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Abstract: In recent years, with the rapid development of unmanned aerial vehicles (UAV) technology
and swarm intelligence technology, hundreds of small-scale and low-cost UAV constitute swarms
carry out complex combat tasks in the form of ad hoc networks, which brings great threats and
challenges to low-altitude airspace defense. Security requirements for low-altitude airspace defense,
using visual detection technology to detect and track incoming UAV swarms, is the premise of
anti-UAV strategy. Therefore, this study first collected many UAV swarm videos and manually
annotated a dataset named UAVSwarm dataset for UAV swarm detection and tracking; thirteen
different scenes and more than nineteen types of UAV were recorded, including 12,598 annotated
images—the number of UAV in each sequence is 3 to 23. Then, two advanced depth detection models
are used as strong benchmarks, namely Faster R-CNN and YOLOX. Finally, two state-of-the-art
multi-object tracking (MOT) models, GNMOT and ByteTrack, are used to conduct comprehensive
tests and performance verification on the dataset and evaluation metrics. The experimental results
show that the dataset has good availability, consistency, and universality. The UAVSwarm dataset can
be widely used in training and testing of various UAV detection tasks and UAV swarm MOT tasks.

Keywords: unmanned aerial vehicles (UAV) swarm; multiple object tracking; unmanned aerial
vehicles (UAV) detection; image dataset

1. Introduction

With the accelerated transformation of modern warfare forms to information, un-
manned, and intelligent, unmanned aerial vehicles (UAV) have been widely used in
intelligence, reconnaissance, surveillance, interference, decoy, precision strike, damage
assessment and other operational tasks in the military field [1]. Due to the complex and
changeable battlefield environment, the combat task of strong confrontation poses new
challenges to the wartime survivability and task execution ability of a single UAV [2].
Therefore, the combat style of conducting complex combat missions in the form of ad
hoc networks, consisting of hundreds of small-size and low-cost UAV, is attracting great
attention and extensive research [3]. UAV swarm warfare uses multiple UAV to cooperate,
through complementary capabilities and action coordination, break through the enemy
tight air defense circle, complete complex intelligence, surveillance, and reconnaissance
tasks, as well as collaborative attack and damage assessment tasks, showing a high level of
coordination and intelligence [4].

High-altitude high-speed, stealth long flight, micro cluster, intelligent new concept
UAV swarms will play an increasingly important role. Therefore, the problem of defense
UAV swarms in low altitude airspace is attracting great attention, and the technology of
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detecting and early warning attacking the UAV swarm is being widely studied. Due to the
characteristics of there being a large number, distributed, no center, self-organization, low
cost, flexible, cooperative penetration, and cooperative attack, the low-altitude airspace
defense UAV swarm is facing great challenges. At present, the low-altitude airspace
defense UAV swarm methods mainly include interference influence, violent destruction,
and reconnaissance control. However, the premise of the above anti-UAV strategy is to
detect, identify, track, and locate the invading UAV swarm effectively. Radar detectors have
been widely used in UAV detection and tracking due to their long detection distance, high
sensitivity, and all-weather adaptability [5–8]. However, the high price, poor flexibility,
and poor concealment of radar detectors seriously restricts their application scenarios and
combat effectiveness. In recent years, low-cost, high-resolution visual sensor technology
has developed rapidly. Infrared, visible light and other visual detection technologies have
shown excellent performance in UAV detection and tracking, which has attracted more and
more attention from researchers [9–11]. The main advantages of visual detection technology
include intuitive detection results, low system cost, fast detection speed, long detection
distance, and high applicable scenes. These advantages determine that visual detection
technology is an integral part of the low-altitude airspace defense UAV swarm.

Using visual technology to detect and track UAV swarm is to locate and classify UAV
objects in infrared or visible images and videos, and then implement multi-object tracking
(MOT). Although there are many different methods to solve the problem of MOT, due to the
particularity of UAV swarm flying in three-dimensional space, it brings challenges such as
sudden appearance changes, serious object occlusion, and frequent field of view. In recent
years, with the rapid development and extensive research of deep learning technology,
the accuracy of the object detection algorithm is continuously improved [12,13], and the
MOT algorithm based on detection has also been greatly developed [14]. Detection-based
MOT can be divided into online tracking and offline tracking. The representative online
MOT algorithms are SORT [15], DeepSORT [16], MOTDT [17], JDE [18] and Fair [19].
Representative off-line MOT algorithms include POI [20], IOU [21], LMP [22], and multi-
cue-based MOT [23], etc.

The advanced MOT models are mainly data driven, which depend on large-scale
databases. The well-labeled datasets have proved to be of profound value for the effective-
ness and accuracy in various MOT tasks. The open dataset and benchmark applicable to
UAV swarm MOT tasks have not been reported, which limits the development of anti-UAV
strategy using visual detection technology. Thus, the first step of detecting and tracking
UAV swarm is to build up a dataset of UAV swarm. In this study, an image dataset named
the UAVSwarm dataset is constructed, which records 13 different scenarios and more than
19 types of UAV, including 12,598 manually annotated images; the number of UAV in
each sequence is 3 to 23, and the dataset can be widely used in UAV swarm detection and
tracking tasks. To maintain the universality and robustness of the trained models, two
advanced depth detection models are used as strong benchmarks, namely Faster R-CNN
and YOLOX. Then, two state-of-the-art MOT models, GNMOT and ByteTrack, are used to
conduct comprehensive tests and performance verification on the dataset and evaluation
metrics.

