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Abstract: The contamination of farmlands with hazardous metals from mining puts the safety of
agricultural commodities at risk. For remediation, it is crucial to map the spatial distribution of
contaminated soil. Typical sampling-based procedures are time-consuming and labor-intensive. The
use of visible, near-infrared, and short-wave infrared reflectance (VNIR-SWIR) spectroscopy to detect
soil heavy metal pollution is an alternative. With the aim of investigating a methodology of detecting
the most sensitive bands using VNIR-SWIR spectra to find lead (Pb) anomalies in agriculture soil
near mining activities, the area in Xiaoqinling Mountain, downstream from a series of active gold
mines, was selected to test the feasibility of utilizing VNIR-SWIR spectroscopy to map soil Pb. A total
of 115 soil samples were collected for laboratory Pb analysis and spectral measurement. Partial least
squares regression (PLSR) was adopted to estimate the soil Pb content by building the prediction
model, and the model was optimized by finding the optimal number of bands involved. The spatial
distribution of Pb concentration was mapped using the ordinary kriging (OK) interpolation method.
This study found that five spectral bands (522 nm, 1668 nm, 2207 nm, 2296 nm, and 2345 nm)
were sensitive to soil Pb content. The optimized prediction model’s coefficient of determination
(R2), residual prediction deviation (RPD), and root mean square error (RMSE) were 0.711, 1.860,
and 0.711 ln(mg/kg), respectively. Additionally, the result of OK interpolation was convincing and
accurate (R2 = 0.775, RMSE = 0.328 ln(mg/kg)), comparing maps from estimated and ground truth
data. This study proves that it is feasible to use VNIR-SWIR spectral data for in situ estimation of the
soil Pb content.

Keywords: VNIR-SWIR reflectance; Pb contamination; absorption features; PLSR; soil heavy metal

1. Introduction

The impact of heavy metal contamination in ecosystems is a primary concern for
modern society. It can reduce soil fertility and crop production because of the concealed,
hysteretic, cumulative, and irreversible characteristics of the heavy metal in soil. It poses
threats to human health through the food chain, direct ingestion, dermal absorption, and
respiratory system [1,2]. Studies have shown that human diseases, including complications
of the nerves, bones, blood circulation, endocrine, and immune systems, could be associated
with the intake of heavy metals [3]. Mining activity, as one of the major sources of heavy
metal contamination in soil [4–6], should be monitored dynamically to identify the pollution
level of heavy metals; this is critical for policymaking and soil remediation [7].

The conventional strategy for monitoring soil contamination is based on sampling
and laboratory analysis of heavy metals in soil samples. This approach yields excellent
precision for each sample [8], but spatial accuracy is dependent on the size of the sampling
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grid (or mapping scale). It is costly and time-consuming to obtain the pollutant distribution
map in large areas [6]. The visible, near-infrared, and short-wave infrared reflectance
(VNIR-SWIR) spectroscopy technology is a non-destructive approach to quickly determine
soil heavy metal contamination quantitatively [6,9]. Previous research demonstrated that
reflectance spectra can be used to estimate the distributions of heavy metals in soil, and
multivariate analysis can analyze complicated mixes of soil constituents [10–13]. However,
the wavelength and number of sensitive bands for predicting the same soil element are
different for each research [14–16], and the relationship between the accuracy of the predic-
tion model and the involved spectral features has not been thoroughly studied. In addition,
the organic matter, iron oxides, and clay minerals in the soil can adsorb heavy metals
and affect the selection of sensitive bands in a particular region, which must therefore be
investigated [17–19].

The Xiaoqinling Mountain in China is the second-largest gold-bearing area, with
over 1000 years of mining history and an extensive research background. It has been
found that mining activities in the Xiaoqinling Mountain region have contributed to heavy
metal contamination in agricultural soils [20]. Previous studies have found that mines are
significant contributors to soil contamination downstream [20,21] and Pb pollution is a
critical indicator, while various other contaminants are often correlated to Pb concentration.
The soil Pb content is known to be associated with the cation exchange capacity (CEC),
pH, organic matter, clay minerals, and CaCO3 content in soil [12,22,23], which makes it
feasible for detecting or inferring the Pb content indirectly by reflectance spectra [19,24]. As
demonstrated in previous research, soil composition (e.g., total iron, carbonate, and organic
carbon) can be predicted under laboratory settings using partial least squares regression
(PLSR) and other analytical techniques such as reflectance spectroscopy [11,13,25]. PLSR is
widely used in the estimation of heavy metal content. Pandit et al. (2010) applied the PLSR
to predict the range of Pb, Zn, Cu, Cd, and Mn in soils [14]. Liu et al. (2018) utilized the
PLSR method to estimate Cr, Mn, Ni, Cu, Zn, As, Cd, Hg, and Pb in soils with coefficient
of determination (R2) of 0.62 for Pb prediction [15]. Ren et al. (2009) also used PLSR to
estimate the As, Fe, and Cu in soils by establishing models between soil elements and
reflectance spectra [26].

