraft detection algorithms with regard to
remote sensing. The development of detection algorithms based on DL was also described
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in [18]. Unlike these references, in this paper, we mainly summarize the current DL-based
improvement strategies concerning the characteristics of RSIs. At the same time, we classify
various types of improvement algorithms according to their characteristics, which include
the attention mechanism strategy, multiscale feature fusion strategy, mining contextual
information strategy, refined anchor strategy, direction prediction strategy, super-resolution
reconstruction detection strategy, transformer-based strategy, semi-supervised learning
detection strategy, weakly supervised learning detection strategy, and others. We also
divide these strategies into subcategories in order to form a complete classification system.
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The main purpose of this review is to extract the core knowledge of DL-based object
detection by collating recent studies, thereby helping researchers understand RSOD more
thoroughly. At the same time, we provide some research suggestions by analyzing current
state of the art technologies. The main contributions of this paper are as follows:

• We provide a comprehensive review of RSI object detection techniques based on
DL, including representative methods, implemented processes, benchmark datasets,
performance metrics, performance comparisons, etc.

• We systematically summarize the improved strategies proposed in recent years to ad-
dress the complex challenges facing remote sensing, and classify them into a taxonomy
in a hierarchical manner according to their characteristics.

• We discuss existing issues and provide a reference for potential future research directions.

A structure diagram of this paper is shown in Figure 2. In this paper, we describe tradi-
tional detection methods such as template matching, priori information, and machine learn-
ing methods, as well as presenting DL-based detection methods such as one- and two-stage
families. The DL-based detection process is organized into five steps: data pre-processing,
feature extraction and processing, BBox generation, detection, and post-processing. We
exhaustively introduce improved strategies designed for the remote sensing domain, which
include the attention mechanism, multi-scale feature fusion, mining contextual information,
the refined anchor mechanism, direction prediction strategies, super-resolution strategies,
Transformer-based methods, semi-supervised learning, weakly supervised learning, among
other methods, and construct a taxonomy. We summarize the foundation of performance
evaluations—benchmark datasets and performance metrics—and compare the performance
of multiple models.



Remote Sens. 2022, 14, 2385 4 of 41

Remote Sens. 2022, 14, x FOR PEER REVIEW  4  of  42 
 

 

two‐stage families. The DL‐based detection process is organized into five steps: data pre‐

processing, feature extraction and processing, BBox generation, detection, and post‐pro‐

cessing. We exhaustively introduce improved strategies designed for the remote sensing 

domain, which include the attention mechanism, multi‐scale feature fusion, mining con‐

textual information, the refined anchor mechanism, direction prediction strategies, super‐

resolution strategies, Transformer‐based methods, semi‐supervised learning, weakly su‐

pervised learning, among other methods, and construct a taxonomy. We summarize the 

foundation of performance evaluations—benchmark datasets and performance metrics—

and compare the performance of multiple models. 

The rest of this paper is organized as follows. Section 2 briefly reviews representative 

methods and presents the implementation process of object detection algorithms. We also 

exhaustively review improvement strategies for RSOD. In Section 3, performance evalua‐

tions are carried out. Section 4 discusses potential problems and predicts promising direc‐

tions for the future. Section 5 presents our conclusions. 

 

Figure 2. Structure of the article. 

2. Methods 

2.1. Review of Object Detection Algorithms 

2.1.1. Traditional Remote Sensing Object Detection Methods 

Template matching [19,20] is the original RSOD method. The process includes tem‐

plate generation and similarity calculation. The first step creates a template, i.e., a patch 

containing only objects, which is handcrafted to detect objects in RSIs. The similarity cal‐

culation slide searches potential regions and calculates the similarity between the region 

and the template in order to locate the objects. This method has the benefits of simplicity 

(in principle) and concise processing, but is not intelligent, since it requires hand‐crafted 

templates, and sliding has high computational complexity. 

Prior knowledge [21,22] uses both geometry knowledge and context knowledge to 

search for objects. Geometry knowledge utilizes the appearance information of objects to 

design models. Context knowledge creates a special spatial constraint between the objects 

and the background and transforms implicit knowledge of objects into explicit detection 

rules to search for satisfactory objects according to a set of rules. The key issue with this 
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The rest of this paper is organized as follows. Section 2 briefly reviews representative
methods and presents the implementation process of object detection algorithms. We
also exhaustively review improvement strategies for RSOD. In Section 3, performance
evaluations are carried out. Section 4 discusses potential problems and predicts promising
directions for the future. Section 5 presents our conclusions.

2. Methods
2.1. Review of Object Detection Algorithms
2.1.1. Traditional Remote Sensing Object Detection Methods

Template matching [19,20] is the original RSOD method. The process includes tem-
plate generation and similarity calculation. The first step creates a template, i.e., a patch
containing only objects, which is handcrafted to detect objects in RSIs. The similarity
calculation slide searches potential regions and calculates the similarity between the region
and the template in order to locate the objects. This method has the benefits of simplicity
(in principle) and concise processing, but is not intelligent, since it requires hand-crafted
templates, and sliding has high computational complexity.

Prior knowledge [21,22] uses both geometry knowledge and context knowledge to
search for objects. Geometry knowledge utilizes the appearance information of objects
to design models. Context knowledge creates a special spatial constraint between the
objects and the background and transforms implicit knowledge of objects into explicit
detection rules to search for satisfactory objects according to a set of rules. The key issue
with this approach is the accuracy of the priori knowledge, which depends more on human
subjectivity; as such, excessive human intervention may lead to unstable results.

Machine learning [23] was the dominant approach among researchers until the advent
of DL techniques. This traditional machine learning approach treats object detection as
a classification problem, where the model will first search for possible object regions in
an image and extract the histogram of gradients (HOG) features [24], bag of words (BoW)
features [25], texture features, contextual features, and other information in potential
regions. It then uses an independent classifier to discriminate among object categories to
determine whether the sub-region contains objects. Subject to the drawbacks that the feature
extractor and classifier cannot be trained in an end-to-end manner, high computational
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overhead, and an inaccurate positioning function, the machine learning approach has been
gradually replaced by DL and its use is being phased out.

2.1.2. Object Detection Methods Based on Deep Learning

At the ImageNet competition in 2012, the convolutional neural network (CNN)-based
AlexNet, designed by Krizhevsky et al. [26], won first prize by a huge margin over machine
learning-based SVM, signaling the arrival of the DL era, which has led to the evolution of
various image analysis techniques, including object detection. Mainstream object detection
algorithms can be roughly divided into two categories, i.e., one-stage and two-stage, with
the main difference being whether they include a step for the proposed region. Two-stage
algorithms add a step to the total process, which is equivalent to an additional screening
process on top of the original one, and therefore has advantages in terms of accuracy.
One-stage algorithms only perform a single detection; the absence of the proposal region
generation step is advantageous in terms of speed. The RSOD mostly applies detection
algorithms for natural images as the underlying framework and designs improvement
strategies for the adaptation problems arising from the migration of source domains, which
has gradually become a research hot spot in the field of image analysis and application.

As the name suggests, two-stage algorithms divide the implementation process into
two steps. The first step generates a series of possible proposals, and the second refines the
proposals to output the final results. The R-CNN family is a collection of algorithms which
are representative of this technique. Girshick et al. [27] applied a CNN to detection tasks for
the first time, giving rise to the creation of R-CNN. R-CNN generates nearly 2000 proposals
by the Selective Search (SS) algorithm [28]. The CNN is then used to extract features. Finally,
the SVM classifier and regressor are used to obtain the final detection results. To counter
the disadvantage of R-CNN, i.e., the need to train the classifier separately, fast R-CNN [29]
proposes a multi-task loss function and uses the Softmax classifier. Therefore, the network
can perform in an end-to-end fashion. For proposals of different sizes, ROI Pooling was
proposed to output feature maps into a fixed size, as required in the subsequent fully
connected network. Faster R-CNN [30] abandoned the SS algorithm and designed the RPN
subnet to obtain proposals from the anchor mechanism. The network directly inputs the
whole image, which reduces computing time. Faster R-CNN is also frequently employed
as the bottom network in RSOD. He et al. [31] proposed Mask R-CNN, which was the
first system to integrate the detection task with the segmentation task. The mask branch
was designed in parallel with the classification and detection branches, and the FPN [32]
structure was introduced to enrich the features of shallow layers. At the same time, the
network designed ROI Align, instead of ROI Pooling, to reduce the quantization error.
Thus, the detection precision was improved.

One-stage algorithms abandon the time-consuming step of generating proposals and
regard the detection task as a regress problem. Representative algorithms include the
YOLO [33–36], the SSD [37–46], and the anchor-free families [47–50]. YOLOv3 [35] and
SSD [37] have structural similarities, in that they both use multi-scale detection heads
for objects of different sizes, and similar anchor mechanisms. They have also been more
studied in RSOD. Liu et al. [44] proposed a new loss function named focal loss, which
efficiently reduces the weight of easy samples and increases the weight of hard samples to
make networks focus on them. Focal loss is also studied in remote sensing. The anchor-free
approach discards the anchor mechanism completely, proposing instead a new method
based on key point detection. CornerNet [47] proposed by Law et al. and CenterNet [49]
proposed by Duan et al. generate BBoxes by detecting the corner points or center points of
objects to further accelerate speed detection. These concepts have become a new research
hotspot in remote sensing.

2.1.3. Summary

In this subsection, we will review traditional object detection methods and object
detection algorithms based on DL technology. With the development of technology and



Remote Sens. 2022, 14, 2385 6 of 41

improvements in application field requirements, traditional methods that rely more on
human intervention can no longer meet the current needs of intelligent technology. Instead,
the combination of DL, as a new technology in artificial intelligence, and detection tasks
has promoted the development of image location recognition tasks. This approach has
rapidly grown to occupy the main position in the field of object detection. Two- and one-
stage algorithms, as two benchmarks of object detection, are widely employed in remote
sensing as the bottom framework. As shown in Figure 3, Faster R-CNN, which adopts
the two-step regression process of rough and fine detection, has become the most widely
available underlying framework. At the same time, as representatives of fast detectors,
one-stage algorithm families such as YOLO and SSD pursue high detection efficiency at
the cost of a little accuracy. As such, two- and one-stage algorithms have made remarkable
contributions to RSOD.
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2.2. Remote Sensing Object Detection Based on Deep Learning

The pipeline of RSOD can be broadly divided into five parts: (1) data pre-processing,
(2) feature extraction and processing, (3) the generation of a BBox, (5) detection, and
(5) post-processing. RSIs are first pre-processed to meet the input requirements of the
detection network and feature extraction network in order to extract the rough features
of the object, which are not conducive to the final detection and need to be enhanced via
certain improvement strategies. On the basis of the features which have been processed
to generate the BBox in order to outline the object, the subsequent head structures make
predictions based on information regarding the features and box. Final post-processing
filters out the useless detection information, yielding the final results. The overall pipeline
is shown in Figure 4.
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2.2.1. Data Preprocessing

Data Augmentation: DL models typically have millions of parameters and require
massive quantities of data to train. However, in practice, data are often insufficient or
unbalanced, in which case the model will not be sufficiently trained, leading to poor
generalization ability. Data augmentation [51–54], as a means of sample amplification using
software generation without increasing the cost of data acquisition, has broad applications.
The collection budget of remote sensing data, being more costly than other data, makes
the sample expansion in remote sensing more reliant on data augmentation techniques.
Currently, common data augmentation techniques include geometric transformation, color
transformation, fuzzy transformation, etc.