The remainder of this paper is organized as follows. Firstly, we review the related
works in Section 2. Then, Section 3 presents the proposed UAVSwarm dataset. In Section 4,
several experiments are carried out to demonstrate the effectiveness of the proposed
dataset and explain its performance with baseline metrics. Finally, conclusions are drawn
in Section 5.

2. Related works
2.1. Image-Based UAV Datasets
2.1.1. Real Word Dataset

Pawełczyk et al. [24] expanded existing multiclass image classification and object
detection datasets (ImageNet, MS-COCO, PASCAL VOC, anti-UAV) with a diversified
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dataset of drone images. To maximize the effectiveness of the model, real world footage
was utilized, transformed into images and hand-labelled to create a custom set of 56,821
images and 55,539 bounding boxes.

Compared with other UAV datasets, the Real Word dataset contains the most types of
UAV and environments, and the image resolution is low, because all the data are obtained
from YouTube videos, while other datasets are collected by researchers themselves. Due to
the limitation of shooting perspective, most of the data in the Real World dataset is in flat
view and elevation.

2.1.2. Det-Fly Dataset

Zheng et al. [25] present a new dataset, named Det-Fly, which consists of more than
13,000 images of a flying target UAV acquired by another flying UAV. Compared to the
existing datasets, the Det-Fly dataset is more comprehensive in the sense that it covers a
wide range of practical scenarios with different background scenes, viewing angles, relative
distance, flying altitude, and lightning conditions.

The Det-Fly dataset overcomes the shortcomings of UAV data from a single perspective.
The camera collects the target UAV directly in the air, including a variety of UAV postures
under elevation, pitch, and horizon. However, the data set contains only one type of UAV,
so that the model cannot be used for other types of UAV detection.

Regarding the other image-based UAV dataset, the size of UAV in the MIDGARD
dataset [26] is relatively large, and the appearance and outline of UAV are very clear. The
camera and UAV are very close, but it is impossible to study the detection problem in long
distance. The images in the USC-Drone dataset [27] are taken by people standing on the
ground with hand-held cameras, and the UAV’s perspective is too single. In addition, there
are many unmarked images in this dataset that cannot be used directly. These datasets also
contain only one type of UAV and a richer environment, but also has the disadvantage of a
single viewing angle, so cannot be used for MOT tasks.

2.2. Video-Based UAV Datasets
2.2.1. Purdue Dataset

The study by Jing et al. [28] comprises five video sequences of 1829 frames with
30 fps frame rate. The Purdue dataset is recorded by a GoPro 3 camera (HD resolution:
1920 × 1080 or 1280 × 960) mounted on a custom delta-wing airframe. As a preprocessing,
the Purdue dataset masks out the pitot tube region which is not moving in the videos. For
each video, there are multiple target UAV (up to four) which have various appearances
and shapes.

In the Purdue dataset, UAV and the environment is single, therefore not suitable for
a UAV detection task, and instead more suitable for small target UAV tracking problem
research.

2.2.2. Flying Objects Dataset

The study by Rozantsev et al. [29] including 20 video sequences, each with an average
of 4000 images of 752 × 480. The Flying Objects dataset were acquired by a camera
mounted on a drone filming similar videos while flying indoors and outdoors. The outdoor
sequences present a broad variety of lighting and weather conditions. All these videos
contain up to two objects of the same category per frame. However, the shape of the drones
is rarely perfectly visible, and thus their appearance is extremely variable due to changing
altitudes, lighting conditions, and even aliasing and color saturation due to their small
apparent sizes.

The Flying Objects dataset is all gray-scale and is suitable for studying how to track
fast moving targets, rather than MOT tasks.
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2.2.3. Anti-UAV Dataset

Jiang et al. [30] collected 318 RGB-T video pairs, each containing an RGB video and a
thermal video. The Anti-UAV dataset records various videos of several UAV types flying
in the air. To ensure the diversity of data, UAV, mainly from DJI and Parrot, are utilized to
collect tracking data. The videos recorded include two lighting conditions (day and night),
two light modes (infrared and visible) and diverse backgrounds (buildings, cloud, trees,
etc.). Each video is stored in an MP4 file with a frame rate of 25 FPS.

The Anti-UAV dataset contains RGB data and infrared data, which is convenient
for the study of multi-modal fusion tracking. However, the problem is that the shooting
environment is single, and the infrared camera and RGB camera are not aligned in time
and space.

2.2.4. Drone-vs-Bird Dataset

In [31], the training data consists of a collection of 11 MPEG4-coded static-camera
videos where a drone enters the scene at some point. Birds or other scene elements are
not annotated. The Drone-vs-Bird dataset is increased by the need to cope with very
diverse background and illumination conditions, as well as with different scales (zoom),
viewpoints, low contrast, and the presence of birds.

The Drone-vs-Bird dataset includes not only abundant UAV and environmental data,
but also some bird data. When the UAV is far away, it is like birds in appearance. Therefore,
the emergence of this dataset can help researchers to study the problem of remote UAV and
bird identification.

Whether it is an image-based UAV dataset or video-based UAV dataset, most UAV
datasets are single or a few UAV objects, and most of them are either private or have only a
small amount of data. Datasets suitable for UAV swarm detecting and tracking have not
been reported. In general, the detection and tracking of UAV swarm objects is faced with
more complex challenges than the detection and tracking of single or a few UAV objects.
To solve these problems, this study constructs a dataset, named the UAVSwarm dataset; 13
different scenes and more than 19 types of UAV were recorded, including 12,598 annotated
images, and the number of UAV in each sequence is 3 to 23. There are abundant scale
variations, perspective transformations, and complex backgrounds for UAV targets in the
UAVSwarm dataset. The UAVSwarm dataset can be applied to both UAV detection tasks
and UAV swarm MOT tasks. The detailed description is presented in Section 3.