This research aims to investigate the possibility of using VNIR-SWIR spectra to detect
Pb concentration in agriculture soil near a mining location in Xiaoqinling Mountain, with
three main objectives: (1) to determine the most sensitive bands for predicting soil Pb
content in farmland soil; (2) to optimize the spectral features involved in prediction model;
(3) to use ordinary kriging interpolation for mapping the spatial distribution of soil Pb
concentration and investigate the association between Pb anomaly and soil properties.

2. Materials and Methods
2.1. Study Area

The Xiaoqinling Mountain area is situated at the conjunction of Shaanxi and Henan
Province (Figure 1), China. The sampling site (110◦26′04′′E to 110◦37′54′′E and 34◦28′22′′N
to 34◦36′19′′N) is situated 10 km north from active mining and smelting facilities. The
farmlands are mainly distributed on the alluvial plains downstream from a series of gold
deposits. The elevation of these farmlands decreases from 653 m in the south to 323 m in
the north. The soil is alkaline, and the pH of the soils is 7.5 to 8.0, with 645.8 mm annual
precipitation. Rivers and valleys are well developed in the area, and all flow into the Yellow
River in the north [27]. The site contains five different types of soil: warp soil, brown soil,
cinnamon soil, sandy clay soil, and dark loessial soil. The soil types are controlled by either
the host rock or local topography, e.g., warp soil is found predominantly in low-altitude
valleys [28].

Three large gold deposits (Dongtongyu, Wenyu, and Dongchuang) and a few small-
medium gold mines are located in the research area (Figure 1). In these deposits, quartz
veins, altered fracture zones, and Pb mineralization frequently occur together with Au
mineralization [29]. Long-term and large-scale mining activities have resulted in soil heavy
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metal contamination, especially Pb, Hg, Cd, etc., in the farmland around the Xiaoqinling
Mountain, and Pb is considered as one of the most common contamination indicators of
the study area [20,30].
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Figure 1. Study area and sample location (red dots). Small, medium and large yellow circles represent
the relative size of Au deposits. Blue polylines mark the main river channels.

2.2. Data and Preprocessing
2.2.1. Sampling and Laboratory Analysis

A total of 115 topsoil samples (1 kg per sample) were collected in the area at a depth
of 0–8 cm in August 2019 (Figure 1). A regular grid was scheduled to guide field sample
collection, and a portable GPS (Garmin, Lenexa, KS, USA) was used for positioning with a
positioning accuracy of 5 meters. The samples covered an area of 100 km2 with an average
interval of approximately 1 km. The grass, debris, and stones were physically removed
from the samples after they were air-dried under natural conditions.

The Pb content of the soil samples was obtained in the laboratory by an Olympus Delta
Premium portable X-ray fluorescence (pXRF, Waltham, MA, USA). The pXRF instrument
was set to soil mode, and a contact detector was utilized to make measurements on sample
surface. The instrument was calibrated with a metal alloy disc for every 15 samples. The
detection limits of the pXRF method for Pb and Fe are 5 mg/kg and 20 mg/kg, respec-
tively [31]. The quality control (QC) of the measurement was confirmed using standard
reference samples certified by National Institute of Standards and Technology (NIST). The
correlation coefficient between the measured values and the reference values was higher
than 0.95. This method has been proven to be a quick and relatively accurate approach for
measuring Pb content in soils [32,33]. The mineral composition of 12 representative soil
samples was determined by Shimadzu X-ray diffractometer (XRD, Lab XRD-6100, Kyoto,
Japan) in the laboratory. Each sample was grounded and sieved (25 µm) before being
analyzed at a 20 ◦C temperature and 40% humidity. The 2θ scans were conducted from 5◦

to 80◦ at a 2◦/min speed. Results were processed using the MDI Jade 6.0 software (Material
Data, Inc., Livermore, CA, USA) with card PDF2-2004.

