
Citation: Xu, C.; Zheng, X.; Lu, X.

Multi-Level Alignment Network for

Cross-Domain Ship Detection.

Remote Sens. 2022, 14, 2389. https://

doi.org/10.3390/rs14102389

Academic Editor:

Giampaolo Ferraioli

Received: 14 March 2022

Accepted: 12 May 2022

Published: 16 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Multi-Level Alignment Network for Cross-Domain
Ship Detection
Chujie Xu 1,2, Xiangtao Zheng 1,* and Xiaoqiang Lu 1

1 Key Laboratory of Spectral Imaging Technology CAS, Xi’an Institute of Optics and Precision Mechanics,
Chinese Academy of Sciences, Xi’an 710119, China; xuchujie19@mails.ucas.ac.cn (C.X.);
luxiaoqiang@opt.ac.cn (X.L.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: zhengxiangtao@opt.cn

Abstract: Ship detection is an important research topic in the field of remote sensing. Compared
with optical detection methods, Synthetic Aperture Radar (SAR) ship detection can penetrate clouds
to detect hidden ships in all-day and all-weather. Currently, the state-of-the-art methods exploit
convolutional neural networks to train ship detectors, which require a considerable labeled dataset.
However, it is difficult to label the SAR images because of expensive labor and well-trained experts.
To address the above limitations, this paper explores a cross-domain ship detection task, which
adapts the detector from labeled optical images to unlabeled SAR images. There is a significant
visual difference between SAR images and optical images. To achieve cross-domain detection, the
multi-level alignment network, which includes image-level, convolution-level, and instance-level, is
proposed to reduce the large domain shift. First, image-level alignment exploits generative adversarial
networks to generate SAR images from the optical images. Then, the generated SAR images and
the real SAR images are used to train the detector. To further minimize domain distribution shift,
the detector integrates convolution-level alignment and instance-level alignment. Convolution-
level alignment trains the domain classifier on each activation of the convolutional features, which
minimizes the domain distance to learn domain-invariant features. Instance-level alignment reduces
domain distribution shift on the features extracted from the region proposals. The entire multi-level
alignment network is trained end-to-end and its effectiveness is proved on multiple cross-domain
ship detection datasets.

Keywords: ship detection; domain adaptation; convolutional neural network; synthetic aperture radar

1. Introduction

Ships are marine transportation carriers, which are important for both military and
civilian fields such as marine surveillance, shipping management, and maritime rescue.
With the development of remote sensing technology, ship detection attempts to locate all
ship instances from the wide-range sea surface. However, it is difficult to identify ships
from the complex background due to orientation, scale variability, motion blurring, speckle
noises, and clutter disturbance [1].

To monitor ships, two detection techniques have received extensive attention, including
optical ship detection and Synthetic Aperture Radar (SAR) ship detection. Optical ship detec-
tion uses optical remote sensing images to distinguish ships, which is conducive to human
visual interpretation [2]. Early optical ship detection methods exploit some geometric ele-
ments or artificially designed features to locate ship targets [3]. With the development of deep
learning, Convolutional Neural Networks (CNNs) become the mainstream method [4–6].

Although optical remote sensing images provide detailed spatial information, the ship
targets may be obscured by clouds, mists, or shadows [7]. In contrast, SAR can penetrate
clouds and partial occlusions to detect hidden targets. Furthermore, SAR has the ability
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to work in all-day and all-weather. SAR ship detection methods arise active research by
exploiting the backscatter characteristics [8], polarization characteristics [9], and geometric
characteristics [10]. These methods extract hand-crafted features to describe the ship targets,
which lack robustness in the wide-range sea surface such as open sea, offshore area, and
harbor. Current state-of-the-art methods detect SAR ships by learning a CNN from a large
dataset [11,12]. However, it is difficult to label the SAR images, which requires expensive
labor and well-trained experts [13].

To address the above limitations, this paper explores a cross-domain ship detection
task, which learns the detector from labeled optical images to unlabeled SAR images. The
SAR images have a considerable domain shift compared with the optical images due to
speckle noise, geometric distortion, lack of color information, and other factors. However,
ship targets share the same shape characteristics in both optical and SAR domains, as
shown in Figure 1. This observation provides a solution to transfer the CNN from the
easy-to-obtain labeled optical domain to the SAR domain. This paper focuses on cross-
domain ship detection: full supervision is given in the optical domain while no supervision
is available in the SAR domain, as shown in Figure 2.