2.3. UAV Detection

Computer vision technology has been applied in the field of UAV since the 1990 s. In
the early years, it was limited by the poor computing ability of microprocessors. Although
the related algorithms have some optimization, the overall development is slow. After
decades of development, with the significant improvement of processor computing power,
computer vision technology to solve the problems in the application of UAV is more useful.
Although the processing speed of UAV hardware has been greatly improved at present, the
detection speed is still one of the key directions of research. In addition, it is affected by the
low target pixels and complex environmental factors during aerial photography.

During research on detection speed, SlimYOLOv3 [32] proposed an improved version
of YOLOv3. SlimYOLOv3 pruned the execution channel of the convolution layer of the
original model. The evaluation on the VisDrone2018-Det benchmark dataset showed that
the parameter size and the floating-point operation had a significant decrease, and the
running speed had been successfully improved by about twice, and the detection accuracy
was like that of YOLOv3 [33]. Excessive noise information in UAV images under complex
background [34] use RPN to suppress noise information. In the aspect of small target
detection, to improve the accuracy of detection, ref. [35,36] propose the FPN algorithm.

The related research of the target detection algorithm in the field of UAV has had
considerable attention. Although the related algorithm optimization has achieved good
results, there is still room for optimization and improvement. Judging from the main
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research directions in recent years, it mainly focuses on seeking the best fit point between
detection accuracy and detection speed. Although the target detection based on the YOLO
algorithm is not long, the research trend is more in line with the development of UAV.

2.4. Multiple Object Tracking

Multiple object tracking (MOT) has attracted the considerable attention of researchers
because of its great commercial potential. Most MOT algorithms include four steps: detec-
tion, feature extraction and motion prediction, similarity calculation, and data association.
MOT needs to track multiple targets at the same time. The interaction between different
targets, occlusion, similar appearance, in-out view and so on have brought great challenges
to MOT tasks. At present, the mainstream research methods are to mark the detection box
based on the target detection, and then deal with the data association problem.

SORT is mainly composed of a target detection module and data association module.
SORT has low complexity, a simple frame structure and a fast running speed. Although
the data association model is relatively simple and easily occluded, it paves the way for
the subsequent proposal of many excellent algorithms. DeepSORT is an improvement
of SORT, which can better deal with the situation that the target is occluded for a long
time. The MOTA value increases little, but the IDswitch frequency is reduced by 45%,
and the speed is close to the real-time requirement (20 FPS). MOTDT [37] improves the
category occlusion problem in crowded scenes and uses the Re-ID feature of deep learning
as the reference of appearance model to enhance the recognition ability. Moreover, the
computational complexity of the algorithm is low, and the running speed can reach 20.6
FPS. JDE, based on YOLOv3 and MOTDT, achievea end-to-end visual MOT, this fusion
strategy has a high-speed advantage in crowded or complex scenes. FairMot is compared
with JDE as a one-shot MOT system; the MOTA value and speed are significantly improved,
and the problem of high IDswitch is also suppressed, which can fully meet the real-time
requirements.

In recent years, the development of the MOT algorithm based on deep learning can
be seen that the existing MOT objects are often pedestrians, vehicles, and birds. MOT
algorithm based on UAV swarm has not been studied yet. For the security requirements of
low-altitude airspace defense and anti-UAV strategy, it is more urgent and practical to study
the UAV swarm detection and tracking tasks. In addition, compared with pedestrians,
UAV are a smaller target, with faster moving speed and more obvious scale transformation.
Research of the MOT object being an UAV swarm is more challenging than that of the MOT
object being a pedestrian.

3. Materials and Methods

Many studies have shown that datasets are essential for the training and testing of
MOT models. Therefore, a well-labeled UAV swarm dataset for detecting and tracking
UAV swarm tasks is established, named the UAVSwarm dataset, which provides data
support for the training and testing of subsequent UAV detection tasks and UAV swarm
MOT tasks. In this study, 72 UAV swarm image sequences were collected and processed,
and the UAV appearing in each sequence were manually annotated according to a clear
protocol. A new dataset containing 12,598 UAV swarm images was constructed; among
them, the maximum number of UAV in a frame of image is 23. To train and test the MOT
model of the UAV swarm, 72 sequences in the dataset were divided into a training set and
a testing set. The training set contains 36 sequences and 6844 images, and the testing set
contains 36 sequences and 5754 images.