Geometric transformation [51,53] comprises translation, rotation, flipping, scaling, etc.
Translation transformation is undertaken to move the image in a particular direction by a
certain distance, and is one of the simplest geometric transformation methods. The object
appears in various locations in the image by simply moving it around, thereby increasing
the amount of data while also enriching the object diversity. Rotation transformation
describes the rotation of the object to a certain angle. Flipping, also known as mirror
imaging, involves flipping the object along a symmetry axis (x-axis or y-axis). Due to a lack
of training data, the detection network cannot adequately learn the orientation changes
of the rotating objects in the training samples, resulting in the model being insensitive to
the orientation. The rotation method can enrich the orientation information of the rotating
objects so that the model can learn the object features of various orientations, effectively
improving the generalization performance of the rotating objects. Scaling transformation
involves enlarging or reducing the image size according to the scale factor, which effectively
increases the scale diversity of the object. As described in the introduction, the scale of
remote sensing objects varies widely, and there are large differences in the scales of the
same class of objects. The scaling method can increase the scale diversity of an object so
that the detector can effectively learn the object features at each scale and fully solve the
limitation of the scale variation phenomenon of remote sensing objects.

Color transformation [54], usually referred to as HSV (hue, saturation, luminance)
transformation, refers to the process of changing the image colors [55–57]. During the
imaging of remote sensing sensors, the brightness of the acquired RSIs is different due to
environmental factors such as lighting conditions, cloud cover, and atmospheric conditions.
In these respects, differences can easily interfere with the accuracy of detections. HSV
transformation changes the brightness of the image by adjusting the hue, saturation,
and brightness channels to make the detection model more robust to RSIs with different
colors. This transformation includes linear and nonlinear transformations, where the
former changes the overall brightness of the image by randomly perturbing the pixels
in the hue, saturation, and brightness channels, while the latter commonly comprises
gamma transform, which enhances the gray values in the darker regions of the image
through nonlinear forms to change the overall brightness of the image. This nonlinear
transformation enhances the details of the image by brightening dark areas and reducing
the brightness of light areas.

Blurred transformation [58], also called smoothing transformation, is a means of
making images blurred. The main effect is that it reduces the otherness between pixels to
smooth images and reduces the noise and the level of detail in the images to alleviate the
network’s reliance on image quality. Gaussian blur is one means to achieve the smooth
effect by the weighted average of pixels in the form of normal distribution.

In addition to these conventional data augmentation methods, Sharma et al. [59]
designed a new geometric data augment strategy which segments images into two rect-
angular parts and exchanges the locations thereof to acquire new images after splicing.
Experimental results show that the effect is better than that of standard geometry and color
transformations. Wu et al. [60] designed a new cropping method to avoid acquiring a
low-quality image containing a large amount of background. In their approach, a large
sub-block is first cropped, and then the final sub-image is obtained by performing further
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cropping in the ±45◦ direction within this sub-block. The authors of [61,62] stretched the
histograms of images by a certain factor, which not only augments the images but also
effectively suppresses the noise in RSIs.

Image Clipping: Image cropping is a strategy for slicing an image into a series of
small patches of preset sizes. Owing to a special imaging mechanism, RSIs have a large
image size, i.e., a high-resolution RSI usually has millions of pixels, but existing systems
cannot effectively process such huge images due to limitations in computing capacity.
Image cropping involves sliding the original complete RSIs into a series of sub-blocks
whose sizes need to meet the requirements of network input [63]. Then, the sub-blocks are
merged and stitched back into a complete image to obtain the final detection result [56],
which can effectively overcome the problem of the inefficient detection effects of large RSIs.
The image is usually cut with a certain overlap area during processing to avoid the problem
of the object at the segmentation boundary not being detected properly after it is split into
parts. As such, choosing an optimal the overlap rate is key; a high overlap rate yields a
relatively intact object but also creates more sub-blocks. Conversely, a low overlap rate
yields fewer sub-blocks for faster detection, but the object may be incomplete.

2.2.2. Feature Extraction and Processing

Feature extraction is an indispensable step for various tasks including image recogni-
tion and object detection, and can be considered the foundation of DL technology. Clear
features contribute to network forecasting and reduce the complexity of detection tasks.
Current mainstream feature extraction networks include AlexNet [26], VGGNet [51],
GoogleNet [64], ResNet [52], and DenseNet [65]. AlexNet [26] was proposed in 2012
and won the ImageNet competition that year. That network successfully brought DL into
the limelight with its first design of a CNN as a deep network and use of GPUs to accelerate
the process. Subsequently, VGGNet [51] attempted to create small processing kernels such
as 3 × 3 small convolutional kernels and 2 ×2 pooling kernels to reduce the number of
parameters. Instead of stacking deep layers, GoogleNet [64] improved performance by
connecting several convolutional modules in parallel; this approach was the ImageNet
champion in 2014. ResNet [52] is the most commonly used feature extraction network. In
it, the residual module and skip connection structure effectively overcome the problem
of gradient disappearance and gradient explosion, thereby successfully implementing an
extremely deep network design. DenseNet [65] connects all layers by skip connection,
which enables not only the transmission of information but also the full utilization thereof.
In addition, the YOLOv2 [34] and YOLOv3 [35] models proposed for object detection tasks
independently created a specific backbone network, DarkNet, which borrowed from the
idea of residual networks. The utilization of the backbones is illustrated in Figure 5. The
most widely used backbones are ResNet and VGGNet, as these can adequately extract the
features of objects. DarkNet, designed by YOLO, has been extensively researched. Other
networks such as ZFNet [66] and MobileNet [67] have also achieved satisfactory effects.
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The complexity of RSIs may cause the features extracted from the backbone to be
unfavorable in the final detection structure, affecting the subsequent results. To improve
the accuracy, a variety of excellent feature processing strategies have been put forward,
such as the attention mechanism, mining context information, multi-scale feature fusion,
etc. These are discussed in Section 2.3.

2.2.3. Generating a Bounding Box

Detection tasks need to accurately locate the position of an object using a BBox, i.e.,
they must create high-quality BBoxes that match sufficiently well with the ground truth.
Current methods for generating BBoxes include the traversal-based method, anchor-based
method, and key point-based method.

Traversal Based Method: The sliding window traversal form using windows of
different sizes sliding over the image by a fixed step to build a box was the first method
used to generate the BBox; however, tiling such massive, redundant boxes significantly
affects the model’s efficiency. SS [28] is a selective traversal method which first generates a
large number of candidate regions by the image segmentation method. It then calculates the
degree of similarity between adjacent regions including the color, texture, size, and spatial
overlap and merges the two candidates with the highest similarity. The above process is
repeated until optimal BBoxes are generated. The SS algorithm increases the restrictions on
the generated boxes so that most invalid and redundant boxes can be effectively eliminated,
in contrast to the sliding window method. Edge Boxes [68] is a method to define BBoxes
based on edge contours. The method first generates a map of possible edges of an object
utilizing image processing. It then creates a segment of edge groups based on the points
on the edge line in the map with a certain strategy, and calculates the similarity between
groups and clusters to determine all the edges of an object and obtain boxes. Unlike SS,
Edge Boxes can also provide an objective score for one box based on the number of enclosed
contours, which is a more accurate method of generating BBoxes.

Anchor-Based Method: The anchor mechanism that appeared in Faster R-CNN [30]
proposed by Ren et al. was proposed to further improve the quality of the BBox and to
reduce the time required for that task. In contrast to the traversal method, this mechanism
presets a series of anchor boxes of different sizes and aspect ratios on the final feature maps.
Since this method operates on the feature map, no additional is required to create the boxes.
Moreover, each point on the feature map sets anchor boxes and can cover almost all objects.
The anchor mechanism has been widely applied in RSOD.

Key-points-Based Method: Anchor-free is another popular method. It utilizes key
points in an innovative way to generate BBoxes. The main idea is to generate boxes by
searching the key points of the object (corner points or center points). It then determines
the BBox based on the predicted shape. CornerNet [47] is the cornerstone of key point
detection. It determines the BBox by detecting the upper left and lower right corner points
of objects in pairs, providing a new approach to object detection. To address the problem in
CornerNet, i.e., when key points often fall outside the object, ExtremeNet [48] improved
the network to generate BBox using four extreme points (top, bottom, left, right). At the
same time, the center point was detected to combine these four points. Based on CornerNet,
CenterNet [49] further restricted the generated boxes according to whether the region
generated contains the center point. This model has also been widely applied in RSOD
on account of its excellent performance. At present, the key points-based method and
anchor-based method are developing in a mutually complementary manner.

This paper summarizes the methods of generating BBoxes described in 68 papers,
as illustrated in Figure 6 and Table 1. It can be seen that the anchor method, as the most
popular method at present, accounts for the majority of these papers. With this method, the
hyperparameters need to be designed in advance. As such, inaccurate parameter design
can produce poor network performance. The traversal method appears to be widespread in
the early stages. However, due to the drawback of requiring inefficient input of BBoxes into
the network multiple times for the same image, this method has been gradually phased out.
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Nonetheless, the SS algorithm is often used for weakly supervised remote sensing detectors
that do not have location labels. The key points-based method can eliminate the tediousness
of creating boxes and generate BBoxes with suitable object scale and shape based directly
on the key points by network prediction, thereby greatly improving the detection speed. It
has therefore become an emerging research direction in RSOD. However, this method is
more stringent in terms of the accuracy of key point predictions, and inaccurate predictions
can easily cause missed detections and poor localization.
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Table 1. List of reviews of methods for generating BBoxes.

Methods Characteristics Representatives

Generate BBox

Based on Traversal
method

• Produces many BBox Slide window
• Low efficiency Selective search
• Commonly used in weakly supervised detectors Edge box

Based on anchor
• Presets a series of BBox

Anchor• High recall rate
• Is heavily dependent on the super parameters settings

Based on key points
• Generates BBox from key points

Anchor-free• No cumbersome BBox generation required
• More dependent on the accuracy of key point detection

2.2.4. Detection and Post-Processing

After obtaining the features and BBoxes, the network performs the final regression and
classification tasks by predicting the head structure at the back end of the model. According
to the difference between one- and two-stage algorithms, the network head detects the
objects by different means. The two-stage process uses a fully connected network to link
the detection head with the backbone and adopts the ROI Pooling layer [29] or ROI Align
layer [31] to unify the feature map size to address the limitation of the fully connected
network for the input features. One of the fully connected layers is used to predict the
object category by the SoftMax layer, while the other outputs a four-dimensional vector
corresponding to the center point coordinates of the BBox and the correction of the length
and width information to more closely match the ground truth. On the other hand, the one-
stage approach combines the classifier and regressor together and performs the convolution
operation directly on the last layer of the feature map, outputting a multi-dimensional
vector containing the prediction of the category and the correction of the position.
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After obtaining the prediction result through the network head, post-processing, e.g.,
non-maximum suppression (NMS) [69] or online hard example mining (OHEM) [70], is
performed to optimize the output.

NMS: The main role of the NMS algorithm [69] is to remove redundant detection
results. All methods other than key points-based methods will flatten a large number of
detection results in a single image in which the same object is being repeatedly detected.
The purpose of this algorithm is to retain the best detection results for each object and to
remove, as much as possible, redundant, low-quality, or background results. The method
selects the box with the highest confidence score among all the detection results and
calculates the intersection ratio of the remaining BBoxes to the detection results. Redundant
results are eliminated by setting a fixed threshold.

OHEM: In general, the performance of the network in terms of detecting difficult
objects reflects the power of the model, and the degree of difficulty encountered regarding
object identification contributes to the network performance. OHEM [70] is designed to
improve the ability to detect difficult objects by mining more complex results. Specifically,
the method computes the detection difficulty of all outcomes reflected by the loss value;
the larger the loss value, the greater the detection difficulty. Then, OHEM selects some of
the difficult results as examples, and sets the loss of the remaining boxes to 0. Therefore,
only the selected difficult examples are used for network training in the terminal phase.
In RSIs, the background occupies most of the image, and a large number of background
boxes are generated, which causes the network to focus on the background area. On the
other hand, OHEM only selects a part of the background samples that contribute to the
network for training, which effectively overcomes the problem of foreground background
imbalance. Thus, OHEM improves the detection performance of RSIs.