(a)

(b)

Figure 1. Comparison of optical images and SAR images. There is a large domain shift between the
optical images and the SAR images, but ship targets present the same shape characteristics in the
optical and SAR images. (a) Optical images. (b) SAR images.

Existing domain adaptation methods consider feature adaptation. For example, Chen
et al. [14] proposed Domain Adaptive Faster R-CNN (DA), which considered the alignment
of image features and instance features. Saito et al. [15] proposed Strong-Weak Distribution
Alignment (SWDA), which considered the alignment of global features and local features. In
this paper, an end-to-end Multi-level Alignment Network (MAN) is proposed. To reduce the
large domain shift between the optical domain and the SAR domain, MAN considers three
levels of alignment: image-level, convolution-level, and instance-level. First, image-level
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alignment exploits generative adversarial networks to generate SAR images from the optical
images. Then, the generated SAR images and the real SAR images are used to train the
detector. To further narrow the domain distribution shift, the detector embeds convolution-
level alignment and instance-level alignment. Convolution-level alignment trains the
domain classifier on each activation of the convolutional features, which minimizes the
domain distance to learn domain-invariant features. Instance-level alignment reduces
domain distribution shift on the features extracted from the region proposals. The entire
multi-level alignment network is trained end-to-end and its effectiveness is proved on
multiple cross-domain ship detection datasets.

Detector

Optical Images

SAR Images Predicted Results

Train

Test

Figure 2. The cross-domain ship detection task. Full supervision is given in the optical domain while
no supervision is available in the SAR domain. The detector is trained in the optical domain but is
adapted for the SAR domain.

The contributions can be summarized as follows:

1. The cross-domain ship detection task is considered in this paper, which adapts the
detector from labeled optical images to unlabeled SAR images. Compared with other
cross-domain tasks, the cross-domain ship detection between the optical domain and
the SAR domain is more challenging and more realistic;

2. The Multi-level Alignment Network (MAN) is proposed to reduce the large domain
shift from the optical domain to the SAR domain, which achieves cross-domain
alignment at the image-level, convolution-level, and instance-level;

3. The multi-level alignment mechanism is embedded into Faster R-CNN, and the entire
detector is trained end-to-end without increasing inference time.

The remainder of this paper is organized as follows. Section 2 reviews ship detec-
tion methods. Section 3 describes the proposed MAN in detail. Section 4 provides full
experimental results. Finally, Section 6 concludes this paper.

2. Related Works
2.1. Optical Ship Detection

For optical ship detection, early methods exploit some geometric elements or artifi-
cially designed features to locate ship targets [2,3,16]. Zhu et al. [17] proposed a hierarchical
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complete and operational optical ship detection approach based on shape and texture
features, which is considered a sequential coarse-to-fine elimination process of false alarms.
Li et al. [16] proposed ship head classification and body boundary determination for in-
shore ship detection. Yang et al. [3] proposed the saliency segmentation and the local binary
pattern descriptor combined with ship structure for ship detection. Since artificially de-
signed features can only utilize low-level information with poor generalization ability, these
methods are often affected by complex backgrounds, resulting in false or missed detections.

In recent years, with the development of deep learning technology, CNN has demon-
strated its powerful feature representation ability. The optical ship detection methods
based on CNN have been extensively studied and have achieved great success. At present,
CNN-based ship detection methods are mainly divided into two categories. One is the
two-stage detectors represented by Faster R-CNN [18] and Mask R-CNN [19]. The other is
single-stage detectors represented by You Only Look Once (YOLO) [20], CenterNet [21],
etc. For example, Nie et al. [22] proposed to achieve inshore ship detection based on Mask
R-CNN. Soft-non-maximum suppression is introduced to improve the robustness of nearby
inshore ships. Shamsolmoali et al. [23] proposed a multipatch feature pyramid network,
which integrated automatic patch selection, feature aggregation, and semantic domain
projection. Shamsolmoali et al. [24] proposed a rotation equivariant feature image pyramid
network to deal with the complicated object deformation. More detectors directly use
rotated bounding boxes to locate objects [5,6,25]. Due to the limitation of the imaging
mechanism, the performance of optical ship detection methods will drop sharply in the
case of severe weather such as clouds and fog.