Based on the National Risk Control Standard for Soil Contamination of Agricultural
Land (NRCSSCAL, GB 15618-2018), combined with pH values of the study area, the risk
screening value (RSV), the risk control value (RCV), and the soil background value (SBV)
of Pb are 170 mg/kg, 1000 mg/kg, and 16.3 mg/kg, respectively. Quick statistics (Table 1)
of the sample pXRF data indicate that many samples’ Pb content was much higher than the
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SBV in this area out of 115 samples, 60 (more than 52%) exceeded the RSV threshold and
were thus considered Pb contaminated. Moreover, the coefficient of variation (CV), defined
as the ratio of the standard deviation (SD) to the mean value of heavy metal content in soil,
shows the great difference in Pb content due to the large CV value (1.67). In addition, Pb
data were transformed to the log scale for further spectral analysis, as is common practice
for predicting the contamination of soil heavy metals [34,35]. The log-transformed Pb
(ln(Pb)) data are close to a normal distribution with the skewness and kurtosis values close
to 0, which is more suitable for further statistical analysis and modelling than the original
Pb values. Due to the nature of the link between the absorption coefficient and the intimate
combination of soil compositions, it is easier to characterize soil element contents in the log
scale using reflectance spectra [36,37].

Table 1. Statistics of Pb (mg/kg) and ln(Pb) (ln(mg/kg)) for 115 soil samples.

Number Range Mean Skewness Kurtosis CV 1 SD 2 RSV 3 RCV 4 SBV 5

Pb 115 16.60–4505.00 487.08 3.04 10.11 1.67 816.68 170 1000 16.30
ln(Pb) 115 2.80–8.41 5.25 0.28 −0.48 0.26 1.36 5.14 6.91 2.79

1 CV: coefficient of variation; 2 SD: standard deviation; 3 RSV: the risk screening value; 4 RCV: the risk control
value; 5 SBV: the soil background value.

2.2.2. Data for Soil Properties

The soil pH, soil organic carbon (SOC) and CEC were collected to analyze the as-
sociation between Pb concentration and soil properties in the study. The soil pH, SOC
and CEC data (at spatial interval of 90 meters) were obtained from the National Earth
System Science Data Center, National Science & Technology Infrastructure of China
(http://www.geodata.cn (accessed on 13 April 2022)) [38,39], and the average values
of the topsoil (0–5 cm) pH, SOC and CEC from 2010 to 2018 were used to analyze the
potential influence factors of Pb concentration in this research.

2.2.3. Spectral Measurement and Preprocessing

The spectral data were collected by SR-3500 spectrometer (Spectral Evolution Inc.,
Lawrence, MA, USA) in a laboratory, between 350 nm and 2500 nm in spectral range. The
spectral resolution was 3 nm (350–1000 nm), 8 nm (1000–1900 nm), and 6 nm (1900–2500 nm),
with a 1 nm sampling bandwidth. Bare fiber with a contact probe was used to measure radi-
ance from these soil samples illuminated by a halogen lamp (5W, 7.4V) with a 25◦ incidence
angle. The radiance spectrum was normalized to that of a 99% Spectralon white panel to
obtain a reflectance spectrum. Ten spots were measured for each sample, with a field of
view of 2 cm in diameter and average of 25 co-adds for each spot, and the representative
spectrum for each sample was then obtained by averaging the ten spectra. The artificial
steps/breakpoints at 980 nm caused by adjacent sensors were corrected (Figure 2).

http://www.geodata.cn
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in Section 3.3).

2.3. Spectral Bands Extraction and Modelling

Continuum removal (CR) is a popular spectral analysis technique for removing the
spectral background and enhancing absorption features [40–42]. The continuum is a convex
hull fitted between the starting and ending points of the absorption features. The first and
last band values of the CR–processed spectrum are equal to 1 because the raw bands are on
the hull, whereas the other bands have values between 0 and 1 [40,41]. The CR method can
be described as follows [43]:

Ci = Ri/Rci (1)

where Ci is the value of the continuum-removed reflectance spectrum at the band i; Ri is
the value of the original reflectance spectrum for band i; Rci is the value of the continuum
at the band i. The starting bands and ending bands are set as 350 nm and 2500 nm in
this research.

After continuum removal of a spectrum, the strength of absorption features can be
attributed to the physical properties of the measured target. The Pearson correlation
coefficient (r) was applied to measure the relationship between the continuum removed
soil spectra and Pb content to extract the sensitive bands for further modelling in this
study [44].