As shown in Figure 6, most papers use NMS to deal with the results, but the threshold
setting involves a trade-off, in that setting the threshold too high will not be effective in
terms of removing redundant boxes, while setting it too low will remove useful boxes,
resulting in a lower recall rate. Although OHEM can effectively improve the robustness of
the network, this algorithm adds considerable computational burden, and as such, it has
appeared in only a few papers. It is worth noting that post-processing is not necessary—
some papers did not use post-processing and achieved suitable results.

2.2.5. Summary

In this subsection, we introduce the pipeline of RSOD based on DL, aiming to help
readers to further understand object detection in RSIs. The pipeline of RSOD is the same
as that of the natural domain, but it adds an image clipping step due to the larger size of
RSIs compared with natural images. In addition, each step in RSOD is more detailed and
stricter compared with those in the natural domain.

2.3. Improved Methods for Object Detection Based on Deep Learning

As mentioned above, because of the adaptation problem arising from source domain
migration, the application of common object detection algorithms to RSIs does not produce
satisfactory results; differences in appearance, shape, and features between remote sensing
objects and natural domain objects are the main reasons for this. The features extracted
from the source domain framework may contain useless and interfering information that is
not suitable for the subsequent detection network. Additionally, not only feature extraction,
but also the other detection parts of the general framework may not be appropriate for
the detection environment of the remote sensing domain. This subsection introduces
commonly applied improvement strategies and optimization methods related to these
problems, as shown in Figure 7.
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2.3.1. The Attention Mechanism-Based Method

RSIs have large and complex backgrounds in which objects are easily submerged,
especially small objects, leading to low recall rates. Meanwhile, the extreme imbalance
between the foreground and background in RSIs causes the network to pay more atten-
tion to the background, interfering with the operation of the detector. Drawing on the
characteristics of visual perception, humans selectively focus on an object of interest and
ignore most other information when observing complex scenarios. This phenomenon is
known as the attention mechanism; it has been heavily researched and utilized in computer
vision. The attention mechanism is regarded as a method of resource allocation, i.e., it re-
distributes initially evenly distributed resources according to the importance of the objects
in the scenario [71]. In image analyses, the resources are assigned with different weights
to emphasize diverse regions. Therefore, the attention mechanism is effective in terms of
dealing with complex background problems in remote sensing.

This approach may be divided into the spatial attention mechanism, channel attention
mechanism, and joint attention mechanism. The spatial attention mechanism captures pixel-
to-pixel relationships at the image level to generate a mask map that emphasizes useful
regions on the feature map by weight. This method differentiates between distinct image
parts and focuses more on the object of interest to be detected. Currently, self-attention is
frequently utilized to generate spatial attentional graphs; this process is shown in Figure 8a.
Hua et al. [61] combined the attention feature maps generated by self-attention with a
long short-term memory network to construct a deep feature pyramid. Wang et al. [72]
embedded a self-attention module into the backbone to capture the correlation between the
different regions and obtain discrimination features. Shi et al. [73] used the spatial attention
mechanism to adaptively incorporate context information into feature maps to improve
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recognition and localization accuracy. Chen et al. [74] proposed a cascade attention network
(CA-CNN) composed of a patched self-attention module and a supervised spatial attention
module to improve the feature representation of objects. Zhang et al. [75] designed an
attention module for space and scale perception that directed the network’s attention
toward more informative features and suitable feature scales. Zhang et al. [76] built a center
point detection network based on the spatial attention mechanism.

Remote Sens. 2022, 14, x FOR PEER REVIEW  14  of  42 
 

 

computational overhead slightly, while the network needs to learn the distribution of the 

image autonomously and assign weights both spatially and in terms of the channel, which 

increases the learning responsibility of the network. 

 
(a) 

(b) 

Figure 8. Schematic diagram of  the attention mechanism.  (a) The process of generating a spatial 

attention map by self‐attention. (b) The process of generating a channel attention mechanism map 

by SENet. The colors of the attention value represent different weights. 

2.3.2. The Multi‐Scale Feature Fusion Based Method 

Feature fusion combines various levels of features in the form of cascades or element 

sums to aggregate and enrich information. It has been widely accepted in RSOD. In order 

to extract effective features, the network is often designed with deep structures, and the 

resolution of the features at different levels leads to discrepancies in the amount of infor‐

mation contained and, in turn, expressed, especially for small objects. Meanwhile, as for 

the features of forward processing, the bottom features are generally extracted from the 

edges, gradients, and texture features of the object, which contain strong spatial location 

information and are more suitable for object localization. In contrast, the higher‐level fea‐

tures are generally extracted with the discriminative part of the object, such as the wings 

and head of aircraft, which have strong semantic information and are more suitable for 

classification. Unlike  the recognition  task, which only requires  features with strong se‐

mantic information to fully accomplish its goal, the detection task also has strict require‐

ments for features with location information. The effective combination of features with 

different layers can adequately compensate for the lack of information in the single‐layer 

map, and undoubtedly improve detections. 

At present, general multi‐scale feature fusion methods include simple feature fusion, 

feature pyramid fusion, and cross‐scale feature fusion. Simple feature fusion combines the 

feature map of the top layer and adjacent layers, as shown in Figure 9a, fusing the multi‐

layer maps into the same size by a sampling strategy, and allowing features to consider 

adjacency information. After the layer‐by‐layer processing of the deep network, the infor‐

mation is gradually compressed, i.e., the amount of information contained in the features 

Figure 8. Schematic diagram of the attention mechanism. (a) The process of generating a spatial
attention map by self-attention. (b) The process of generating a channel attention mechanism map by
SENet. The colors of the attention value represent different weights.

The channel-level attention mechanism aims to obtain correlations between feature
channels. This method processes information at the feature level to distinguish different
channels and enhances the object feature channels. The method establishes dependencies
between channels and strengthens the relationship between the features of objects. The
most popular such mechanism is SENet [77] proposed by Hu, which obtains the global
distribution of channel responses by a squeeze operation to grasp the relationship between
features, and computes the weight of each feature channel by an excitation operation to
emphasize the useful features and restrain the useless ones. SE-Net has pushed the channel
attention mechanism into the spotlight, as shown in Figure 8b. Wu et al. [60] added the
deformation convolution channel attention block (DCCAB), which highlights the features
of objects and inhibits noise.

The joint attention mechanism employs both spatial and channel attention mechanisms,
redistributing the originally uniformly assigned weights twice at the image and feature
channel levels. This method not only determines the relationships among feature spatial
locations but also captures the correlations of different features. Li et al. [78] modeled the
spatial position dependence between global pixels to highlight object features and jointly
explore a spatial attention network and a channel attention network to detect small objects
surrounded by complex backgrounds. Chen et al. [79] used dilated convolution and global
average pooling to obtain spatial and channel attention maps. Tian et al. [80] introduced
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the attention mechanism to enhance the object features while reducing the influence of
the background.

The attention mechanism adequately handles the problem of complex backgrounds in
RSIs and alleviates the challenges of low contrast and lack of visual cues to a certain extent.
The spatial attention mechanism aims to redistribute the process of reassigning weights
to information on an image feature pixel level. The channel-level attention mechanism
treats the feature map as a whole and instructs the network to devote more effort to
the object features. The joint attention mechanism implements both operations at the
same time. It is worth noting that the process of pixel-by-pixel computation increases the
computational overhead slightly, while the network needs to learn the distribution of the
image autonomously and assign weights both spatially and in terms of the channel, which
increases the learning responsibility of the network.

2.3.2. The Multi-Scale Feature Fusion Based Method

Feature fusion combines various levels of features in the form of cascades or element
sums to aggregate and enrich information. It has been widely accepted in RSOD. In
order to extract effective features, the network is often designed with deep structures, and
the resolution of the features at different levels leads to discrepancies in the amount of
information contained and, in turn, expressed, especially for small objects. Meanwhile, as
for the features of forward processing, the bottom features are generally extracted from the
edges, gradients, and texture features of the object, which contain strong spatial location
information and are more suitable for object localization. In contrast, the higher-level
features are generally extracted with the discriminative part of the object, such as the wings
and head of aircraft, which have strong semantic information and are more suitable for
classification. Unlike the recognition task, which only requires features with strong semantic
information to fully accomplish its goal, the detection task also has strict requirements for
features with location information. The effective combination of features with different
layers can adequately compensate for the lack of information in the single-layer map, and
undoubtedly improve detections.

At present, general multi-scale feature fusion methods include simple feature fusion,
feature pyramid fusion, and cross-scale feature fusion. Simple feature fusion combines
the feature map of the top layer and adjacent layers, as shown in Figure 9a, fusing the
multi-layer maps into the same size by a sampling strategy, and allowing features to
consider adjacency information. After the layer-by-layer processing of the deep network,
the information is gradually compressed, i.e., the amount of information contained in the
features of the adjacent top layer becomes lower than that of the adjacent bottom layer. This
strategy can compensate for the lack of information resulting from the feature transmission
process. At the same time, since the features of adjacent layers have strong correlations
and inheritance, fusing the features does not trigger the problem of network confusion
caused by large differences in terms of information, and only a small number of additional
parameters and calculations are required. [58,62,81–83].

Feature pyramid fusion is a popular fusion method in RSIs. Its name refers to its
top-down fusion order, which evokes the shape of a pyramid. The method adopts layer-
by-layer processing, which gradually passes down the information expressed in the upper
layer, thus making each layer feature rich in semantic information. As shown in Figure 9b,
the method adopts a lateral connection module to combine the information transmitted
from the upper layer after scale amplification with the adjacent shallow information. This
intermediate information is then to transmitted downward layer by layer until the bottom
layer receives the fused information feedback, thereby completing the whole pyramid
flow form of the transmission pipeline. The pyramidal fusion is perfectly suitable for
multi-scale predictions in RSOD, since the feature information that needs to be processed
and recognized by the multi-scale detection head is enhanced. The underlying features that
contain all the information from the upper layer are the biggest beneficiaries, which also
alleviates the small object problem. However, this fusion method complicates the structure
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and introduces more complex computation than the first one; at the same time, it blindly
fuses the features in each layer, some of which may contain noise and useless information,
which is a drawback associated with the technique [12,73,75,84–86].
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Unlike the feature pyramid fusion method, the cross-scale feature fusion method
fuses the features of all layers, as shown in Figure 9c. The fused features fully collect the
information at all scales, which contains a large amount of global and local knowledge
that is more beneficial for detecting objects at different scales [11,74,87,88]. The subsequent
information separation process up- and down-samples the features to the original reso-
lution of each layer in order to match the requirements of the subsequent detection head.
However, this cross-scale fusion approach requires a larger magnification of the bottom and
top layer features that deviate from the center, resulting in information compression and
blurring problems that can severely compromise the original feature and cause serious in-
formation loss. Moreover, like pyramidal fusion, non-differentiated fusion imports useless
information to each layer, which may negatively affect the performance of the network.