2.2. SAR Ship Detection

Compared with optical ship detection, SAR ship detection has attracted more attention
because of its penetrating ability and all-day, all-weather working ability. The widely used
traditional SAR ship detection methods include the Constant False Alarm Rate (CFAR)
algorithms [26–28]. They adjust the detection threshold adaptively according to the estab-
lished statistical distribution model of background clutter. Wang et al. [29] improved the
CFAR algorithm by fusing intensity and spatial information. However, due to changes in
the environment, it is difficult to establish an accurate statistical model.

In recent years, CNN-based SAR ship detection methods have also been extensively
studied. Lin et al. [30] proposed Squeeze and Excitation Rank Faster R-CNN (SER Faster
R-CNN) to further improve the detection performance by using the squeeze and excitation
mechanism. Cui et al. [31] proposed a dense attention pyramid network, which extracts
abundant features containing resolution and semantic information. Li et al. [12] developed
a multidimensional domain deep learning network to exploit the spatial and frequency-
domain complementary features. Cui et al. [32] proposed the spatial shuffle-group enhance
attention module in CenterNet to extract stronger semantic features and reduce missed
detections. Yang et al. [1] proposed a coordinate attention module to obtain stronger
semantic features and a receptive field increased module to capture multi-scale contextual
information. Ma et al. [33] proposed an anchor-free framework with skip connections
and aggregation nodes, which is designed to fuse multi-resolution features and detect
multi-scale ship targets. And some works [34,35] considered the orientation of the ships.
However, these methods still require full supervision in the SAR domain and cannot avoid
the high cost of manual annotation of SAR images.

2.3. Cross-Domain Object Detection

Domain adaptation, which addresses the problem of label scarcity in new domains,
has been actively studied in classification tasks [36]. For general object detection, most
methods [14,15,37] learn domain-invariant features by adversarial training with the help
of domain discriminators. Chen et al. [14] improved the cross-domain robustness of ob-
ject detection through the image features adaptation and the instance features adaptation.
Saito et al. [15] proposed the weak global feature alignment and strong local feature align-
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ment. Zhu et al. [38] proposed to selectively align features of source and target domain
data by mining the discriminative regions. Hsu et al. [39] proposed to achieve center-aware
alignment by paying more attention to foreground pixel features. Xu et al. [40] proposed
image-level classification regularization and categorical consistency regularization to match
crucial image regions and important instances across domains. VS et al. [41] proposed
memory-guided attention for category-aware domain adaptation. Wang et al. [42] proposed
to align the sequence feature distributions extracted by Transformer detectors. These meth-
ods often only align on certain levels of features, and it is difficult to cope with the huge
domain shift between the optical domain and the SAR domain. There are also works [43–45]
that utilize the detector trained in the source domain to generate pseudo-labels in the target
domain for further training. However, the inaccuracy of pseudo-labels limits the adaptability
of the detector in the target domain.

For ship targets, Li et al. [46] considered cross-domain ship detection between optical
images in different weather conditions. Zhao et al. [47] considered cross-domain detection
between SAR images captured by different satellites. However, no related work considered
cross-domain detection from the optical domain to the SAR domain.

3. Method

The labeled optical domain is defined as (Xo, Yo), where Xo denotes the optical images
and Yo denotes their corresponding bounding box coordinates. Cross-domain ship detec-
tion adapts the learned ship detector to an unlabeled target SAR domain (Xs, Ys), where
Xs denotes SAR images, but the corresponding labels Ys are not available. The overall
framework of the proposed MAN is shown in Figure 3. Faster R-CNN is used as the base
detector and a multi-level alignment mechanism is used to transfer the knowledge learned
from the optical domain to the SAR domain.