The UAVSwarm dataset includes both ground-to-air UAV swarm and air-to-ground
UAV swarm, which makes the background have complex and dynamic changes in the
sky, ground, sky and ground, as well as background and light. Each sequence in this
dataset contains dozens to dozens of UAV objects. There are some motion modes in the
image sequence, such as leaving the field of vision, entering the field of vision, formation
transformation and fast motion. The cameras shooting UAV swarm in this dataset have both
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static and moving states. Therefore, this dataset contains many realistic challenges faced by
UAV detection tasks and UAV swarm MOT tasks. For example, cloudy clouds and strong
light make it difficult to identify UAV, tree occlusion will lead to tracking interruption,
and rapid movement of small target UAV will lead to frequent ID switch. Figures 1 and 2
show the sample images of the training set and the testing set in the UAVSwarm dataset,
respectively.
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3.1. Annotation Rules

A set of rules are followed, and a bounding box is used to label each moving UAV
in each sequence as accurately as possible. In the following, a clear protocol that ensures
consistency throughout the dataset is defined. Sample annotated images of the UAVSwarm
dataset are shown in Figure 3.
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3.1.1. Object Class

In the process of constructing the UAVSwarm dataset, MOT tasks of the UAV swarm
are the focus of this study. Therefore, to ensure the consistency of UAVSwarm dataset
image annotation, this study strictly follows the following image annotation rules:

1. In each sequence, the UAV object is marked as early as possible and ended as late as
possible. In other words, if the UAV object is in the field of vision and its path can be
clearly determined, ID can be retained;

2. In each frame, the UAV object of all types and all poses are labeled, and some UAV
object images are shown in Figure 4;

3. In each frame, the bounding box of the object should contain all the pixels belonging
to this UAV object, and the bounding box should be as close as possible to the UAV
object;

4. If the exact location of the UAV object can be specified, always comment in the
sequence. If the occlusion is very long and simple reasoning (e.g., constant velocity
assumption) cannot be used to determine the path of the UAV object, then a new ID
will be assigned after the UAV object reappears.
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3.1.2. Bounding Box Alignment

During the construction of the UAVSwarm dataset, the bounding box of the object
is aligned as accurately as possible with the rectangular domain occupied by the UAV.
The bounding box should contain all the pixels belonging to the UAV object and be as
close as possible so that no object pixels should be left outside the border. If the UAV is
partially occluded, the rectangular domain occupied by the UAV is estimated according
to other available information (such as predicted size, shadow, reflection, previous and
future frames, and other clues). If an UAV is clipped by an image border, the object border
is estimated to exceed the original frame to represent the entire UAV and to estimate the
clip level of the UAV object.

3.1.3. Start and End of Trajectories

In the construction process of the UAVSwarm dataset, if the position of the UAV
and the occupied rectangular domain can be accurately determined, the bounding box
(trajectory) will appear. This usually occurs in the following cases: ≈50% of UAV become
visible. Similarly, when no precise positioning is possible, the trajectory ends. In other
words, to ensure accuracy, UAV objects should be marked as early as possible and ended
as late as possible. The bounding box coordinates may exceed the visible area. If a UAV
leaves the field of vision and appears later, they will be assigned a new ID.

3.2. Dataset Sequences Information

In this study, 72 UAV swarm image sequences were collected and processed. Among
them, the shortest sequence contained 58 images, and the longest sequence contained
705 images. The 72 sequences in the dataset are divided into a training set and testing
set. The training set contains 36 sequences and 6844 images, and the testing set contains
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36 sequences and 5754 images. Tables 1 and 2 summarize the frame rate, image size,
sequence length, and camera movement of the training sequence and testing sequence
in the dataset. At the same time, Tables 3 and 4, respectively, count the number of the
bounding box in the training sequence and testing sequence in the dataset, as well as the
minimum height and maximum height of the bounding box.

Table 1. Overview of the training sequences in the UAVSwarm dataset.

Name FPS Resolution Length Camera

UAVSwarm-01 30 812 × 428 164 static
UAVSwarm-03 30 812 × 428 150 static
UAVSwarm-05 30 446 × 270 153 static
UAVSwarm-07 30 446 × 270 141 static
UAVSwarm-09 30 446 × 270 68 static
UAVSwarm-11 30 812 × 428 160 static
UAVSwarm-13 30 812 × 428 119 static
UAVSwarm-15 30 812 × 425 116 moving
UAVSwarm-17 30 812 × 428 100 static
UAVSwarm-19 30 639 × 328 205 moving
UAVSwarm-21 30 847 × 412 93 static
UAVSwarm-23 30 799 × 477 73 moving
UAVSwarm-25 30 863 × 411 244 moving
UAVSwarm-27 30 863 × 480 193 moving
UAVSwarm-29 30 863 × 407 166 static
UAVSwarm-31 30 863 × 441 204 moving
UAVSwarm-33 30 1279 × 630 193 static
UAVSwarm-35 30 1279 × 621 96 moving
UAVSwarm-37 30 1279 × 606 330 moving
UAVSwarm-39 30 1919 × 1079 483 moving
UAVSwarm-41 30 847 × 478 181 static
UAVSwarm-43 30 1919 × 870 408 static
UAVSwarm-45 30 1279 × 711 219 moving
UAVSwarm-47 30 1279 × 618 234 moving
UAVSwarm-49 30 863 × 378 195 static
UAVSwarm-51 30 625 × 292 152 static
UAVSwarm-53 30 625 × 292 117 moving
UAVSwarm-55 30 625 × 292 98 static
UAVSwarm-57 30 639 × 292 146 static
UAVSwarm-59 30 844 × 344 65 moving
UAVSwarm-61 30 1279 × 655 300 static
UAVSwarm-63 30 807 × 424 120 moving
UAVSwarm-65 30 863 × 485 74 static
UAVSwarm-67 30 813 × 427 98 static
UAVSwarm-69 30 640 × 352 333 static
UAVSwarm-71 30 640 × 352 653 moving

Total training 6844

Table 2. Overview of the testing sequences in the UAVSwarm dataset.