In addition to these three fusion methods, additional methods exist, such as those de-
scribed in [89,90]. In general, multi-scale feature fusion has become an essential processing
method for RSOD; it contributes greatly to the efficacy of the information represented by
the features. The first approach of fusing neighboring layers only enriches the features at
a single scale and is more suitable for single-scale detection; it does not make full use of
the rich location information of the underlying layers, and single-scale detection cannot
adequately adapt to remote sensing objects with complex scale variations. The latter two
fusion approaches consider multiple layers of information and are more suitable for multi-
scale predictions. Pyramidal fusion aims to pass down the rich semantic information from
the top layer; however, the top layer does not receive any signal. Multiscale cross-fusion
fuses all layer features in an undifferentiated way, aiming to enrich the information in each
layer, but also increasing the computational complexity.
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2.3.3. The Mining Context Information-Based Method

Contextual information generally refers to semantic information that contains strong
symbiotic coupling between the object and the surrounding environment. With the help of
such information, an object whose category originally could not be clearly distinguished
according to its own characteristics can be effectively identified based on clues provided by
the environment. For example, it is difficult to distinguish between a bridge and a road
without using surrounding environment information such as the presence of lakes and
towns, which are related to the object class and can reduce the ambiguity of categories.
Thus, mining useful contextual information is valuable for distinguishing among similar
objects. Contextual information can be divided into two categories: local and global. Local
contextual information describes the correlation between an object and neighboring objects,
or part of the environment in terms of color, texture, spatial distribution, and semantic
representation. This can provide key semantic cues in weak feature responses embodied
by pixels inside the object and enhance information representation from external factors.
Global context information is closely related to the scene, which reflects the association
between the object and all areas in the image. The vast scenes of RSIs contain a large
number of spatial and semantic relationships. Spatial relationships can effectively assist in
object localization, while semantic relationships reflect the strong symbiotic correlations
between the scene and the internal object, which can be regarded as a type of a priori
information that is useful for object identification.

At present, common methods for extracting contextual information can be roughly
divided into three categories: expanding the BBox, enlarging the receptive field, and the
attention mechanism. Expanding the window of the BBox is a simple method to increase
the amount of contextual information. The detection network can obtain environmental
information from outside the object by expanding the size of windows while extracting
the object features. This environmental information as a supplement to the local contex-
tual information can alleviate the problems of blurred appearance and poor structural
information, effectively improving the network’s ability to recognize objects. Li et al. [91]
designed a network that simultaneously extracts features of 1× and 1.5×window sizes and
fuses the features with a restricted Boltzmann machine (RBM). Gong et al. [92] designed a
context mining layer in the network to adaptively generate context regions of appropriate
size. Liu et al. [93] built a module to integrate global and local features, which produces
horizontal minimum boundary rectangles of rotating boxes, thereby enlarging them.

The enlarging receptive field method is similar in principle to the first method, as it
also makes the feature map cover a larger area of representations and achieve the purpose
of learning contextual information. The receptive field is the result of the size of a region
of information on the original input image, and how this is expressed by each pixel on
the feature map. The scale of a feature’s receptive field is based on how large that feature
appears in a region of information in the original image—in other words, the size of the
region from which the convolution kernel can extract information from the original image.
Although high-level features contain less information, the receptive field of those features is
much higher than that of the low-level features after multiple convolution operations. These
high-level features provide strong semantic information generated by large receptive fields,
and are more suitable for category identification. One effective way to increase the receptive
field is to increase the size of the convolution kernel, although this has the shortcoming of
introducing too many parameters into the computation and thus affecting the efficiency.
The hole convolution module, specially designed to increase the receptive field, adds holes
to the regular square kernel, allowing it to be scaled up without increasing the number of
parameters so that more information can be extracted. Wang et al. [94] designed a basic
receptive field module to extract context information by integrating feature maps obtained
from three parallel dilated convolutions with different dilated rates. Liu et al. [86] proposed
the receptive field module, which consists of three parallel branches, i.e., a convolution layer
of different sizes, an asymmetric convolution layer, and a dilated convolution layer with
different dilated rates. Wang et al. [95] designed a receptive field module with five branches,
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in which four layers carry out dilated convolution to extract local context information while
the other branches perform global pooling to extract global context information in order to
obtain the discriminative features. Han et al. [58] inserted three serial dilated convolution
layers into the residual module to extract context information. Yuan et al. [87] designed four
parallel dilated convolution branches to increase the receptive field and help the network
generate higher-resolution feature maps for local context information.

The attention mechanism calculates the correlation between neighboring pixel pairs in
the image and highlights the dependency between the object and the scene. This can be
supplemented as additional contextual information to enrich the features, and also guides
the network to emphasize useful contextual information around the object. Thus, the atten-
tion mechanism is an effective strategy for contextual information mining. Shi et al. [73]
used self-attention to generate a spatial attention map and adaptively included global
context information in the feature map to improve object recognition accuracy. Li et al. [71]
designed a cross-layer attention module to compute the global attention mapping and share
that mapping with all locations. Zhang et al. [75] constructed a spatial scale-level attention
module to instruct the network to focus on the regions with more context information at
the correct scale.

Table A1 summarizes the characteristics of the three methods to enhance contextual
information. The method of expanding the BBox is the most direct, but the window size
should be set carefully; if it is too small, it cannot effectively to extract the contextual
information, and if it is too large, noise will be introduced. Increasing the receptive field
starts from the convolution operation, which increases the range of information areas
that can be extracted by convolution to mine contextual information from around the
object. However, there is a hole between the hole kernels, which may cause the loss of
information due to the discontinuity between the features. Thus, it is necessary to add
multiple branches to the hole convolution layer at the same time in order to solve this
problem, which obviously expands the complexity of the network. Attention mechanisms
focus more on connections between the objects and scenes, emphasizing useful contextual
information and suppressing background noise.

2.3.4. The Refined Anchor Mechanism Based Method

The anchor mechanism is a strategy of pre-defined BBoxes designed to ensure detection
recall. Its initial application object is the natural object, but there are large differences
in terms of the scale, appearance, and orientation between remote sensing objects and
natural objects. The direct application of the original anchor mechanism by remote sensing
detectors generates maladaptive problems arising from source domain migration leading
to performance degradation. Anchor improvement strategies have been designed to deal
with complex objects and solve the limitation of detector performance resulting from the
presence of unsuitable anchors in the original settings.

In general, the anchor mechanism sets multiple discrete-scale base boxes at each pixel
point of the image to ensure that the recall closely matches the ground truth. The authors
of [96] pointed out that the anchor can only regress the box in a limited range, and the
object beyond the bound regression is easily ignored by networks. As such, the anchor
scale discontinuity problem needs to be addressed. Presetting more scale anchors at each
location to roughly cover complex scale variations of remote sensing objects can effectively
alleviate scale variability issues, and is an effortless operation. Dong et al. [97] calculated
the scale range of all kinds of objects in datasets and designed more suitable prior scale
parameters. However, this method only has a favorable effect on the statistical dataset,
and the data must be re-counted when the dataset is replaced. Han et al. [58] chose to
generate anchor boxes with all scales on the feature map of each level; however, this
method completely abandoned the idea of “divide and rule”, i.e., that large, medium, and
small objects need to be detected simultaneously on a single scale, which may make the
detector insensitive to scale. Wang et al. [96] proposed a full-scale detection network with
a scale-invariant regression layer that contains 14 detection heads in the regression layer,
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allowing the discrete BBox to cover full-scale objects in the regression process. However,
setting up so many heads inevitably increases the time cost.

Setting massive anchor boxes on each image pixel point has become a commonly
accepted practice. However, this undifferentiated tiling strategy requires significant com-
puting resources and does not achieve suitable results for special remote sensing objects.
For this reason, various adaptive anchor strategies have been proposed. Yu et al. [98]
designed a sub-network for an orientation guided anchor mechanism in which the anchor
is generated only at the location where the object may exist, and the network only generates
a few high-quality anchor boxes. Hou et al. [12] found that all categories of objects have
their own aspect ratios, which can be regarded as prior information. The network generates
BBoxes by setting base rectangle boxes with aspect ratio information without generating a
large number of redundant anchors. Tian et al. [80] used the attention mechanism to high-
light the object area and generate anchors accordingly. This intelligent method eliminates
the need to set super-parameters and better matches the scene and object.

The setting of the anchor hyperparameters including scale, aspect ratio, and orientation
requires a general comprehension of the distribution of data; however, different datasets
have varying data characteristics. For example, there are almost no objects with an area less
than 900 in the NWPU VHR-10 dataset, while in the DIOR dataset, such objects are com-
monplace. As such the problem of hyperparameter settings results in the low generalization
of the anchor strategy. As the twin of the anchor mechanism, the anchor-free approach
treats object location as the key point detection mechanism and assigns the problem of
setting information, such as the size and direction of the object, to the network, completely
avoiding the headache of setting the priority information. Meanwhile, the anchor-free
approach also minimizes the problem of inefficient anchors. For backgrounds without key
points, the network does not allocate resources to the generation of useless boxes. Thus, the
anchor-free approach has the advantages of both high efficiency and high generalization.
Wang et al. [99] used CenterNet with three parallel layers to predict the heat map, the
compensation for the center, and the aspect of an object. Shi et al. [71] designed a central
perception module, also based on CenterNet, to gradually guide the network to focus on the
central regions. They also proposed a feature selection module to select the most suitable
features for the scale feature layer to detect the objects. Huang et al. [100] generated BBoxes
by predicting the four vertices of an object. They also introduced the M-sigmoid function to
solve the instability problem introduced by large-scale regression. Cui et al. [101] designed
a new anchor-free remote sensing ship detection model named SKNet, which constructs
an orthogonal pool to highlight the features of the central point and its surroundings. On
this basis, it then predicts the morphology of the central point. Shi et al. [102] proposed a
remote sensing vehicle detection framework based on multi-task learning, which enables
the network to simultaneously learn the vehicle center, direction, scale, and compensation.
Liu et al. [103] constructed a module to highlight the boundary and central area of an object
by using the dual attention mechanism. The aspect ratio constraint term was added to
the angle regression to emphasize the effect of the aspect ratio for different objects. The
network achieved real-time detection speed with guaranteed accuracy.

Table A1 summarizes the three anchor-based improvement strategies. Setting multi-
scale anchors can solve the problem of remote sensing objects at different scales to a certain
extent, but it is not enough to detect the super-scale objects which are sometimes contained
in RSIs. Meanwhile, the alternate methods adopted in the aforementioned papers have
certain limitations. The adaptive anchor strategy effectively solves the inefficient anchor
tiling problem, and the network has the ability to apply more prediction work to the object,
thereby reducing the number useless calculations. The anchor-free method is similar to the
adaptive anchor mechanism, which eliminates the hyperparameter design as well as the
redundancy calculation problem of anchor-based methods. However, the accuracy of key
point prediction will directly determine the performance, and the detection model may not
be able to efficiently deal with dense distributions of objects.
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2.3.5. Direction Prediction-Based Method

Remote sensing objects often present a haphazard distribution of directions caused by
overhead imaging, which makes their accurate detection a challenging task. CNN-based
detection networks do not have rotational invariance, and therefore, are insensitive to object
orientation information, resulting in unsatisfactory processing for rotating objects. The
angle of remote sensing objects is a significant piece of information in back-end applications,
such as military strikes; thus, accurate orientation predictions are an important part of
the detection task. In this respect, Cheng et al. [104] added a rotation-invariant layer
to AlexNet and enhanced the performance of the layer through data augmentation to
make the detector more robust with regard to rotating objects. Shi et al. [73] designed
geometric transformation modules to generate multi-angle images through random rotation
and random flipping transformation, allowing the detector to learn the rotation features
effectively. Huang et al. [105] added a deformable convolution layer to the network to learn
the rotation-invariant features.

The methods mentioned above only enhance the network’s ability to detect irregularly
oriented objects; however, the orientation information of the objects is not reflected in
the axis-aligned horizontal bounding boxes (HBB) results. HBB cannot accurately locate
tilted objects, which will contain a large number of background or surrounding objects.
Additionally, HBB are unfriendly to densely distributed objects, and a large overlap between
boxes can easily cause the boxes to be filtered out by the post-processing procedure,
resulting in missed detections. Thus, rectangular boxes with directions are more suitable
for locating objects with irregular orientations. Directional BBox detection strategies may
broadly be divided into three categories: rotating anchors, regression angle terms, and
segmentation methods. The rotating anchor matches the directional objects by presetting
multiple directional anchors at each pixel location with a fixed angular interval. This
method does not need to change the existing network structure, and only needs to set the
angular information regarding the anchor hyperparameters to generate the rotating box; a
schematic diagram of this process is shown in Figure 10a. Ma et al. [106] designed a rotating
regional network for the first time to generate anchor boxes with directions. The idea of
the rotating anchor has been widely adopted. Fu et al. [84] also adopted a three-angle
anchor to locate rotating objects and designed a new evaluation index to strictly limit the
orientation object. Liu et al. [93] adopted a rotating anchor with 12 angles and proposed
the length of the diagonal for the BBox to replace the regression of angle loss, achieving
good results. Concerning the problem resulting from the small angle deviation of the object,
which significantly contributes to the variation in IOU, Bao et al. [107] designed ArIOU
to be more robust for evaluations of small angles. Xiao et al. [108] proposed an anchor
selection method for an adaptive allocation anchor and designed the anchor with six angles
at each position to locate directional objects.