GRL

Class

Bbox

SAR Image

Image-Level Alignment

Backbone

RPN

GRL

Convolution-Level Alignment Instance-Level Alignment

sD

insD

Generated SAR ImageGenerated SAR ImageOptical ImageOptical Image

sGsG

Faster R-CNN

imgL

convL
insL

detL

convD

Figure 3. The overall framework of the proposed MAN. MAN reduces the domain shift on different
levels: image-level, convolution-level, and instance-level. First, image-level alignment exploits
generative adversarial networks to generate SAR images from the optical images. Then, the generated
SAR images and the real SAR images are used to train the detector. To further minimize domain
distribution shift, the detector integrates convolution-level alignment and instance-level alignment.
Convolution-level alignment trains the domain classifier on each activation of the convolutional
feature, which minimizes the domain distance to learn domain-invariant features. Instance-level
alignment reduces domain distribution shift on the features extracted from the region proposals.

3.1. Base Detector

Faster R-CNN [18] is the base detector in this paper. It is a two-stage detector mainly
composed of three major components: backbone network, Region Proposal Network (RPN),
and Detection Heads (DHs). The backbone network first extracts global convolutional
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features for each input image. Then, the RPN predicts candidate region proposals based on
the global convolutional features. Finally, the DHs consisting of a classifier and a regressor
predict the detection results. The classifier filters out the real ships from the candidate
regions, while the regressor predicts the bounding boxes of the ships. The training loss of
the Faster R-CNN detector Ldet can be expressed as the sum of RPN loss LRPN and DHs
loss LDHs:

Ldet = LRPN + LDHs. (1)

Both RPN loss LRPN and DHs loss LDHs include classification loss and regression loss.
For more details on the architecture and the training process, please refer to [18].

3.2. Image-Level Alignment

Due to the large domain shift between the optical domain and the SAR domain, it is
difficult for a detector trained directly on the optical images to have a good application on
the SAR images. Inspired by CycleGAN [48], image-level alignment aims to transfer the
optical images Xo into the SAR images Xs.

The network structure of image-level alignment is shown in Figure 4. Image-level
alignment consists of two generators and two discriminators. Specifically, a generator
Gs and a discriminator Ds are added in front of the detector. Gs learns the mapping
function Gs : Xo → Xs to generate images similar to SAR images, while Ds aims to
distinguish between the generated SAR images and the real SAR images. The objective can
be expressed as:

LGAN(Gs, Ds) = Ex∼Xs [log Ds(x)] +Ex∼Xo [1− log Ds(Gs(x))]. (2)

For adversarial training, Gs aims to minimize this objective while Ds tries to maximize
it. Their data transfer flows are shown by the solid yellow arrows in Figure 4.

To avoid the model collapse problem caused by optimizing the adversarial objective
in isolation, the generator Go : Xs → Xo and the discriminator Do are introduced. Similarly,
the generator Go and the discriminator Do can be optimized by the objective LGAN(Go, Do),
and the solid green arrows in Figure 4 mark their data transfer flows. It is worth noting
that, to better show the data flows of MAN, the generator Go and the discriminator Do are
not drawn in Figure 3.

During training, each batch consists of two images, including one optical image
and one SAR image. For an optical image x ∈ Xo, the image Go(Gs(x)) reconstructed
by the two generators Gs and Go should be similar to the original optical image x, i.e.,
x → Gs(x) → Go(Gs(x)) ≈ x. Such cycle consistency should also be present for SAR
images. Cycle consistency loss is used to motivate this behavior:

Lo
cyc = Ex∼Xo [‖Go(Gs(x))− x‖1], (3)

Ls
cyc = Ex∼Xs [‖Gs(Go(x))− x‖1]. (4)

The constraint process of cycle consistency is shown by the dashed arrows in Figure 4.
The complete image-level alignment loss can be expressed as:

min
Gs ,Go

max
Ds ,Do

Limg = LGAN(Gs, Ds) + LGAN(Go, Do) + λ
(

Lo
cyc + Ls

cyc

)
, (5)

where λ controls the relative importance of the two objectives. When optimizing Gs and Go,
Limg needs to be minimized, and when optimizing Ds and Do, Limg needs to be maximized.
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Image-Level Alignment
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Generated 
SAR Image
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SAR Image
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Figure 4. Image-level alignment structure. Image-level alignment aims to transfer the optical image
into the SAR image.

3.3. Convolution-Level Alignment

Image-level alignment exploits generative adversarial networks to generate SAR
images from the optical images. The generated SAR images Xm = {Gs(x)|x ∈ Xo} and the
original optical image labels Yo form the intermediate domain (Xm, Yo). The intermediate
domain and the SAR domain are used to train the Faster R-CNN detector.