A set of rules was used to assess the band sensitivity to Pb content. Firstly, the absorp-
tion features that have mineralogical meaning were identified on a continuum removed
spectra. Each feature was defined by a spectral range (see Section 3.1 for feature ranges).
Then, the Pearson correlation coefficient between each band of the continuum removed the
reflectance and Pb content was calculated. All bands with a correlation coefficient larger
than 0.1 and with band positions falling within the feature ranges identified in previous
step were retained. All spectral bands with correlation coefficients larger than 0.4 were
retained, regardless of whether these bands show absorption features or not. All these
retained bands are candidates for being subjected to further processing. Secondly, the band
with the highest correlation within each feature range was selected and set as reference
band for this feature. The correlation coefficients between this reference band and all other
retained bands in this range were calculated and compared. One or more bands were
added to the sensitive band set if the correlation coefficients between the reference band
and all the other bands were less than 0.9 in order to remove band collinearity within
each absorption feature. This process was conducted in each feature range, and finally,
31 sensitive bands were retained for further modelling. Thirdly, the PLSR was used to
build prediction models using the 31 sensitive bands. Progressive iteration/optimization
was conducted by removing one band with the lowest regression coefficient value (see
Section 3.3 for detail). The number of bands in the model was reduced through the iterative
process to improve adaptability in future applications.
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2.4. PLSR Modelling and Validation

PLSR is commonly used for quantitative spectral analysis [45,46] when the sample
size is small [9]. This study used the PLSR method to model the relationship between Pb
content (dependent variable) and the continuum removed reflectance at sensitive bands
(independent variables). Three-quarters of the total sample suite (88 out of the 115 samples)
were used for modelling, and a quarter (27 out of the 115 samples) was retained for
independent model validation. A large number of independent variables (spectral bands)
with a small number of dependent variables (Pb content) leads to a high possibility for
overfitting [47,48]. Only 31 sensitive bands were involved as initial independent variables
(as described in Section 3.1), reducing the risk of overfitting. The standardized regression
coefficients of the PLSR method indicate the importance of each predictor in the model and
correspond to the standardized variables [49–51]. The standardized regression coefficients
were used to further optimize the initial PLSR model by removing one band with the
lowest regression coefficient value iteratively to optimize the number of spectral features.
Considering the fact that the accuracy of the PLSR model was stable when the number
of sensitive bands was more than 5 and the number of samples is 88 (see Section 3.3 for
detail), and these 5 bands were located at separate spectral regions with different physical
meaning, the risk of overfitting is extremely low.

R2, residual prediction deviation (RPD), and root mean square error (RMSE) were used
to assess the PLSR model’s accuracy. The efficiency of the prediction model was evaluated
by comparing the correlation between the predicted and measured Pb concentrations. The
evaluation system of Rossel et al. [52] was adopted: RPD ≤ 1.0 indicates unsuccessful
predictions, 0 < RPD ≤ 1.4 indicates poor predictions, 1.4 ≤ RPD < 1.8 indicates fair
predictions, 1.8 < RPD ≤ 2.0 indicates good predictions, 2.0 < RPD ≤ 2.5 indicates very
good quantitative predictions, and RPD > 2.5 indicates excellent predictions. Generally,
a good model has large values of R2 and RPD with low RMSE [53]. The formulas for the
three parameters are as follows:

R2 =
1
n

n

∑
i=1

(ŷi − yi)
2/

1
n

n

∑
i=1

(yi − y)2 (2)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (3)

RPD =

√√√√ 1
n

n

∑
i=1

(
yi −

1
n

n

∑
i=1

yi

)2

/

√
1
n

n

∑
i=1

(ŷi − yi)
2 (4)

where yi is the measured Pb content of the ith sample; ŷi is the predicted Pb content of the
ith sample; y is the average of the measured Pb content of the samples; n is the number
of samples.

2.5. Ordinary Kriging

After the Pb value of each sample location was predicted, the ordinary kriging (OK)
interpolation method [54] was employed to map the spatial distribution of soil Pb con-
tamination. The weights of OK are averages of the observations based on the degree of
spatial correlation [55], and OK is commonly considered as an unbiased estimator [56,57]
for the observations following spatial grids with regular intervals, which is appropriate to
this research.