The regression angle method predicts the direction of objects directly through the
network function, treating the angle information independently of the four-boundary
position information of the BBox for regression processing. Additionally, it adds the loss
function as a constraint. The network generally predicts angles between 0◦ and 180◦, finally
combining them with the HBB to determine an object’s rotation. Compared with the first
method, this approach does not require the setting of hyperparameters, but rather, only uses
an angle channel in addition to the original prediction layer. Yang et al. [85] constructed a
ship heading detection model which uses convolution to directly predict the ship heading
direction. Hua et al. [61] used a 1 × 1 convolution kernel to predict direction and designed
a new angle loss function for constraint. The authors of [75,109,110] set the horizontal and
direction prediction head at the back end of a detector that generates the horizontal HBB
and orientational bounding boxes (OBB) at the same time. To address the problem of the
boundary mutation of rotating boxes, Chen et al. [74] designed the OBB selection strategy,
in which three parameters with the same shape are defined and the parameter with the
least loss is selected.
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The segmentation angle approach draws on the idea of segmentation by generating a
mask map of the object of interest. The mask map fully highlights the location information
of the object, while the network segments the object area on the map to obtain the object
size, shape, angle, and other information, as shown in Figure 10b. Li et al. [78] applied the
improved Mask RCNN to RSOD. The network generated a mask by multi-task learning
and calculated the minimum rectangular region in the mask to obtain the boxes. This
represented a new way to solve the problem of arbitrary object direction in remote sensing.

2.3.6. The Super-Resolution Based Method

The processing of low-resolution images (LR) to obtain high-resolution images (HR)
without changing the imaging equipment is called super-resolution reconstruction. It can
effectively improve the resolution of an image, increasing the number of pixels, expand-
ing the size, and enriching detail for LR. The authors of [111] proved that HR effectively
improves the performance of RSOD. Image super-resolution reconstruction techniques
show great potential as strategies with which to supplement additional information in
order to improve object discrimination. On the one hand, super-resolution reconstruction
technology can effectively deal with the small object problem, which is caused by a lack
of sufficient semantic information for network identification resulting from the low pixel
occupancy of an object of interest. The technology can reconstruct the discriminative
information of a small object which is lacking feature expression; this is the key basis for
network identification. On the other hand, super-resolution reconstruction technology
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can solve the problem of image quality degradation due to environmental factors. Envi-
ronmental conditions such as light, clouds, and weather can affect the image quality; the
originally clear object may appear distorted in terms of its color, appearance, and clarity,
which increases the difficulty of detection. Super-resolution reconstruction technology can
improve the resolution of images, thereby reducing the recognition interference of object
blur in the network. Meanwhile, this multitasking process can increase the application
capacity of each technology and promote their simultaneous development.

Most super-resolution networks based on DL are Generative Adversarial Networks
(GANs) [112], which comprise a generator and a discriminator. The generator produces
near-real super-resolution images to cheat the discriminator. The discriminator then needs
to determine whether the image is real or fake. The two compete against each other in the
training process to obtain realistic super-resolution images, as shown in Figure 11. A super-
resolution reconstruction network oriented toward the demands of a back-end detection
network continuously reconstructs the HR, while the detection network recognizes the
reconstructed images outputted by the front-end network and sends feedback signals
to guide the super-resolution network. Front- and back-end networks can encourage
each other to improve their capabilities during the training process. Mostofa et al. [113]
designed a joint super-resolution remote sensing vehicle detection network which used
the multi-scale MsGAN structure to output 2× and 4× super-resolution images (SR). They
selected YOLOv3 [35] as the detection network to detect objects and designed a joint loss
function. Bai et al. [114] chose to improve the resolution of the ROI and used a discriminator
to simultaneously distinguish the authenticity of images, predict image categories, and
perform boundary regression. Rabbi et al. [115] proposed an edge enhancement GAN
named SERGAN, in which an image edge enhancement module was added to highlight
the edge of the objects in SR for high-precision detection.
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The aforementioned work suffered from the limitation that training super-resolution
networks require high- and low-resolution image pairs, and obtaining real image pairs
requires imaging sensors with different imaging heights, which is difficult to achieve in
practice. In order to reduce costs, the use of image processing to generate LR that are
close enough to real images by downsampling is an appealing option. CycleGAN [116]
was applied to the field of super-resolution reconstruction, integrating the generation of
high- and low-resolution image pairs into the network. The network can be viewed as
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a combination of two GAN networks containing two generators and two discriminators,
where the former generate high- and low-resolution images respectively, and the latter
determine the authenticity of the corresponding high- and low-resolution images, with
the whole network forming a closed-loop-like structure. In addition, the network needs
an additional dataset to guide the reconstruction effect, which could be image pairs from
other domains. The authors of [117,118] adopted the improved CycleGAN to enhance the
detection effect for the remote sensing of small objects. Ji et al. [119] designed the joint loss
function with the idea of multi-task learning based on CycleGAN. This allowed detection
loss to be propagated back to the super-resolution network during training to improve the
performance of the two models. Gao et al. [120] proposed a new CycleGAN to guide the
detection network, in which detection guidance branches were added after the network to
improve the quality of object regions in RSIs. Liu et al. [121] synthesized remote sensing
data by rendering a 3D CAD model and used CycleGAN for style transfer. Meanwhile, a
multi-scale attention module was designed and embedded in CycleGAN to enhance the
detailed information.

The strategy of combining super-resolution reconstruction with detection is a novel
was to effectively improve the accuracy of detecting objects. The method opens up other
possibilities, i.e., reconstruction under the current status quo, where the network structure,
loss function, and feature processing in object detection are gradually maturing. Meanwhile,
reconstructing RSIs with different object state distributions can enrich the diversity of data,
solve the imbalance problem of extreme samples in the dataset, and alleviate the overfitting
phenomenon of the network caused by a single scene distribution of the object.

2.3.7. The Transformer-Based Method

The Transformer [122], which was first proposed for use in sequence transduction
tasks, adopts a multi-encoder-decode structure based on self-attention, and has become the
dominant model in natural language processing. The encoder structure mainly consists
of multi-head self-attention layers and feedforward neural network layers. The former is
concerned the feature representation of subspaces at different positions, while the latter
filters and collects multiple groups of Q, K, and V space features and feeds them into the
decoder. To avoid the danger of gradient disappearance, the residual structure is introduced
into the encoder. The decoder has an additional masked multi-head self-attention layer
to prevent information at subsequent locations from interfering with input predictions.
The huge and complex characteristics of the Transformer model increase the consumption
of training data, but multiple encoders and decoders can be processed in parallel to fully
exploit computational resources. This model can establish global relations between word
vectors, even those that are particularly distant, and produce a surprising performance.
Thus, the Transformer-based methods have great potential for development.

At present, the Transformer is extended to various computer vision fields, DETR [123]
first introduced the Transformer to object detection, breaking the inherent rule of an
original pre-defined anchor used to tile images. DETR gives the location prediction to
the decoder structure in Transformer. The decoder inputs are Object Query sets, which
are expressed as the coordinate vectors of BBox. The number of vectors in a Query set
is calibrated to the number of BBox, which is much larger than the number of objects
that actually exists in the image to ensure the recall rate. The encoder is responsible for
extracting object features. Due to the existence of multiple self-attention layers in this
structure, the encoder can extract fine features with rich global context information, which
provides the conditions for the detection work. At the same time, this model adopts
the Hungarian algorithm to ensure a one-to-one matching relationship between ground
truths and prediction. DETR completely avoids troublesome anchor generation and time-
consuming NMS post-processing, simplifying the original detection process and generating
a competitive performance. However, the computational burden of the huge model must
be solved urgently.
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In RSOD, Zheng et al. [124] embedded the Transformer into a lightweight FPN and
designed a self-transformer, a grounding transformer, and a rendering transformer to
enhance the semantic information of the feature maps by connecting features at different
levels. Li et al. [125] proposed a 2D position encoding by adding position information
to the embedding in the encoder to alleviate the permutation invariance problem, and
the proposed multi-head deformable self-attention layer allowed features to converge
in an adaptive field. Zhang et al. [126] added a parallel Transformer branch with the
backbone to improve the CNN’s ability to capture global features. This branch replaced the
original multi-head self-attentive layer with the SRGAN network to reduce the number
of parameters and obtain similar results. Xu et al. [127] designed a Swin Transformer
network that can effectively obtain the local perception of objects to alleviate the struggling
performance of small objects. Zhu et al. [128] embedded the encoder structure into YOLOv5
to replace some convolutional layers, which can better capture global information and rich
contextual information. The encoder structure was also inserted into the prediction heads
to reduce the expensive computational and memory costs. Ma et al. [129] first extended the
Transformer to remote sensing directional object detection, adding a directional dimension
to the position prediction head. The author innovatively divided the self-attention structure
of the Transformer into deeply separable convolution operations to extract lightweight
features, which dramatically reduced the original computational burden.

At present, DETR has proved the applicability of the Transformer in object detection
tasks and has received consistent acceptance in the natural domain. However, in the
remote sensing field, the application of this technology is only the beginning stage. The
complexity of RSIs makes the implementation of the Transformer frustrating, requiring
a variety of refinements to accomplish satisfactory results. DETR also points out that the
model produces a poor performance when facing small objects, and the problem becomes
more prominent when it comes to remote sensing, where the situation can dramatically
deteriorate the performance.

2.3.8. Non-Strongly Supervised Learning-Based Method

The previously mentioned works are processed in the fully supervised form with
precise boundaries and category labels, but the labeling of detection tasks requires the
tedious marking of the object’s boundary locations, which is a heavy workload for re-
mote sensing objects that are often densely distributed, so weakly supervised learning
object detection methods have been developed to reduce the difficulty of labeling tasks.
Ref. [130] summarizes weakly supervised learning into three categories: incompletely
supervised, inexactly supervised, and inaccurately supervised. The first case represents
semi-supervised learning in which the training set contains only a small part of samples
annotated with precise labels giving the network reference. The model makes judgments
based on the learning ability of the annotated samples to mine the internal laws of a large
part of unlabeled data. Inaccurate supervision corresponds to weakly supervised learning
in which the training data all provide only coarse-level labels, and the network needs to
make judgments about unknown tasks. Inaccurate supervision means that the labeled data
may not always be authentic, and the model needs to discriminate the labels in this case.
This is subsection reviewed the RSOD for semi-supervised learning and weakly supervised
learning. The rarely mentioned inaccurate supervision is not discussed here.

Semi-supervised Learning Based Method: The performance of the current DL-based
detector relies heavily on a large-scale, high-quality labeled dataset, but collecting such
a dataset is undoubtedly difficult and expensive. Semi-supervised learning can mitigate
the model’s requirement for labels and thus reduce the number of labeled samples, which
can effectively solve the problem of labeling complex samples of RSIs. Zhong et al. [131]
proposed an online parameter updating model using active learning. By network prediction,
high-scoring BBox is selected for active learning and label up-dating, and the network
training is further carried out to achieve real-time updating. Wu et al. [60] constructed a
semi-supervised pseudo-label generation module that adopted curriculum learning. By
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gradually increasing the threshold of the pseudo-label to train the detector from easy to
difficult, the model’s dependence on labels was reduced. Refs. [132,133] applied few-shot
learning to RSOD by learning meta-knowledge from abundant known categories of data to
learn unknown categories of samples.