Although the generated images Xm are similar to real SAR images Xs, there are still
differences in distribution. To eliminate the domain distribution shift between Xm and
Xs, convolution-level alignment trains the domain classifier Dconv on each activation of
global convolutional features, which minimizes the domain distance to learn domain-
invariant feature. Specifically, the backbone network and the domain classifier form a set of
adversarial networks. The domain classifier is to distinguish whether the features come
from Xm or Xs, but the backbone network tries to extract domain-invariant features so that
the domain classifier cannot distinguish them.

For each image, Z denotes its domain label, where Z = 0 indicates the intermediate
domain (Xm, Yo), and Z = 1 indicates the SAR domain (Xs, Ys). Let Ẑ(i, j) denote the
domain label prediction of the convolution-level domain classifier Dconv for the activation
at the location (i, j) of the convolution features. The convolution-level alignment loss can
be written as:

Lconv = −∑
i,j
[Z log Ẑ(i, j) + (1− Z) log (1− Ẑ(i, j))]. (6)

To align the domain distributions, the parameters of the domain classifier are opti-
mized by minimizing the above alignment loss Lconv, while the weights of the backbone
network are optimized by maximizing Lconv. Gradient Reverse Layer (GRL) [49] is added
between the backbone network and the domain classifier to achieve adversarial training.

3.4. Instance-Level Alignment

The instance-level feature refers to the Region-of-Interest (RoI) based feature before
feeding into the final classifier and regressor, which determine the final prediction of the
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detector. Instance-level alignment also trains the domain classifier Dins on local instance
features to reduce domain shift.

Let Ẑk denote the predicted probability of the domain classifier Dins for the k-th region
proposal domain label, and the instance-level alignment loss is as follows:

Lins = −∑
k

[
Z log Ẑk + (1− Z) log

(
1− Ẑk

)]
. (7)

GRL is also used to implement adversarial training.
Both convolution-level and instance-level alignment train domain classifiers to alle-

viate domain shift. The prediction results of domain classifiers Dconv and Dins should be
consistent. Enforcing consistency between convolution-level and instance-level alignment
can help to learn the cross-domain robustness of target localization and classification. The
consistency regularizer can be written as:

Lcst = ∑
k
‖1

I ∑
i,j

Ẑ(i, j)− Ẑk‖2, (8)

where I denotes the total number of activations in a feature map, and ‖ · ‖2 is the L2 distance.
The convolution-level domain classifier produces a domain probability for each activation
of the global feature. Hence, the average of all activations in the feature is taken as its global
domain probability.

The complete MAN is trained using an end-to-end joint optimization method. For
optical images, the overall training loss Lo can be expressed as:

Lo = Ldet + αLimg + β(Lconv + Lins + Lcst), (9)

where α and β are trade-off parameters to balance the detection loss with each alignment
loss. For SAR images, the overall training loss Ls can be expressed as:

Ls = αLimg + β(Lconv + Lins + Lcst). (10)

It is worth noting that the alignment modules are only used during training. In the
training phase, MAN transfers the learned knowledge from the optical domain to the SAR
domain through the multi-level alignment mechanism. Therefore, in the testing phase, all
alignment modules can be simply offloaded, and the Faster R-CNN detector is used to
predict ships in SAR images.

4. Results

To evaluate the effectiveness of MAN, comprehensive experiments are conducted
in this section. Firstly, the cross-domain ship detection datasets and evaluation metric
used in this paper are introduced. Next, the implementation details are described in detail.
Following that, the performance of MAN is analyzed by ablation experiments. Finally, the
effectiveness of MAN is confirmed by comparing it with some state-of-the-art methods.

4.1. Datasets

This is the first work to achieve cross-domain ship detection from the optical domain to
the SAR domain. The existing datasets are not suitable for this cross-domain task. Therefore,
to verify the effectiveness of MAN, this work constructs two cross-domain datasets based
on some commonly used optical object detection datasets and SAR ship datasets. In each
cross-domain dataset, the number of optical ships is more than that of SAR ships.