Name FPS Resolution Length Camera

UAVSwarm-02 30 812 × 428 156 static
UAVSwarm-04 30 812 × 428 161 static
UAVSwarm-06 30 446 × 270 76 static
UAVSwarm-08 30 446 × 270 115 static
UAVSwarm-10 30 863 × 467 58 static
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Table 2. Cont.

Name FPS Resolution Length Camera

UAVSwarm-12 30 812 × 428 116 static
UAVSwarm-14 30 812 × 428 115 static
UAVSwarm-16 30 812 × 428 65 moving
UAVSwarm-18 30 625 × 291 84 static
UAVSwarm-20 30 720 × 479 62 moving
UAVSwarm-22 30 764 × 479 72 moving
UAVSwarm-24 30 844 × 455 72 moving
UAVSwarm-26 30 863 × 364 126 static
UAVSwarm-28 30 810 × 475 131 moving
UAVSwarm-30 30 863 × 472 105 static
UAVSwarm-32 30 863 × 467 76 static
UAVSwarm-34 30 1279 × 630 176 static
UAVSwarm-36 30 1279 × 625 81 static
UAVSwarm-38 30 1279 × 606 452 moving
UAVSwarm-40 30 1919 × 1079 448 static
UAVSwarm-42 30 847 × 424 120 static
UAVSwarm-44 30 1919 × 870 353 static
UAVSwarm-46 30 1279 × 684 238 static
UAVSwarm-48 30 1279 × 598 221 static
UAVSwarm-50 30 625 × 292 170 static
UAVSwarm-52 30 625 × 291 157 moving
UAVSwarm-54 30 625 × 292 110 moving
UAVSwarm-56 30 625 × 292 89 static
UAVSwarm-58 30 863 × 465 122 static
UAVSwarm-60 30 846 × 341 68 static
UAVSwarm-62 30 847 × 474 140 static
UAVSwarm-64 30 863 × 378 75 static
UAVSwarm-66 30 863 × 464 73 moving
UAVSwarm-68 30 811 × 426 59 moving
UAVSwarm-70 30 639 × 351 307 static
UAVSwarm-72 30 639 × 351 705 moving

Total testing 5754

Table 3. The bounding box information of the training sequence in the UAVSwarm dataset.

Name Total of Bounding Boxes Min Height Max Height

UAVSwarm-01 2984 10 23
UAVSwarm-03 1354 10 24
UAVSwarm-05 1530 16 27
UAVSwarm-07 1394 10 38
UAVSwarm-09 272 20 37
UAVSwarm-11 3356 10 20
UAVSwarm-13 2499 10 22
UAVSwarm-15 1286 10 30
UAVSwarm-17 669 10 21
UAVSwarm-19 1217 10 24
UAVSwarm-21 206 13 30
UAVSwarm-23 494 12 48
UAVSwarm-25 4091 10 28
UAVSwarm-27 772 32 18
UAVSwarm-29 1151 12 24
UAVSwarm-31 321 28 50
UAVSwarm-33 733 15 54
UAVSwarm-35 384 78 161
UAVSwarm-37 1251 17 53
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Table 3. Cont.

Name Total of Bounding
Boxes Min Height Max Height

UAVSwarm-39 3482 14 26
UAVSwarm-41 1601 14 58
UAVSwarm-43 1632 23 85
UAVSwarm-45 1967 10 20
UAVSwarm-47 1423 15 45
UAVSwarm-49 2145 10 15
UAVSwarm-51 1336 10 23
UAVSwarm-53 663 10 26
UAVSwarm-55 1294 10 26
UAVSwarm-57 261 10 29
UAVSwarm-59 322 10 18
UAVSwarm-61 3543 10 45
UAVSwarm-63 1080 12 21
UAVSwarm-65 125 43 60
UAVSwarm-67 443 15 331
UAVSwarm-69 913 15 29
UAVSwarm-71 1467 15 34

Table 4. The bounding box information of the testing sequence in the UAVSwarm dataset.

Name Total of Bounding Boxes Min Height Max Height

UAVSwarm-02 2983 10 21
UAVSwarm-04 3034 11 22
UAVSwarm-06 760 14 24
UAVSwarm-08 1090 14 39
UAVSwarm-10 406 27 35
UAVSwarm-12 2320 11 22
UAVSwarm-14 1886 10 26
UAVSwarm-16 721 12 30
UAVSwarm-18 647 15 30
UAVSwarm-20 304 14 26
UAVSwarm-22 228 32 54
UAVSwarm-24 500 10 26
UAVSwarm-26 1488 10 11
UAVSwarm-28 873 11 24
UAVSwarm-30 486 10 29
UAVSwarm-32 320 17 54
UAVSwarm-34 528 52 77
UAVSwarm-36 247 57 79
UAVSwarm-38 1649 11 42
UAVSwarm-40 3604 12 38
UAVSwarm-42 347 14 43
UAVSwarm-44 1308 30 95
UAVSwarm-46 2670 11 45
UAVSwarm-48 663 35 47
UAVSwarm-50 1868 11 20
UAVSwarm-52 750 10 22
UAVSwarm-54 665 10 27
UAVSwarm-56 378 10 34
UAVSwarm-58 745 13 34
UAVSwarm-60 314 10 20
UAVSwarm-62 435 14 49
UAVSwarm-64 396 10 17
UAVSwarm-66 219 19 26
UAVSwarm-68 976 10 80
UAVSwarm-70 789 12 30
UAVSwarm-72 1350 15 50

3.3. Data Format

Since the MOT16 [38] dataset is used in the Computer Vision and Pattern Recognition
2019 (CVPR,2019) tracking challenge of the CVPR and becomes an authoritative dataset for
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single object track (SOT) tasks and MOT tasks, many existing tracking models are evaluated
on the dataset. Therefore, the data format of the UAVSwarm dataset also uses the dataset
format in MOT16. At the same time, all images are in JPEG format and are named as the
file name of six digits (e.g., 000001.jpg).