Given that most algorithms in RSOD pursue supreme performance, the model that
learns only a small amount of labeled data has a certain gap in performance compared to
the fully supervised detector. However, the advantages of the model in terms of data make
it worthy of more attention as a small branch.

Weakly supervised Learning-Based Method: As mentioned above, the precise anno-
tation of the object’s boundary information is a time-consuming and labor-intensive task,
especially in remote sensing. The continuous development of remote sensing satellites and
other technologies has reduced the difficulty of acquiring data, resulting in the current
situation that the data volume of high-resolution RSIs is constantly rising. As shown in
Figure 12c, annotating irregular objects and objects under small and dense areas in RSIs
is bound to consume much time, not to mention the existence of object occlusion. Weakly
supervised learning only needs to provide more readily available coarse-grained labels
that are image-level labels for object categories as shown in Figure 12d. Thus, the training
network with weakly supervised learning alleviates the difficulty of annotating complex
labels for remote sensing.
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Current weakly supervised learning-based object detection methods for RSIs can
be roughly divided into three categories: multiple instances learning-based methods,
segmentation-based methods, and other special methods. Multiple instance learning (MIL)
is the first strategy for weakly supervised object detection, which treats the image as a
package, the object in the image as an instance, and the package as a collection of unlabeled
instances. The network will accept a set of labeled packages to train and predict the
unlabeled instances in the package. The method has two basic principles: (1) if there
is at least one foreground instance in the image, the package is positive, and (2) if all
the instances in the image are background, the package is negative. The first DL-based
weakly supervised object detection (WSOD) method was the WSDDN [134], which initially
combined MIL with object detection. Subsequently, PCL [135,136] adopted a pseudo-label
mechanism for the supervised regression, which has been continuously developed by
scholars [135–140] and gradually extended to remote sensing. To address the drawback of
WSOD that often locates the object part, Feng et al. [141] calculated the correlation between
pixels in feature extraction to help to discover the whole instance, while internal and
external context modules were designed to extract contextual information and obtain more
accurate detection results. Feng et al. [142] designed a dual-context instance refinement
strategy to merge some candidate boxes and increase the confidence score of the box
containing the whole object. Yao et al. [143] introduced the idea of dynamic curriculum
learning to RSOD by training the detector from easy to difficult. Wang et al. [14] used
OICR as the base framework and de-signed a pseudo-label generation mechanism for the
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classification branch in WSDDN so that classification can be trained in a supervised form.
Chen et al. [144] used asynchronous iterative training alternating between strongly and
weakly supervised detectors to achieve the detection.

The segmentation-based method generates the object activation map and detects
the object by extracting the region on the map. Li et al. [145] used pixel-level labels of
scenes to learn the activation weight of specific categories and designed a multi-scale scene
voting strategy to calculate the activation map of category-specific objects. Wu et al. [146]
generated heatmaps to locate objects through reverse weighting based on AlexNet.

The third category of WSOD methods discussed here includes other special meth-
ods. Zhang et al. [147] developed a weakly supervised learning framework based on
coupled CNN to automatically mine and enhance the training datasets from original im-
ages and continuously update the weak detector iteratively. Han et al. [148] used a deep
Boltzmann machine to infer spatial and structural information encoded in low-level and
middle-level features, and proposed a weak supervisor based on the Bayesian framework.
Li et al. [149] proposed weak labels of object centroids and trained the network by using
the generated pseudo-label.

Although weakly supervised learning has been widely developed, the performance of
weakly supervised detectors without accurate boundary box annotations is far behind that
of fully supervised detection models, and the gap in performance makes it difficult to apply
in practice. Moreover, the method does not have a boundary regression process, leading
to the problems of inaccurate object localization in the detection results, such as locating
part of the object area, locating multiple instances of the same category, and locating the
background. Therefore, the effective solution to the problem of sloppy positioning in the
absence of location information deserves more in-depth consideration.

2.3.9. Other Methods

This subsection summarizes the general improvement strategies in addition to the
above-mentioned methods, including special feature mapping, transfer learning, knowl-
edge distillation, multi-task learning, and multi-source data fusion.

Special feature mapping methods map feature information onto different spaces and
reprocess the information on subspaces by different means. Zheng et al. [150] designed a
hyper-scale module to assign the convolution layer into sub-layer groups. Li et al. [151]
mapped top-level features to three subspaces through different convolution kernels and
obtained receptive fields of different sizes in each sub-space. Deng et al. [57] designed a
multi-scale region proposal network that added three con-volution layers of different sizes
to obtain the features of different receptive fields.

Transfer learning refers to the strategy of applying information learned in a domain or
task to solve the corresponding problem in another related domain. The commonality of
knowledge between the source domain and the transfer domain leads to a facilitation effect
when the network trained in the source domain is transferred to the target domain. The
common knowledge makes transfer learning an effective tool to deal with the challenges
in remote sensing. The transfer model needs to find the connection between the original
knowledge and the new knowledge to make the model produce a stable performance on
the target domain, and how to find the similarity between the knowledge reasonably is
the core problem of transfer learning. At the same time, transferring and fine-tuning the
model according to the data distribution in the target domain will largely reduce the time
of training the model from scratch. In addition, transferring similar knowledge will reduce
the demand for samples in the target domain. To address the problem of a few small
objects, Dong et al. [152] transferred the trained detector to remote sensing and realized
automatic labeling for small objects. Li et al. [153] used CNN to transfer the model to solve
the over-fitting problem caused by insufficient remote sensing data. Zhong et al. [154] used
the pre-trained network to accelerate the training process of the model.
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Similar to transfer learning, the goal of the knowledge distillation [155] strategy is
to distill the knowledge acquired by complex models (teacher networks) to lightweight
models (student networks) so that lightweight models have similar capabilities. The main
purpose is to achieve model compression by adopting this knowledge transfer method.
The prediction results of the teacher network, as soft labels, along with truth results, as
hard labels, are sent to the student network as constraints to realize the delivery of model
knowledge. In RSOD, Li et al. [156] used the knowledge distillation strategy to design
distillation soft label loss in order to impart the capabilities of the larger teacher network
ResNet-50 to the smaller student network ResNet-18 and achieve a light weight model.
Liu et al. [157] enlarged the input image size of the teacher network and maintained the
input image size of the student network to obtain cross-scale features. Meanwhile, positive-
level L2 loss was adopted to constrain the difference between the features of the two
networks. Zhang et al. [158] designed a dynamic knowledge distillation framework to
solve the negative problems caused by blind inheritance of knowledge, and proposed a
train-status-aware loss to enable the student network to dynamically focus on hard case
objects, such as small-scale and extreme aspect ratio instances. Chen et al. [159] adopted
knowledge distillation to prevent the impact of the introduction of new classes to the model
on the prediction ability of old classes.

Multi-task learning applies the supervision of multiple related tasks to the same loss
function so that the model learns various information concurrently. The method helps
the model to explore the complementary information between subtasks, as it is difficult
to obtain cues from a single task. Lei et al. [160] designed a reconstruction network that
makes the network learn the reconstructed binary map that is used as the label to make the
network focus on the object region. Chen [74] constructed a constraint attention network
supervised by a binary segmentation map to guide the network to filter the background
while retaining context information. Refs. [78,110,161] all adopt the means of multi-task
learning to carry out detection and segmentation tasks simultaneously.

The multi-source data fusion strategy can effectively obtain the missing information for
a single RSI from other external data. Due to the current imaging hardware performance
limitations, the sensor can only take advantage in one of the three spectral, temporal,
and spatial resolutions to obtain high-resolution effects; the remaining two in a single
sensor can only present poor performance, which causes the lack of information. The
fusion of RSIs obtained by multiple sensors in the same scene can adequately make up
for this lack of information and effectively achieve the role of interconnection between
information. Wu et al. [55] proposed an unsupervised multi-source active fine-tuning
remote sensing vehicle detection framework. By integrating DSM images with RGB images,
potential objects can be segmented through height information for automatic vehicle
labeling. By sending RSIs and infrared images in the same scene to the detection network
for feature extraction, Chachlakis et al. [59] obtained enhanced multi-source features to
improve efficiency. However, multiple source images of the same scene are hard to acquire,
and image alignment is also challenging, which seriously hinders the implementation of
this method.

The various methods described above are summarized in Table A1. There are other
unusual improvement methods, but we do not discuss these individually here.

3. Results

In recent years, many available datasets with reliable evaluation metrics have been
released in RSOD. This section briefly introduces common public datasets and standard
performance metrics, and compares the performance of statistical algorithms.
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3.1. Benchmark Datasets

The common large-scale RSOD datasets are as follows:

1. NWPU VHR-10 [162] is a very high-resolution dataset with 800 images and 3651 in-
stances for optical RSI object detection and contains ten categories of objects, where the
categories are: airplane, ship, storage tank, baseball diamond, tennis court, basketball
court, ground track field, harbor, bridge, and vehicle.

2. DOTA [163] is a fifteen categories of RSOD dataset containing 2806 optical RSIs and a
total of 188,282 instances. The dataset is labeled by experts with horizontal annotation
and rotating annotation. The categories of objects are as follows: plane, ship, storage
tank, baseball diamond, tennis court, basketball court, ground track field, harbor,
bridge, large vehicle, small vehicle, helicopter, roundabout, soccer ball field, and
basketball court.

3. DIOR [16] contains 23,463 optical RSIs and 192,472 instances in total, with a spa-
tial resolution of 0.5 to 30 m. Images present different states such as environment,
weather, season, illumination with 800 × 800 in size. The twenty categories of objects
are as follows: airplane, airport, base-ball field, basketball court, bridge, chimney,
dam, expressway service area, expressway toll station, harbor, golf course, ground
track field, overpass, ship, stadium, storage tank, tennis court, train station, vehicle,
and windmill.

4. UCAS-AOD [164] contains vehicle data as well as aircraft data, selected from the
Google Earth aerial image dataset. The vehicle data contains 310 images with
2819 vehicle instances. The aircraft data contains 600 images, including 3210 aircraft
instances, with an image size of approximately 1000 × 1000.

5. HRSC2016 [165] is a dataset created specifically for ship detection. The dataset
contains 1070 images with a total of 2917 ship instances, ranging from 300 × 300 to
1500 × 900 in size.

6. RSOD [166,167] is made by Wuhan University, which collected 976 RSIs from Google
Earth and Tianditu with 6950 instances in total, including four categories: oil tank,
aircraft, overpass, and playground.

7. LEVIR [168] consists of 3791 high-resolution RSIs from Google Earth, with the size of
800 × 600 and a spatial resolution of 0.2–1 m. There are three categories of objects in
the dataset: aircraft, ships, and oil tanks.

8. HRSSD [81] is a category-balanced RSI dataset, the images are cropped from Google
Earth and BaiDu Map. The dataset contains 26,722 images, totaling 13 categories
of objects, which are: airplane, baseball diamond, basketball court, bridge, cross-
road, ground track field, harbor, parking lot, ship, storage tank, T junction, tennis
court, vehicle.

9. AI-TOD [169] is a challenging dataset specially designed for remote sensing tiny
object detection. 28,036 images with 700,621 instances are collected in the dataset,
and the average size of the objects is only 12.8 pixels, which is much smaller than
other datasets. Images are mainly collected from multiple datasets with the 800 ×
800 pixels, including eight categories of objects: airplane, bridge, storage-tank, ship,
swimming-pool, vehicle, person, and wind-mill.