4.1.1. HRRSD→ SSDD

Optical images are from the HRRSD dataset [50]. It is a high-resolution remote sensing
detection dataset, which contains 21,761 images and 55,740 object instances. The HRRSD



Remote Sens. 2022, 14, 2389 9 of 18

dataset contains 13 categories of objects, and only 2165 ship images are selected as the
optical domain. The spatial resolution is from 0.15 m to 1.2 m.

SAR images are from the SSDD dataset [51]. It is a SAR ship dataset, which is mainly
derived from RadarSat-2, TerraSAR-X, and Sentinel-1 sensors with four polarization modes
including HH, VV, VH, and HV. The resolution of SAR images ranges from 1 m to 15 m. It
consists of 1160 images and 2456 ships. The average number of ships per image is 2.12.

4.1.2. DIOR→ HRSID

Optical images are from the DIOR dataset [52], which is an optical remote sensing
image dataset for object detection. It consists of 23,463 images and 192,472 object instances.
DIOR dataset contains 20 categories of objects, and only 2702 ship images are selected as
the optical domain.

SAR images are from the HRSID dataset [53]. It is a high-resolution SAR images
dataset, which is constructed from Sentinel-1B, TerraSAR-X, and TanDEMX imageries. The
resolution of SAR images is as follows: 0.5 m, 1 m, and 3 m. It contains a total of 5604 SAR
images and 16,951 ship instances.

Table 1 lists the relevant statistics of the two cross-domain datasets.

Table 1. Statistics of two cross-domain datasets.

Optical Domain SAR Domain

HRRSD→ SSDD 2165 ship images and
3886 ship instances

1160 ship images and
2459 ship instances

DIOR→ HRSID 2702 ship images and
nearly 64,000 ship instances

5604 ship images and
16,951 ship instances

4.2. Evaluation Metric

The mean Average Precision (mAP) [54] is used to evaluate the ship detection perfor-
mance, which is the area under the Precision-Recall (P-R) curve. It is defined as

mAP =
∫ 1

0
P(R) · RdR, (11)

where P is Precision, R is Recall,

P =
TP

TP + FP
, (12)

R =
TP

TP + FN
. (13)

TP denotes the number of correctly detected ship targets, FP denotes the number of false
alarms, and FN denotes the number of missed detections.

4.3. Implementation Details

Faster R-CNN [18] with RoIAlign [19] is adopted in the experiments. ResNet-101 [55]
is pre-trained on ImageNet and used to initialize the backbone network. The loss balance
parameter α is set to 2, β is set to 0.01, and λ is set to 10. MAN is trained with a learning
rate of 0.0001 for 100k iterations and then reduces the learning rate to 0.00001 for another
20k iterations. Each batch is composed of two images, one from the optical domain and
one from the SAR domain, which are randomly sampled. The Stochastic Gradient Descent
(SGD) optimizer with momentum of 0.9 and weight decay of 0.0005 is adopted in the
experiments. MAN is implemented in PyTorch, and all experiments are performed on
Ubuntu 20.04 system, Intel(R) Xeon(R) Silver 4210 CPU, and a Quadro RTX 6000 GPU.
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4.4. Ablation Studies

To verify the effect of each alignment, some ablation studies have been completed on
DIOR→ HRSID dataset. To ensure fairness, other settings are consistent with implementa-
tion details when conducting experiments with different strategies.

4.4.1. The Impact of Different Level Alignments

To evaluate the significance of different level alignments in MAN, comprehensive
ablation experiments are performed. The experimental results are shown in Table 2.

Table 2. The impact of different level alignments on detection performance. The best result is
indicated by bold.

Image-Level
Alignment

Convolution-Level
Alignment

Instance-Level
Alignment mAP (%)

× × × 31.38
X × × 36.86
X X × 54.74
X X X 57.37

Faster R-CNN is the baseline and does not consider cross-domain alignment. It is
trained on optical images and tested directly on SAR images, which achieves 31.38% mAP.
Based on Faster R-CNN, each different level alignment is increased.

Image-level alignment attempts to translate an optical image into an image close to the
SAR domain. After adding image-level alignment on Faster R-CNN, the detector achieves
36.86% mAP. It facilitates the detector to be adapted to the SAR domain. Figure 5 shows the
result of image-level alignment. It can be seen that the generated images are close to SAR
images. However, image-level alignment is difficult to fit the speckle noise and geometric
distortion of SAR images, and there is still a certain distribution difference between the
generated SAR images and the real SAR images.