3. Results
3.1. Sensitive Bands

Spectral data at wavelengths lower than 450 nm and longer than 2450 nm were elimi-
nated (Figure 3a), and bands near water features (1400 nm and 1900 nm) were not included
in band selection. The continuum removed spectra clearly show a series of spectral fea-
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tures at 450–600 nm, 710–735 nm, 780–790 nm, 820–950 nm, 1010–1024 nm, 1120–1132 nm,
1350–1368 nm, 1560–1580 nm, 1745–1820 nm, 1850–1875 nm, 2150–2235 nm, 2240–2265 nm,
2280–2305 nm, and 2310–2360 nm (Table 2). Compared to the original spectrum, the cor-
relation between the continuum removed soil spectrum, and Pb content has significantly
increased (Figure 3b). The maximum single band correlation coefficient between the origi-
nal spectra and Pb content is about 0.15. In contrast, the maximum correlation coefficient
between continuum removed spectra, and Pb content increased to about 0.45 (Figure 3b).
The bands with higher correlation are mainly distributed around 450–575 nm, 716–1316 nm,
1343–1677 nm, 1710–1714 nm, 1721–1736 nm, 1826–2103 nm, 2137–2181 nm, 2197–2220 nm,
2250–2317 nm, 2332–2356 nm, 2317–2387 nm, and 2394–2410 nm for both of the original
spectra and the CR–processed spectra (Figure 3b). All the individual sensitive bands are
listed in Table 2. As the absorption strength of adjacent bands is often correlated, 31 sensi-
tive bands were finally selected to reduce redundancy based on the method described in
Section 2.3 (Table 2).
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Figure 3. (a) Continuum removed spectra (dot lines represent the ignored bands); (b) The correlation
coefficient between Pb and raw reflectance and continuum removed reflectance (dot lines are the
sensitive bands of the optimized model selected).

Table 2. The range of sensitive bands based on Pearson correlation with Pb.

CSF 1/k 2 RSF 3 COR 4 RSB 5 SB 6

525 450–600 450–575 450–575 522, 575
719 710–724 716–1316 710–724

719727 724–728 1343–1677 724–728
730 728–735 1710–1714 728–735
784 780–790 1721–1736 780–790 780, 784, 788
848 820–860 1768–1795 820–860 825, 836, 848
900 860–950 1826–2103 860–950 865, 900, 940

1016 1010–1024 2137–2181 1010–1024 1016
1126 1120–1132 2197–2220 1120–1132 1126
1357 1350–1368 2250–2317 1350–1368 1357, 1368
1780 1745–1820 2332–2356 1655–1675 1655, 1668, 1675
1868 1850–1875 2371–2387 1768–1795 1768, 1780, 1795
2207 2150–2235 2394–2410 1850–1875 1857, 1868
2250 2240–2265 2150–2181 2160
2296 2280–2305 2197–2220 2207
2345 2310–2360 2250–2265 2250, 2264

2280–2305 2280, 2296
2310–2360 2345

1 CSF: the center of spectral features on CR spectrum; 2 k: slope characteristics of the spectrum; 3 RSF: the range
of spectral features on CR spectrum; 4 COR: spectral range with higher than 0.1 correlation on CR spectrum;
5 RSB: the range of sensitive bands; 6 SB: sensitive bands selected for modelling.
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3.2. Model Construction and Validation

The 115 topsoil samples were ranked in the order of Pb content from lowest to highest.
One sample was retained for validation from every four samples sequentially. Thus, the
115 soil samples were separated into 88 for modelling and 27 for validation. The statistics
of the modelling and validation suite are shown in Table 3. Both the original Pb content
and the log-transformed Pb content were tested for modelling, with all the 31 sensitive
bands shown in Table 2.

Table 3. Statistics of modelling and validation samples.

Set Number Min Max Mean

Pb (mg/kg) Modeling 88 16.60 4373.00 467.14

Validation 27 16.60 4505.00 552.10

ln(Pb) (ln(mg/kg)) Modeling 88 2.80 8.38 5.27

Validation 27 2.81 8.41 5.20

The R2, RPD, and RMSE of modelling with the original Pb content were 0.432, 1.326,
and 562 mg/kg, respectively. R2 and RMSE of validation suite (R2

v and RMSEv) were
0.394 and 786 mg/kg, respectively (Figure 4a). The poor R2 implies that the model cannot
estimate the Pb concentration of the soil quantitatively, especially for low Pb samples.
After log-transformation of Pb, the R2, RPD and RMSE for modeling were 0.676, 1.758 and
0.752 ln(mg/kg), respectively, and the R2

v and RMSEv of validation samples were 0.638 and
0.907 ln(mg/kg) (Figure 4b). The results indicated that modelling with log-transformed
Pb significantly improved the model performance. As a result, only log-transformed Pb
(ln(Pb)) was used in all subsequent process.
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3.3. Optimization of Model