3.3.1. Detection Files

To focus on the tracking performance of UAV swarm MOT tasks, test results of
excellent YOLOX detectors are used as detection files. The mAP and recall results of the
UAVSwarm dataset detected by YOLOX are shown in Figure 5. The detection files are
simple comma separated value (CSV) files. Each row represents an object, and each row
contains nine values. The first number indicates which frame the object appears in. The
second number represents the ID of the object (set to ‘−1’ in the detection files, because the
ID has not been assigned), by assigning a unique ID, each object can only be specified to a
trajectory. The next four numbers represent the position of the UAV bounding box in the
two-dimensional image coordinates, representing the upper left corner coordinates x, y and
the width and height of the bounding box. The seventh number represents its confidence
score. The last three digits of the detection files are represented as the ignored state (set to
‘−1’). Examples of detection files are as follows:

1, −1, 174, 243, 12, 12, 1, −1, −1, −1
1, −1, 215, 326, 13, 14, 1, −1, −1, −1
1, −1, 235, 167, 13, 14, 1, −1, −1, −1
1, −1, 273, 250, 11, 12, 1, −1, −1, −1
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Figure 5. (a) The mAP results of the UAVSwarm dataset detected by YOLOX. (b) The recall results of
the UAVSwarm dataset detected by YOLOX.

3.3.2. Annotation Files

In the UAVSwarm dataset, the annotation files are simple comma separated value
(CSV) files. Each row represents an object, and each row contains nine values. The first
six digital meanings are the same as the first six digital meanings of the test files. The
seventh number represents the confidence score and serves as a symbol of whether input is
considered (‘0’ means that this object is ignored in calculation, ‘1’ means that this object is
marked as an activity, and this value is set to ‘1’ in annotation files). The eighth number
represents the type of annotated object (since there is only one UAV category in this dataset,
the values are set to ‘1’). The ninth number represents the visibility ratio of each bounding
box, ranging from 0 to 1, which is judged by the occlusion degree of another static or
moving object or by the clipping of image boundary (the value in annotation files is set to
‘1’). Examples of annotation files are as follows:

1, 1, 352, 20, 11, 11, 1, 1, 1
2, 1, 352, 20, 11, 11, 1, 1, 1
3, 1, 352, 20, 11, 11, 1, 1, 1
4, 1, 352, 20, 11, 11, 1, 1, 1
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In addition, to obtain the effective results of the entire benchmark test, this study cre-
ates a separate CSV file for each sequence that follows the above format, named ‘Sequence-
Name. txt’.

4. Results
4.1. Experiment Setting and Evaluation Metrics

To test and verify the availability, consistency, and generality of the UAVSwarm
dataset, this study applies the dataset to the UAV detection tasks of the Faster R-CNN
and YOLOX [39], and the UAV swarm MOT tasks of the GNMOT [40] and ByteTrack [41],
and uses the standards defined in Reference [42] to evaluate the performance of the UAV
detection tasks and UAV swarm MOT tasks. The evaluation metrics are mainly as follows:

mAP (↑): mean average precision. A widely used evaluation metric in the object detec-
tion because of the ability to measure the performance of the localization and classification.

FPS (↑): frames per second. To measure the speed of models.
MOTA (↑): multiple object tracking accuracy. The accuracy in determining the number

of objects and related attributes of the object is used to count the error accumulation
in tracking, including the total number of false positives (FP), the total number of false
negatives (FN), and the total number of identity switches (IDSW).

MOTA = 1− ∑t(FNt + FPt + IDSWt)

∑t GTt
(1)

Among them, GTt represents the number of ground truth in the t frame, FNt represents
the number of false negatives in the t frame, FPt represents the number of false positive in
the t frame, and IDSWt represents the number of identity switch in the t frame.

MOTP (↑): multiple object tracking precision. MOTP mainly quantizes the positioning
accuracy of the detector, and almost does not contain information related to the actual
performance of the tracker.

MOTP =
∑t,i dt,i

∑t ct
(2)

where ct represents the number of detection boxes successfully matched with ground truth
in frame t, and dt,i represents the distance measurement between matching pairs.

IDF1 (↑): The ratio of correct recognition detection to average true number and
calculated detection number. To measure whether a tracker tracks an object, if possible,
that is, the quality of data association.

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
(3)

Among them, IDTP and IDFP represent true positive ID number and false positive
ID number, respectively, like P in the confusion matrix, but now it is the calculation of ID
recognition accuracy; IDFN is the false negative ID number.

MT (↑): mostly tracked objects. The ratio of ground-truth trajectories that are covered
by a track hypothesis for at least 80% of their respective life span.

ML (↓): mostly lost objects. The ratio of ground-truth trajectories that are covered by a
track hypothesis for at most 20% of their respective life span.

FP (↓): the total number of false positives.
FN (↓): the total number of false negatives (missed objects).
Frag (↓): the total number of times a trajectory is fragmented (i.e., interrupted during

tracking).
IDswitch (↓): the total number of identity switches.
In the above metrics, ↓means that the greater the index, the better the performance,

and ↓means that the smaller the index, the better the performance.
All the experiments are carried out on a computer with 16-GB memory, Intel Corei7-

10700 CPU and NVIDIA RTX2080Ti GPU. Faster R-CNN, YOLOX, GNMOT and ByteTrack
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models adopt public codes, and all codes are trained using the default parameter set
recommended by the authors.