10. VEDAI [170] is a dataset for remote sensing vehicle detection, which contains a total
of 1210 aerial images with 1024 × 1024 resolution. The nine categories of objects
included are: plane, boat, camping car, car, pick-up, tractor, truck, van, and the other
category, which contain five categories of vehicles with different appearance. The
scale of each category varies widely and presents different orientations.

Table 2 lists the parameters of the above datasets to provide an intuitive comparison. In
addition to the public datasets mentioned above, some scholars also created their datasets
to meet their tasks, such as Refs. [62,97,98].
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Table 2. Comparison of common optical RSI datasets, where HBB represents the horizontal bounding
box, OBB represents the oriented bounding box.

Dataset Quantity Category Size Instance Resolution Label

NWPU VHR-10 [162] 800 10 350 × 350–1200 × 1200 3651 0.5–2 m, 0.08 m HBB
DOTA [163] 2806 15 800 × 800–4000 × 4000 188,282 0.1–1 m HBB, OBB
DIOR [16] 23,463 20 800 × 800 192,472 0.5–30 m HBB

UCAS-AOD [164] 910 2 1000 × 1000 6029 - HBB, OBB
HRSC2016 [165] 1070 1 300 × 300–1500 × 900 2917 0.4–2 m HBB, OBB
RSOD [166,167] 976 4 800 × 1000 6950 0.3–3 m HBB

LEVIR [168] 3791 3 800 × 600 11,028 0.2–1 m HBB
HRSSD [81] 26,722 13 - 55,740 0.15–1.2 m HBB

AI-TOD [169] 28,036 8 800 × 800 700,621 - HBB
VEDAI [170] 1210 9 1024 × 1024 - 0.125 m OBB

3.2. Performance Metrics

The universally accepted standard evaluation indicators are recall (R), precise (P),
average precise (AP), PRC, mean average precise (mAP), and frame per second (FPS). The
first five measure the detection accuracy, while the latter measures the detection speed. The
intersection of union (IOU) measures the ratio of the area of intersection between proposals
and ground truths to the area of union and usually judges whether the object is detected,
defined as follows:

IOU =
area(Proposal ∩ Ground Truth)
area(Proposal ∪ Ground Truth)

(1)

According to different results, the definitions are as follows: the number of true
positives (TP), false negatives (FN), false positives (FP), and true negatives (TN). The
definitions of recall rate and accuracy rate are given as follows:

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

where TP + FN represents the number of BBoxes and TP + FP represents the total number of
objects to be detected. Therefore, P evaluates by the number of correctly detected objects in
the total object, while R evaluates by how many objects are detected. AP takes into account
both accuracy and recall, as defined below:

AP =

1∫
0

P(R)dR (4)

which represents the average precise of the recall rate between 0 and 1. PRC is a curve
drawn according to the detection of maximum P at each R, and the area under the curve is
equal to AP. The mAP represents the average precise of all categories, expressed as follows:

mAP =
1
C

C

∑
i=1

AP =
1
C

C

∑
i=1

1∫
0

Pi(R i)dRi (5)

where C represents the number of object categories. mAP comprehensively considers the
detection accuracy of objects. Therefore, the higher the mAP value is, the more accurate
the detector.
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In addition to accuracy evaluation, detection speed is also another criterion for com-
prehensive evaluation of detection performance. The general evaluation of detection speed
is FPS, that is, the number of images that can be detected within a second. Meanwhile, the
speed can also be measured by the time used to calculate an image.

3.3. Performance Comparison

In this subsection, we compare the DL-based models of RSOD with three challenging
common datasets, DOTA, NWPU VHR-10, and DIOR. Table A2 shows the performance
comparison of each model in the three datasets, and mAP is used as the only indicator to
measure the accuracy. The items listed in the comparison table also include the backbone
network, the main strategies, the types of BBoxes, and the division of the dataset.

In Table A2, the excellent performances of the algorithms on the dataset reflect the great
potential shown by DL techniques in RSOD, and illustrates that the implementation of DL
techniques has contributed to the progress of detection effectiveness. In terms of datasets,
the DOTA and DIOR datasets contain more categories and instances so that detection
becomes more difficult. The clear division between training and test data in datasets
makes performance comparisons fairer. The NWPU VHR-10 dataset contains relatively few
images, making the average performance of the algorithms higher than the first two. But at
the same time, this dataset requires autonomous division, and control variables cannot be
guaranteed in data selection, leading to some errors in performance comparison. In terms
of performance, various excellent algorithms have contributed to the evolution of detection
efforts in part. However, the fact that the growth rate of performance is slowing down
as the development pipeline of DL lengthens also reflects the trend that current detection
algorithms are maturing and may have encountered an invisible bottleneck. Thus, how
to continue to resolve possible flaws in the model from other aspects to further improve
detection should be considered in current and future research. In terms of the backbone
network, except for the early and individual papers adopting a shallow network of AlexNet,
most of the papers chose VGGNet and ResNet with deeper layers and stronger extraction
ability, which also indicates that the feature extraction ability of the backbone is particularly
important. The deeper network that extracts strong feature semantic information is more
conducive to the analysis work. However, the pursuit of the deeper network did not earn
satisfactory feedback in performance, which also means that the method of extending
network depth in RSOD may have inadequate parameter training or a gradient update
problem. In terms of improvement strategies, the various strategies designed according
to the complex objects, complex backgrounds, and complex sample annotation problems
of RSIs have effectively alleviated the embarrassing situation of unsuitable performance
faced by the general model. Although the superiority of various strategies cannot be
reflected through the comparison of performance, it is certain that each strategy must play
a certain role in promoting the detection effect, which is also one of the key factors in
the rapid development of RSOD. The attention mechanism captures associations between
different regions, enhances beneficial information and compresses interfering signals,
which fully mitigates the challenges of complex backgrounds. The attention-based models
also exhibit a superior in performance. Multi-scale feature fusion can effectively combine
various types of information and reduce the loss between information transmission. In
dealing with the remote sensing of complex objects, the method provides an additional
reference for prediction work and is a strategy that all models must consider, thereby
validating its effectiveness. Mining context information is another strategy that can be
used to effectively address the challenges of complex objects. This approach can mine
valuable external information to reduce the ambiguity of identifying difficult objects, which
is also reflected in the model performance. The refined Anchor mechanism improves the
defects of the original anchor from various aspects and is more suitable for the complex
situation of remote sensing. Direction prediction improves the functionality of detection
and increases the practicability of the model in remote sensing situations. Meanwhile, the
lower performance of the rotation detector compared to the horizontal detector indicates
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that it is more difficult to locate an object by applying the rotation box. The model needs to
predict the object boundary in addition to the angle, which is not an easy task. The super-
resolution reconstruction strategy is effective for dealing with complex small objects with
regard to remote sensing. The strategy can expand the object scale and obtain more detailed
information, which is very important for the identification and localization of small objects.
The Transformer model can be interpreted as performing multiple attention operations
and adequately establishing the interactions between the objects. This strategy delivers
satisfactory results in terms of its performance. In addition, the incompletely supervised
detector with the mission to alleviate the label annotation problem has a gap in performance
with the strongly supervised model, where incomplete data are the main reason for the poor
performance. The current performance also introduces more possibilities to this method.
The model with incompletely supervised learning has great development prospects worthy
of further development.

4. Discussion

Although RSOD algorithms based on DL techniques have made satisfactory progress
and are gradually maturing, there are still shortcomings that deserve further discussion. In
this section, we analyze and summarize the problems that exist in RSOD at present, and
propose solutions and possible future research trends so that the reader can better grasp
the current circumstances.

• Improve network structures: At present, the slowing improvement rate of remote
sensing detector performance indicates that existing methods have reached their
limitations, making it difficult to achieve a breakthrough. Thus, the question of
how to further improve the technology is the key problem that needs to be solved.
The underlying network structure, as the model’s foundation, is likely the key to
overcoming the problem. A state-of-the-art network structure designed specifically
for RSIs will serve complex objects more effectively; this is certainly a worthwhile
research direction.

• Improve light weight models: In order to extract features with rich information rep-
resentation, networks are mostly designed with extremely deep structures, requiring
the optimization of huge numbers of parameters. This increases the model’s demand
for data while increasing the burden on computing facilities. Current low arithmetic
portable embeddable devices cannot implement such weighty models. The question
of how to reduce the parameter scale of existing models in order to improve their
practicality is particularly significant. Light weight models involve the participation
of various aspects such as network structure and optimization methods.

• Improve weakly supervised learning: Defects in performance restrict the application
scope of weakly supervised learning, and consequently, this direction is seldom
explored. The advantages of labeling also broaden development prospects, and
the further use of detection capabilities is a topic that is worthy of in-depth study.
In addition, weakly supervised rotation detectors have not been developed due to
the absence of boundary information, and the HBB used in current models do not
accurately locate remote sensing objects with complex directional distributions. Thus,
weakly supervised learning for rotation detection is advancing.

• Improve the direction prediction strategy: Direction is one of the essential manifes-
tations of object position information, and a variety of direction recognition systems
have been established for accurate object orientation. However, most such models set
the direction in the range of 0–180◦, which does not take orientation into account. For
instance, a model defining the bow and stern of a ship does not provide a discrimi-
nant. Object orientation detection is of great significance for practical applications and
deserves further attention. Meanwhile, there is no standard for determining how the
position of a rotating object shall be correctly detected. Current IOU evaluation criteria
have restrictions due to the drawback that slight deviations in the angle between the
two directional boxes will lead to a drastic decrease in the IOU, which hinders the mea-
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surement of the IOU for the directional boxes. Therefore, the metric of angle needs to
be carefully examined to reasonably assess the rotation of objects. Moreover, direction
detection models struggle with objects that have no obvious directional information,
such as storage tanks, which is another a matter that is worthy of discussion.

• Improve super-resolution detection: For weak object detection without sufficient
structural knowledge, super-resolution reconstruction technology can effectively ex-
pand the object scale and provide additional details to boost its identification effect. As
such, this approach which has attracted widespread research interest. However, the
effective combination of the two tasks turns out to be challenging due to the question
of how to guide the super-resolution network to purposefully enhance details that
are not adequately expressed in the object itself, instead of enhancing some irrelevant
information in a general way. In addition, the double parameters produced by the joint
network restrict the actual speed, and optimization algorithms need to be tailored to
further reduce the time cost. The implementation of specific reconstruction strategies
to enhance the super-resolution effect on the object and weaken the network’s focus
on the background is worth investigating.

• Improve small object issues: Small object detection has always been a priority in
RSOD. Small objects—whose pixel occupancy is small and features are difficult to
extract, making them prone to being obscured during the forward propagation—are
commonplace in RSIs. Although researchers are currently studying this phenomenon
and proposing various solutions, these tend to only alleviate the issue. Small object
issues become problematic in the following three respects: (1) Sample imbalance
problem: small objects account for a low proportion of remote sensing data. After
statistics, objects with pixels less than 16 × 16 only account for 10% of the DIOR
dataset. As such, these few small objects do not get enough attention from the system,
resulting in missed detections. (2) Loss imbalance problem: during network training,
the contribution of small objects to losses is much smaller than that of others, which
is mainly due to the minor regression distance, thus yielding negligible loss. This
loss imbalance phenomenon also leads to poor results for small objects. (3) Matching
imbalance problem: positive and negative samples have been determined by the
IOU threshold selection method. Slight deviations among small objects during label
assignment results in large IOU variations, which limits small objects to produce only
a small number of matching BBoxes, thereby reducing the chances of small objects
being selected and increasing the number of missed matches. Therefore, it would be
useful to boost performance regarding small objects. Small objects, such as ships in
ports and aircraft in airports, tend to be densely distributed in RSIs, but their detection
remains an arduous task. Indeed, there is no definitive way to solve the problem of
dense distribution. In the future, densely packed small objects must be taken into
account to achieve accurate localization and identification.