The adjacent spectral bands of hyperspectral data are strongly correlated with high
data redundancy [58]. Some sensitive bands are very close to each other within the same
feature range. Therefore, in order to reduce the dimensionality of spectra and the collinear-
ity of bands, an iterative process was conducted to reduce the number of the bands, one
band with the lowest standardized regression coefficient value in the regression model was
removed in each iteration. Figure 5 illustrates the accuracy variation for modelling and
validation samples with 2–31 sensitive bands. For PLSR model with 5–7 sensitive bands,
the standardized regression coefficient is stable. In addition, the 5–band model was used
to generate final results as these five bands fell into different feature ranges with different
physical meaning.
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Figure 5. Model performance for (a) the modelling set and (b) the validation set with different
sensitive bands.

When the number of feature bands was higher than 5, the R2 and RMSE of the
modelling and validation samples, as well as the RPD of the modelling set, remained
stable (Figure 5a,b). The accuracy decreased dramatically when the number of bands
was less than 5 for both validation and modelling samples. Thus, the optimized model
(Equation (5)) used 5 features/bands: 522 nm, 1668 nm, 2207 nm, 2296 nm, and 2345 nm
(Figures 2b, 3b and 6). The bands captured the significant spectral variations observed in
CR–processed reflectance (see Section 3.1). The R2, RMSE, and RPD of the optimized model
(Figure 6) are comparable to the results of the model using all 31 bands (Figure 4b).

Y = −728.1 + B522 ∗ 9.8 + B1668 ∗ 640.9 + B2207 ∗ 34.2 + B2296 ∗ 116.8 + B2345 ∗ 173.5 (5)

where Y is the log-transformed Pb content with the unit ln(mg/kg).
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3.4. Spatial Distribution of Soil Pb Contamination

Figure 7 compares the distribution maps obtained via OK interpolation from the mea-
sured Pb (Figure 7a) and model predicted Pb (Figure 7b). The model highlights all of the
notable Pb anomalies in the area. Based on the NRCSSCAL, two thresholds, the logarithm
of RSV (ln(RSV) = 5.14 ln(mg/kg)), and the logarithm of RCV (ln(RCV) = 6.91 ln(mg/kg))
of the Pb were used to evaluate the contamination, which was divided into 3 levels. Val-
ues less than 5.14 ln(mg/kg) were considered as pollution–free areas, values between
5.14 ln(mg/kg) and 6.91 ln(mg/kg) were lightly polluted areas, and values greater than
6.91 ln(mg/kg) were defined as heavily polluted areas (Figure 7c,d). The two Pb contami-
nation maps interpolated from the measured values and predicted values were compared
visually (Figure 7c,d) and the results showed similar spatial patterns for the three contami-
nation levels. The heavily polluted areas are spatially associated with the drainages. The
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maps indicate that the source material of Pb contamination was transported from upstream
by flood and affected by the deposits and mining activity. Therefore, the Pb content may be
negatively correlated to elevation and result in the differences of the soil type and minerals
in soil. The visual comparison of these maps also indicates that most areas with heavy soil
Pb pollution can be identified on prediction map (Figure 7b,d). Both Figure 7a (measured
map) and Figure 7b (predicted map) were resampled to 0.005 degrees per pixel for map
comparison (total of 550 pixels in the area). Figure 8 shows that the two maps are highly
comparable with high R2 (0.775) and low RMSE (0.328 ln(mg/kg)). However, the maximum
value of predicted data was slightly lower than the observed data (Figure 8).
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4. Discussion
4.1. Selection of Sensitive Bands

Hyperspectral spectra with continuous spectral bands and narrow bandwidth en-
able accurate determination of target properties, but the strong correlation between ad-
jacent spectral bands poses high data redundancy [58]. Band selection can reduce the
dimensionality of spectra to facilitate the separation of different targets [59]. In this study,
31 sensitive bands were selected by correlation analysis between spectrum and Pb content,
spectral absorption features, and the correlation among the bands within spectral ranges
of each feature (Table 2). The iterative process further reduced the number of the bands
to 5 by monitoring the standardized regression coefficient value in each iteration with
different band combinations. The five bands—522 nm, 1668 nm, 2207 nm, 2296 nm, and
2345 nm—were located within different spectral regions/features, and thus considered
independent variables in the final prediction model (Figures 2b and 3b). However, there are
different approaches for best variable/band selection during the iteration, e.g., backward
and forward selection. Prior knowledge must be used to make the final decision. In this
study, the model’s performance (Figure 5) hit a tipping point at band numbers 5–7, where
the statistical performance of the model starts to stabilize. However, combining diverse
absorption qualities with physical meaning increases the model’s adaptability.