4.2. Experimental Results and Analysis
4.2.1. UAV Detection

Most object detection methods include two parts: (1) a backbone model as the feature
extractor to extract feature from images, and (2) a detection head as the detector to find
out the classification and localization feature of objects. Nowadays, most object detection
models are based on CNNs [43] to extract feature of inputs. In this study, the advanced
CNN model is integrated, with Resnet-50 [44] and Darknet-53 [45] as the backbone of these
object detect methods, and Faster R-CNN and YOLOX to extract UAV features in images.
The baseline models are listed in Table 5.

Table 5. Baseline object detection methods of UAV detection.

Method Backbone Detection Head

Faster R-CNN Resnet-50 Two-stage
YOLOX DarkNet-53 One-stage

A detector is trained to localize and identify more than 19 types of UAV in the
UAVSwarm dataset. A total of 6844 images of UAV were used to train the detector and
evaluate on the testing sequence of the UAVSwarm dataset. For speed of detection, despite
different feature extractors, the FPS results of the YOLOX is always the best compared
with Faster R-CNN UAV detection. For performance of detection, YOLOX has the best
performance for Darknet-53 in the UAV detection task, and mAP reached 83.68. The results
of Faster R-CNN and YOLOX on the testing sequence of the UAVSwarm dataset are listed
in Table 6.

Table 6. Results of UAV detection.

Detection Head Backbone Input Size Speed (FPS) mAP (%)

Faster R-CNN Resnet-50 640 × 640 17 50.75
YOLOX DarkNet-53 640 × 640 119 83.68

To visualize the effects of the two detectors more intuitively, 24, 30, 40, and 68 testing
sequences of the same frame image were compared; the visualization results are shown in
Figure 6.

All in all, on the UAV detection task, whichever model has the best results in terms of
speed and accuracy, these widely recognized object detection methods have a reasonable
and accurate result on our dataset. This is enough to show that our dataset provides data
support for UAV detection. In addition, the CNN models of these detection methods have
indeed helped the baselines to achieve better results in speed or mAP.

4.2.2. UAV Swarm MOT

GNMOT is a new near online MOT method with an end-to-end graph network.
Specifically, GNMOT designs an appearance graph network and a motion graph network
to capture the appearance and the motion similarity separately. The updating mechanism
is carefully designed in the graph network, which means that nodes, edges, and the global
variable in the graph can be updated. The global variable can capture the global relationship
to help tracking. Finally, a strategy to handle missing detections is proposed to remedy the
defect of the detectors.
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The GNMOT model is applied to UAV swarm MOT tasks. To focus on evaluating
the tracking performance of GNMOT, an annotation file that removes ID information is
used as a detection file. Then, experiments were carried out in 36 testing sequences in
the UAVSwarm dataset. The experimental results of evaluation indexes IDF1 and MOTA
are shown in Figure 7. The experimental results show that MOTA and IDF1 of 25 testing
sequences reaches 100%. However, sequences 28,70, and 72 have nearly 100% MOTA, but
IDF1 does not reach 80%; this is because the MOT tasks introduce the ID information,
which will pay more attention to whether the ID of the initial trajectory created by the
tracker can be ‘from one to the end ‘. If the ID switch is too early, the final trajectory ID
must be far from the initial trajectory ID when the number of IDswitch is the same; this
makes the IDF1 score lower. So, measuring whether a model is suitable for UAV swarm
MOT tasks requires not only excellent small target detectors, but also a tracker that can
accurately match the trajectory.
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GNMOT.

ByteTrack is a tracking method based on tracking-by-detection, and it proposes a
simple and efficient data association method BYTE. The biggest difference between it and
the previous tracking model is that it is not simply to remove the low-score detection
results. By using the similarity between the detection box and the tracking trajectory, the
background is removed from the low-resolution detection results while retaining the high-
resolution detection results, and the real objects (occlusion, blur, and other difficult samples)
are excavated, to reduce the missed detection and improve the coherence of the trajectory.
However, it should be noted that since ByteTrack does not use the appearance feature to
match, the tracking effect is very dependent on the detection effect. If the effect of the
detector is good, the tracking will also achieve good results; however, if the detection effect
is not good, it will seriously affect the tracking effect. At present, as the state-of-the-art
model of the MOT Challenge, the ByteTrack model uses the detector YOLOX with excellent
performance to get the detection results. In the process of data association, like SORT, only
Kalman filter is used to predict the position of the tracking trajectory of the current frame in
the next frame. The distance metric between the predicted frame and the actual detection
frame is used as the similarity of the two matching, and the matching is completed by the
Hungarian algorithm.

In this study, the UAVSwarm dataset is used in ByteTrack model, and the experimental
results are shown in Figure 8. The experimental results show that 13 sequences have MOTA
higher than 80%, 7 sequences have negative MOTA (the MOTA can become negative when
the error generated by the tracker exceeds the object in the scene), and 14 sequences have
MOTA between 0% and 80%. The 13 sequences that have MOTA higher than 80% are all
a simple way of movement, and the scene is relatively not complex, so it is easy for the
tracker to generate the correct trajectory. The 7 sequences with negative MOTA are all
complex modes of motion: UAV move fast, the UAV continue to fly into the out of the
screen, and the trajectories overlap with each other. The experimental results show that
even if the YOLOX detector can reach 83.68 mAP, the tracking results will also produce
negative numbers due to the large scale change, fast moving speed, frequent access to the
screen and trajectory overlap of the UAV. Therefore, the completion of UAV swarm MOT
tasks requires not only excellent detectors, but also excellent trackers to maintain tracking
consistency and avoid object jumping.
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Figure 8. Comparison of IDF1 and MOTA results on the UAVSwarm dataset testing set using
ByteTrack.