(a) (b)

Figure 5. Image-level alignment examples. (a) The optical images. (b) The generated SAR images.
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Convolution-level alignment further greatly improves the detection performance.
Convolution-level alignment is beneficial for aligning the feature distributions of optical and
SAR images. After adding convolution-level alignment, the detector achieves 54.74% mAP.
Figure 6 shows the comparison of features with or without convolution-level alignment.
The features are from the last convolutional layer of the backbone network. It can be seen
that with the addition of convolution-level alignment, the shores that are more likely to
have ships get more activations. This helps the detector improve recall.

(a) (b) (c)

Figure 6. Comparison of features with and without convolution-level alignment. (a) SAR images with
ground-truths. (b) Feature maps w/o convolution-level alignment. (c) Feature maps w/ convolution-
level alignment.

Instance-level alignment is added last to help get better classification and regression
features, resulting in a detection performance of 57.37% mAP. In addition, some visual
detection examples are compared, and the results are shown in Figure 7. Each alignment is
incrementally increased and its detection results are shown separately. Not considering
domain alignment can lead to a large number of missed detections. Gradually increasing the
alignments at each level improves the recall rate and obtains better detection performance.
This also demonstrates the effectiveness of the multi-level alignment mechanism.
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(a) (b) (c) (d)

Figure 7. Comparison of detection effects. The red bounding box denotes ground-truth and the green
bounding box denotes predicted results. (a) Faster R-CNN. (b) Faster R-CNN w/ Image-level alignment.
(c) Faster R-CNN w/ image-level alignment and convolution-level alignment. (d) MAN (ours).

4.4.2. The Impact of Different Training Strategies

In this paper, two training strategies are explored to handle the image-level alignment
module and the domain adaptive detector incorporating convolution-level and instance-
level alignments. The step-by-step strategy first trains the image-level alignment module
and then trains the domain adaptive detector. This means that the optical images are first
translated into SAR images. Then, the generated SAR images input to the domain adaptive
detector are invariant. The end-to-end strategy jointly optimizes the image-level alignment
module and the domain adaptive detector in end-to-end training. Table 3 lists the results for
the two training strategies, where the step-by-step strategy only obtains 39.13% mAP, while
the end-to-end strategy obtains 57.37% mAP. The end-to-end training strategy achieves
huge gains for two main reasons. First, when training the detector, image-level alignment
is being trained at the same time. Therefore, the generated SAR images in different epochs
are different. This difference encourages the detector to be more robust. Second, when
jointly optimizing, the detection loss can guide not only detector training but also image-
level alignment training. This means that image-level alignment can generate images in
directions more suitable for ship detection.
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Table 3. The impact of different training strategies on detection performance. The best result is
indicated by bold.

Training Strategies mAP (%)

Step-by-step 39.13
End-to-end 57.37

4.4.3. The Impact of Hyperparameters Changes

As shown in Equations (9) and (10), hyperparameters α and β control the balance of
alignment losses at all levels. The choice of their value is worth exploring. α select 1, 2 and 3
for the experiment; while β select 1.00, 0.100, 0.010, and 0.001 for the experiment. The
experimental results are shown in Figure 8. It can be seen that the adjustment of α has a
large impact on the detection performance. In contrast, β is not sensitive. When α = 2 and
β = 0.01, MAN can be trained to obtain the best performance 57.37% mAP.
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Figure 8. Analysis of trade-off parameters α and β. (a) The effect of parameter α on detection
performance when β is fixed at 0.01. (b) The effect of parameter β on detection performance when α

is fixed at 2.

4.4.4. The Impact of Different Backbone Networks

Different backbone networks are used to test the performance of MAN. ResNet-50
and ResNet-101 are selected for the experiments. The experimental results are shown in
Table 4. MAN with ResNet-50 achieves 55.65% mAP, while MAN with ResNet-101 achieves
57.37% mAP.

Table 4. The impact of different backbone networks on detection performance. The best result is
indicated by bold.