4.2. Mineralogy of Samples

Figure 9 presents the XRD data from the 12 representative samples (4 samples with Pb
lower than RSV, 4 samples with Pb higher than RCV, and 4 samples with Pb between RSV
and RCV) to understand the physical mechanism of the prediction model. Clinochlore,
biotite, albite, calcite, quartz, illite, kaolinite, and muscovite were detected from all the
selected soil samples, with varying contents. It is observed that the Pb content is negatively
correlated with the summation of calcite, chlorite, and clinochlore, all of which show
absorption features near 2340 nm (Figure 10a). Similarly, the Pb content is negatively
correlated with the summation of kaolinite, illite, and muscovite, showing absorption
features near 2200 nm (Figure 10b). Furthermore, XRD data showed that high Pb samples
contain more Pb-bearing minerals. Anglesite (Pb(SO4)), cotunnite (PbCl2), galena (PbS),
massicot (PbO), and pyromorphite (Pb5(PO4)3Cl) are all detected (Figures 9 and 10c).
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Figure 9. Phase analysis of representative soil sample. NL1 to NL4 are lower than RSV of Pb samples,
NM1 to NM4 are between RSV and RCV of Pb samples, and NH1 to NH4 are higher than RCV of
Pb samples. Al: Albite; Ar: Arfvedsonite; Bi: Biotite; Ca: Calcite; Ch: Chlorite; Cl: Clinochlore;
Il: illite; Ka: Kaolinite; Mi: Microcline; Mu: Muscovite; Or: Orthoclase; Qu: Quartz; Ve: Vermiculite;
An: Anglesite; Co: Cotunnite; Ga: Galena; Ma: Massicot; Py: Pyromorphite.
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Figure 10. Relationship between measured Pb content and some factors, (a) the total amount of
calcite, chlorite, and clinochlore represented by A (wt%); (b) the total amount of kaolinite, illite, and
muscovite represented by B (wt%); (c) the total amount of Pb bearing minerals represented by C
(wt%); (d) sample elevation. wt% represents the weight percentage of minerals. The green dots
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between ln(RSV) and ln(RCV) (5.14–6.91 ln(mg/kg)), and the blue dots indicate the Pb value higher
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Previous research indicated that the 500–600 nm region is full of charge transfer
absorptions of Fe3+, Cr3+, Mn2+, etc. [26,60]. The range of 1600–2400 nm in a spectrum is
dominated by the absorption features of electronic and vibrational processes from bonds
and hydroxyl [60]. The spectral absorption of hydroxyls in clay minerals (such as illite
and kaolinite) and muscovite are close to 2197–2210 nm [10,61]. The absorption feature
of phyllosilicate minerals (such as chlorite) is around 2320–2350 nm [61]. Several studies
have demonstrated that the carbonate minerals (mainly calcite) at the surface of soil have a
significant adsorption capacity for Pb [23,62,63], and the absorption feature of carbonate
minerals is in the range of 2310–2335 nm [10,60]. As a result of the negative correlation
between Pb and the summation of calcite, chlorite, and clinochlore (Figure 10a), as well as
the negative correlation between Pb and the summation of kaolinite, illite, and muscovite
(Figure 10b), samples with high Pb content should have weak absorption characteristics
at 2207 nm and 2345 nm. In contrast, samples with low Pb content should have strong
absorption characteristics at 2207 nm and 2345 nm.

4.3. Impact of Topography and other Factors

Figure 7a suggests that the spatial distribution of high Pb generally follows the topo-
graphical valley. Figure 10d confirms that the logarithm of Pb is negatively correlated to
elevation, even though the correlation is very low (r = −0.118) and the deviation is high. It
was observed that locations with high Pb content generally fall within the distribution of
warp soil [28]. The warp soil was formed by fluvial outwash. It is likely that the source
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material was transported from upstream and affected by mining activity. This can also be
explained by the fact that Pb-bearing minerals of the high Pb samples are dominated by
galena (PbS) and massicot (PbO) (Figure 9).