5. Conclusions

In recent years, RSI analysis technology has experienced major progress thanks to
the advent of artificial intelligence. DL has driven the continuous development of object
detection technology in the direction of intelligence. In this work, we first reviewed the
successful combination of DL and detection techniques, such as one- and two-stage fam-
ilies. Then, we summarized in detail the mainstream detection ideologies and divided
them into pre-processing, feature extraction and processing, BBox generation, detection
and post-processing steps. Numerous improvement strategies for complex problems in
relation to remote sensing are presented in detail and divided into a taxonomy comprising
attention mechanisms, multi-scale feature fusion, mining contextual information, refined
anchor strategies, direction prediction strategies, super-resolution reconstruction tech-
niques, Transformer-based methods, semi-supervised learning, and weakly supervised
learning, among other methods. Benchmark datasets, performance metrics, and perfor-
mance comparisons of representative models are also discussed. Finally, considering the
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obstacles that exist in current detection technologies, we provide research directions that
could be explored in the future.

Currently, DL is a mainstream technology in the field of object detection. However,
there are still some limitations. Firstly, various models perform well on large-scale general
datasets; however, the question of how to further improve the accuracy of detection is a
major challenge. Secondly, RSOD based on DL has strict requirements regarding training
data. This severely affects the model performance. The question of how to reduce this
dependence on data and improve the generalization ability of the models is a major
challenge. Finally, small objects always pose a challenge in remote sensing, and existing
small object detection methods are not ideal. Thus, research on small object detection needs
to continue.

DL has become a key technology in RSOD and has achieved satisfactory results in
various applications. However, numerous shortcomings remain, requiring researchers to
make continuous efforts to achieve the intellectual development of RSOD.
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Appendix A

Table A1. Summary of the improvement strategies, including an attention mechanism, multi-scale fea-
ture fusion, mining context information, refined anchor, weakly supervised learning, and other methods.

Method Characteristics Ref.

Attention mechanism

Spatial attention

a. Captures spatial location relationships
b. Assigns different weights to different locations
c. Highlights the object region and suppresses

background region

[61,72–76]

Channel attention

a. Captures feature channel relationships
b. Assigns different weights to different channels
c. Highlights object features and suppresses others

features

[60,77]

Joint attention
a. Captures the relationship between the spatial

location and feature channel
b. Comprehensively enhances object information

[78–80]

Multi-scale feature
fusion

Simple feature fusion
a. Simply fuses the features of adjacent layers
b. Enhances the ability to detect a single scale
c. Easy operation

[58,62,81–83]

Feature pyramid
fusion

a. Enhances the feature information of the shallow
layer

b. Deals with multi-scale changes of objects
c. Improves the ability to detect small objects

[12,73,75,84–86]

Cross-scale feature
fusion

a. Fuses all layer features together
b. Enhances the feature information of each layer
c. Requires a large number of calculations

[11,74,87,88]
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Table A1. Cont.

Method Characteristics Ref.

Mining context
information

Enlarge detection
window

a. Enlarges the ROI region
b. Increases the surrounding information
c. Adds more local features

[91–93]

Enhance receptive
field

a. Expands convolution region area
b. Increases the surrounding features
c. Extracts more information

[58,86,87,94,95]

Attention mechanism

a. Captures the relationship between the objects and
their surroundings

b. Highlights the object and surrounding
information

[71,73,75]

Refined anchor

Set more scale anchors
a. Presets more anchors
b. Full coverage of remote sensing objects
c. Many super-parameters and low detection speed

[58,96,97]

Adaptive anchor
mechanism

a. Adaptively generates a few high-quality anchors
b. No superparameter set
c. More intelligent and fast detection speed

[12,80,98]

Anchor-free

a. Uses the key points detection method
b. Avoids the shortcomings of the anchor

mechanism
c. More efficient

[71,99–103]

Weakly supervised
learning

Multiple instance
learning

a. Judges the positive and negative aspects of the
package according to the instances

b. Coordinates cannot be accurately regressed
c. Detection accuracy is far less than with a strong

supervision detector

[14,141–144]

Based on segmentation
a. Segments the activation map to locate the object
b. Depends strongly on an activation map
c. Detection position may be inaccurate

[145,146]

Other methods a. Novel methods
b. Advantages in some specific aspects [147–149]

Other methods

Special feature
mapping

a. Maps features to other spaces
b. Processes information from different spaces
c. Enhances the ability of information mining

[57,150,151]

Transfer Learning

a. Reduces the training time of the model
b. Reduces model dependence on data
c. Requires data similarity between source domain

and transfer domain

[152–154]

Knowledge Distilling
a. Achieves knowledge transfer between models
b. Compresses the model parameters
c. Reduces the inference time of the model

[156–159]

Multi-task learning

a. Learns multiple tasks at the same time
b. Learns complementary information from

different tasks
c. Saves computing time for multiple tasks

[74,78,110,160,161]

Multi-source data
fusion

a. Requires images from different sources but the
same scene

b. Supplies information from other source images
c. Compensates for limited performance with a

single data source

[55,59]
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Appendix B

Table A2. The performance of each algorithm with the DOTA, NWPU VHR-10, and DOIR datasets is
tabulated in the table, where WSL stands for weakly supervised learning and SSL for semi-supervised
learning. The data are divided into a training set, a validation set, and a test set.

Dataset: DOTA

Models Years Backbones Methods Proposals Dataset Set mAP (%)

Strongly Supervised

Ref. [79] 2019 VGG-16 Attention mechanism HBB 50%, 16%, 34% 49.16
Ref. [85] 1 2018 ResNet-101 Feature fusion OBB 50%, 16%, 34% 81.25

CAD-Net [75] 2019 ResNet-101 Context information OBB 50%, 16%, 34% 69.9
SE-SSD [94] 2019 VGG-16 Context information HBB 50%, 16%, 34% 70.8

FSoD-Net [96] 2021 MSE-Net Improved anchor HBB 50%, 16%, 34% 75.33
SARA [12] 2021 ResNet-50 Improved anchor OBB 50%, 16%, 34% 79.91

LO-Det [100] 2021 MobileNetv2 Improved anchor OBB 50%, 16%, 34% 66.17
SKNet [101] 1 2021 Hourglass-104 Improved anchor OBB 75%, 25% 83.9

CBDA-Net [103] 2021 DLA-34 Improved anchor OBB 50%, 16%, 34% 75.74
Rs-Det [105] 2019 ResNet-50 Direction prediction HBB 50%, 16%, 34% 65.33

FFA [84] 2020 ResNet-101 Direction prediction OBB 50%, 16%, 34% 75.7

F3-Net [109] 2020 ResNet-50 Direction prediction OBB
50%, 16%, 34%

76.02
HBB 76.48

AMFFA-Net [74] 2021 ResNet-101 Direction prediction OBB
50%, 16%, 34%

76.27
HBB 78.06

A2S-Det [108] 2021
ResNet-50 Direction prediction OBB 50%, 16%, 34%

70.42
ResNet-101 70.64

HyNet [150] 2020 ResNet-50 Feature mapping HBB 50%, 16%, 34% 62.01

Ref. [110] 2019 ResNet-101 Multi-task learning OBB
50%, 16%, 34%

67.96
HBB 69.88

RADet [78] 2020 ResNet-101 Multi-task learning OBB 50%, 16%, 34% 69.09
ADT-Det [124] 2021 ResNet-50 Transformer OBB 50%, 16%, 34% 79.95
O2DETR [129] 2021 ResNet-50 Transformer OBB 50%, 16%, 34% 79.66

Dataset: NWPU VHR-10

Strongly Supervised

RICNN [104] 2016 AlexNet Direction prediction HBB 20%, 20%, 60% 72.63
HRCNN [81] 2019 AlexNet Feature fusion HBB 20%, 20%, 60% 73.54
RECNN [160] 2020 VGG-16 Multi-task learning HBB 20%, 20%, 60% 79.2
PSBNet [154] 2018 ResNet-101 Transfer learning HBB 20%, 20%, 60% 82.0

Sig-NMS [152] 1 2019 VGG-16 Transfer learning HBB 20%, 20%, 60% 82.9
TRD [125] 2022 ResNet-50 Transformer HBB 20%, 20%, 60% 87.9
Ref. [110] 2019 ResNet-101 Direction prediction HBB 20%, 20%, 60% 89.07

F3-Net [109] 2020 ResNet-50 Direction prediction HBB 20%, 20%, 60% 91.89
CA-CNN [92] 2019 VGG16 Context information HBB 40%, 10%, 50% 90.97

MSNet [58] 2020 DarkNet53 Attention mechanism HBB 40%, 60% 95.4
HyNet [150] 2020 ResNet-50 Feature mapping HBB 40%, 60% 99.17
RADet [78] 2020 ResNet-101 Direction prediction HBB 60%, 20%, 20% 90.24
FMSSD [95] 2019 VGG-16 Context information HBB 60%, 20%, 20% 90.40
CANet [88] 2020 ResNet-101 Context information HBB 60%, 20%, 20% 92.2

YOLOv3-Att [73] 2020 DarkNet-53 Attention mechanism HBB 60%, 20%, 20% 94.49
DCL-Net [86] 2020 ResNet-101 Feature fusion HBB 60%, 20%, 20% 94.55

Ref. [57] 2018 VGG-16 Feature mapping HBB 60%, 40% 94.87
Ref. [91] 2017 ZFNet Context information HBB 75%, 25% 87.12

CAD-Net [75] 2019 ResNet-101 Context information HBB 75%, 25% 91.5
LFPNet [90] 2021 ResNet-101 Feature fusion HBB 75%, 25% 93.23
CANet [71] 2021 RestNet-101 Attention mechanism HBB 75%, 25% 93.33

Ref. [79] 2019 VGG-16 Attention mechanism HBB 80%, 20% 85.08
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Table A2. Cont.

Dataset: NWPU VHR-10

Models Years Backbones Methods Proposals Dataset Set mAP (%)

Non-strongly Supervised

Ref. [143] 2020 VGG-16 WSL HBB 58%, 17%, 25% 20.19
Ref. [14] 2021 VGG-16 WSL HBB 60%, 20%, 20% 53.6

PCIR [142] 2020 VGG-16 WSL HBB 58%, 17%, 25% 54.97
TCANet [141] 2020 VGG-16 WSL HBB 75%, 25% 58.82
FSODM [133] 2021 DarkNet-53 SSL HBB - 65.0

Ref. [149] 2021 CSPDarkNet-
53 WSL HBB 70%, 10%, 20% 92.4

Dataset: DIOR

Strongly Supervised

LO-Det [100] 2021 MobileNetv2 Improved anchor HBB 50%, 50% 65.85
TRD [125] 2022 ResNet-50 Transformer HBB 50%, 50% 66.8
Ref. [11] 2020 ResNet-101 Attention mechanism HBB 50%, 50% 68.0

MFPNet [87] 2021 VGG-16 Context information HBB 50%, 50% 71.2
FRPNet [72] 2020 ResNet-101 Attention mechanism HBB 50%, 50% 71.8

FSoD-Net [96] 2021 MSE-Net Improved anchor HBB 50%, 50% 71.8
Ref. [80] 2020 ResNet-50 Improved anchor HBB 50%, 50% 73.6

CANet [88] 2020 ResNet-101 Context information HBB 50%, 50% 74.3

Non-strongly Supervised

FCC-Net [144] 2020 ResNet-50 WSL HBB 50%, 50% 18.1
PCIR [142] 2020 VGG-16 WSL HBB 50%, 50% 24.92

TCANet [141] 2020 VGG-16 WSL HBB 50%, 50% 25.82
prototype-CNN

[132] 2021 ResNet-101 SSL HBB 50%, 50% 32.6

FSODM [133] 2021 DarkNet-53 SSL HBB other 36.0
Ref. [143] 2020 VGG-16 WSL HBB 50%, 50% 52.11

1 means that the model used only partial data.
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