Backbone Networks mAP (%)

ResNet-50 55.65
ResNet-101 57.37

4.5. Comparisons with State-of-the-Art Methods

The proposed MAN is compared with Faster R-CNN [18], Domain Adaptive Faster
R-CNN (DA) [14], and Strong-Weak Distribution Alignment (SWDA) [15]. Faster R-CNN
does not consider domain alignment. It is only trained in the optical domain and tested
directly in the SAR domain. DA considers the alignment of convolution-level and instance-
level, while SWDA considers the alignment of global and local features. These domain
adaptation methods were originally applied to natural scenes, such as normal-to-foggy
adaptation, synthetic-to-real adaptation, and cross-camera adaptation. This paper tests
their performance on the cross-domain ship detection task. Comparative experiments are
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performed on two datasets: HRRSD → SSDD and DIOR → HRSID. The experimental
results are shown in Table 5.

Table 5. Comparison of SAR ship detection performance (mAP) on different cross-domain ship
detection datasets. The best results are indicated by bold.

Methods
mAP (%)

HRRSD → SSDD DIOR → HRSID

Faster R-CNN [18] 43.55 31.38
DA [14] 44.24 50.48

SWDA [15] 48.29 42.90
MAN (Ours) 61.92 57.37

Experimental results show that MAN achieves the best results on both cross-domain
datasets. It achieves 57.37% mAP on DIOR → HRSID and 61.92% mAP on HRRSD →
SSDD. Such results confirm the effectiveness of the proposed MAN. Meanwhile, Figure 9
shows the P-R curve results of the two datasets. It can also be seen that the area under the
P-R curve of MAN is the largest. MAN can achieve higher precision and recall. It is worth
noting that MAN does not have any efficiency drop compared to other methods. This is
because the multi-level alignment mechanism only works during training and does not
require any computation during testing.

Faster R-CNNFaster R-CNN

SWDASWDA

MANMAN

P
re
ci
si
o
n

Recall

DADA

(a)

Faster R-CNNFaster R-CNN

SWDASWDA
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P
re
ci
si
o
n

Recall

DADA

(b)

Figure 9. P-R curves of different detection methods. (a) HRRSD → SSDD dataset. (b) DIOR →
HRSID dataset.

5. Discussion

As shown in Figure 7, the detection results of our method are mostly correct, but
some unexpected results still exist. Figure 10 shows some examples of failed detections.
It can be found that in some complex backgrounds, the buildings and ships on shore
cannot be effectively distinguished. As shown in Figure 10a, some supervisors with similar
reflection characteristics to ships are falsely detected as ships. As shown in Figure 10b,
multiple closely-arranged ships are easily missed. In response to such a situation, some
more effective cross-domain alignment methods need to be explored. Meanwhile, some
prior knowledge of SAR ships should also be considered to help us distinguish ships
from backgrounds.
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(a) (b)

Figure 10. (a,b) Some cases of unsuccessful results. The red bounding box denotes ground-truth and
the green bounding box denotes the predicted results.

6. Conclusions

This paper considers a cross-domain ship detection task: adapting the ship detector
from labeled optical images to unlabeled SAR images. In view of the large domain shift
between the optical domain and SAR domain, the multi-level alignment network is pro-
posed, which achieves cross-domain alignment at the image-level, convolution-level, and
instance-level. Image-level alignment attempts to translate optical images into SAR images,
although it is not expected to be the same as SAR images. Convolution-level alignment
trains the domain classifier on each activation of the convolutional feature, which mini-
mizes the domain distance to learn domain-invariant features. Instance-level alignment
reduces domain distribution shift on the features extracted from the region proposals. The
multi-level alignment mechanism is embedded into Faster R-CNN, and the entire detector
is trained end-to-end without increasing inference time. The effectiveness of the multi-level
alignment mechanism is proved on multiple cross-domain ship detection datasets. MAN
can detect most ships, but there are still some unexpected results. The main reason is that
some complex backgrounds interfere with cross-domain alignment.

In future work, we will further explore some more effective cross-domain alignment
methods. Meanwhile, some prior knowledge of SAR ships should also be considered to help
us distinguish ships from backgrounds. In addition, in some practical application scenarios,
it is not entirely impossible to obtain a small number of labeled SAR images. Therefore, the
semi-supervised cross-domain ship detection is also a meaningful research direction.
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