The samples with low Pb are mostly from sandy clay soil and dark loessial soil with
a relatively high content of clay minerals and carbonates, while anglesite (Pb(SO4)) is the
dominant Pb-bearing mineral (Figure 9). This is confirmed by previous investigation [64]
that in ordinary mature soil Pb exists most likely in the form of PbSO4 and PbCO3 with a
higher bioaccessibility than galena.

The distribution of Pb in soil is affected by many factors, e.g., soil Fe, pH, CEC and
SOC [22,23,65]. In this study, the soil pH is negatively correlated with Pb content with
correlation coefficient −0.392 (Table 4). The Fe, CEC, and SOC are positively correlated
with Pb content, and the correlation coefficients are 0.446, 0.190, and 0.394, respectively.
Therefore, the samples with high Pb content tend to be distributed at areas with low pH,
high Fe, SOC, and CEC (Figure 11), which is probably due to the decrease of pH that is
conducive to the accumulation of soil Pb [66]. The SOC and Fe were highly and positively
correlated with Pb, which is consistent with previous research [67,68] and results in the
absorption features in the VNIR-SWIR range.

Table 4. Correlation matrix of the soil CEC, SOC, pH, Fe and measured Pb content.

ln(Pb) CEC SOC pH Fe

ln(Pb) 1.000 0.190 0.394 −0.392 0.446
CEC 1.000 0.695 −0.770 −0.399
SOC 1.000 −0.772 0.495
pH 1.000 −0.478
Fe 1.000
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4.4. Accuracy and Adaptability of the Prediction Model

The accuracy of prediction can be affected by many factors such as sampling strategy,
sample preparation, feature selection, instrumental instability, etc. In this investigation,
samples were collected using a standard sampling grid approach. Multi-spot spectral
average in data collection increased the signal-to-noise ratio and made the spectrum repre-
sentative of each sample. To determine the accuracy of Pb content by pXRF, 21 samples were
analyzed for Pb content using inductively coupled plasma-atomic emission spectroscopy
(ICP-AES) on the Thermo-Fisher iCAP 6300 apparatus in the laboratory. The results showed
that the Pb content measured by pXRF was comparable to the values analyzed in the labo-
ratory, with a correlation coefficient 0.97. The final prediction model was built on a minimal
number of independent features/bands to increase its adaptability for new applications in
similar terrains and soil types. With fewer bands in the prediction model, it is much easier
to adapt the methodology to similar terrains with much simpler spectrometer, or device
new instruments for quick or real-time in situ Pb prediction. Additionally, the five spectral
features/bands in the model are all located within the atmospheric window. This provides
an opportunity to test this Pb prediction model with satellite imaging data, which has large
spatial coverage and is more cost-effective.

5. Conclusions

This study used PLSR to establish the relationship between soil Pb content and contin-
uum removed reflectance spectra in the visible to shortwave infrared region. The result
showed that bands at 522 nm, 1668 nm, 2207 nm, 2296 nm, and 2345 nm are correlated
to the log-transformed Pb content (ln(mg/kg)). The PLSR model achieved an accuracy of
R2 = 0.711 and validated at R2 = 0.692 from 27 independent validation samples.

The predicted map of Pb values follows the same spatial pattern as the map of mea-
sured Pb data using the OK interpolation method. This suggests that Pb contamination
levels of farmland soil can be quickly predicted from VNIR-SWIR spectra, especially the
high Pb anomalies.

This study also demonstrates the need to optimize the model by employing the
minimal number of physical bands possible. More bands in the prediction model do not
necessarily increase the accuracy due to spectral collinearity. The XRD data prove that
Pb content is negatively linked with the sum of calcite, chlorite, and clinochlore. The
total of kaolinite, illite, and muscovite is also negatively linked with Pb concentration.
Furthermore, XRD measurements reveal that samples containing a high concentration
of Pb have a greater proportion of Pb-bearing minerals. Anglesite (Pb(SO4)), cotunnite
(PbCl2), galena (PbS), massicot (PbO), and pyromorphite (Pb5(PO4)3Cl) were all detected.
In addition, the Pb anomalies are primarily located in warp soil formed by fluvial outwash,
suggesting Pb contamination is from upstream mining activities.

The five spectral features/bands in the model are all located within the atmospheric
window, although the spectra used in this study were acquired in the laboratory. This
opens the opportunity of testing the prediction model to detect Pb anomalies using satel-
lite imaging data, which will provide an even cost-effective option to quickly map the
distribution of soil Pb content over broad areas in much finer details (meter scale).
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