Therefore, the MOT tasks with the object of UAV swarm are very challenging. This
experiment further verifies the availability and versatility of the UAVSwarm dataset con-
structed in this study.

4.3. Visual Tracking Results

To illustrate the model performance more intuitively, Figures 9–12 show the visual
tracking results of the above two models on some UAVSwarm dataset videos. The detection
box ID number of each sequence in the ByteTrack model is accumulated according to the
ID number of the previous sequence, and the detection box ID of each sequence in GNMOT
model starts from 1. The ByteTrack model uses the detector YOLOX with excellent current
performance to obtain the detection results, and the GNMOT model uses the detection files
provided by us (the length, width, and position of the detection box in the detection files
are consistent with the bounding box of the annotation files).
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Figure 9 shows a video of UAVSwarm−06. The shooting background of this video
is the sky, and the background is relatively simple and clean. However, the UAV is close
to each other, and UAV are overlapped and occluded. In frame 5, the detection box of
ByteTrack model ID 14 contains two UAV, and the GNMOT model uses the detecting files
provided by us to distinguish two UAV that are close to each other, with IDs of 2 and 3,
respectively. In the 14th frame, the ByteTrack model re-recognizes the detection box with
the previous missing ID of 12. In the 66th frame, there is still no distinction between two
UAV in the detection box of ByteTrack model ID 14. Although the UAV with ID number 2
and 3 of GNMOT model continues to block, it can always be accurately tracked.

Figure 10 shows a video of UAVSwarm−28. The shooting background of this video
is complex, and the lens deviates. The two models have multiple ID switching because
of lens jitter, and the houses in the background and the dark clouds have brought great
challenges to tracking.

Figure 11 shows a video of UAVSwarm−30. The shooting background of this video is
complex, but the lens does not deviate. In the 11th frame, ByteTrack and GNMOT detected
four UAV. In the 51st frame, the UAV with ID of 199 in the ByteTrack model misses the
detection box because it is like the window background. In the 81st frame, the UAV with
ID of 199 in the ByteTrack model is re-identified, and the ID number is 203. The GNMOT
model can accurately track five UAV in frame 11, 51, and 81, and the ID number has not
been switched.

Figure 12 shows a video of UAVSwarm−46. The background of the video is simple,
but the object is too small, occluded, and moves fast. The ByteTrack model makes more
errors than objects in the scene because of the tracker, and MOTA becomes negative. Table 7
presents the tracking results of the UAVSwarm dataset testing sequence and mostly tracked
tracklets (MT) represents the number of tracking trajectories that at least 80 % of the video
frames of each object can be correctly tracked in the tracking process, mostly lost tracklets
(ML) represents the number of tracking trajectories that at most 20 % of the video frames of
each object can be correctly tracked in the tracking process.

Table 7. Partial UAVSwarm dataset testing sequence tracking results.

Sequence Tracker MOTA IDF1 MT ML FP FN IDS

UAVSwarm−06
ByteTrack 88.3% 93.2% 9 1 0 89 0
GNMOT 100.0% 100.0% 10 0 0 0 0

UAVSwarm−28
ByteTrack 32.5% 30.0% 1 3 14 558 14
GNMOT 98.4% 76.9% 8 0 0 0 14

UAVSwarm−30
ByteTrack 87.2% 89.2% 4 0 1 60 0
GNMOT 100.0% 100.0% 5 0 0 0 0

UAVSwarm−46
ByteTrack −12.0% 22.7% 0 11 769 2220 8
GNMOT 99.7% 88.7% 16 0 0 0 8

5. Discussion
5.1. UAV Swarm Dataset

The construction of UAV swarm dataset has the following difficulties. (1) With the
development of deep learning, more and more people pay attention to the innovation of
algorithms. However, because UAV are different from objects that can be seen everywhere
in daily life, it is necessary to prepare UAV with different shapes to collect their data, and
there are also requirements for shooting locations, which makes it difficult to obtain UAV
data. (2) UAV detection has gradually become a research field with its unique problems.
Compared with other targets, UAV objects have rich scale changes. The detection of far
and near distance is very necessary, so it is necessary to collect UAV data at different scales.
(3) UAV detection can be divided into ground-to-air detection and air-to-air detection, and
the conversion of perspective brings different detection difficulties. Whether the dataset
contains UAV under various attitudes is one of the factors affecting UAV detection. (4) The
diversity of background is crucial to improve the generalization ability of UAV detection,
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so it is necessary to collect data in different environments. The UAV data collected in a
single environment will make the detection algorithm cannot be directly applied to the
complex and changeable real environment.

5.2. UAV Detection

The primary difficulty of UAV detection task is the small pixel size of UAV in optical
images. It is generally believed that the object whose pixel size is less than 1 % of the whole
image is a small target. The object detection common dataset COCO defines the small
object as the object whose pixel size is less than 32 × 32. Small UAV often occupy smaller
pixels after imaging. In the optical image dataset of 1960 × 1080, most UAV occupy pixel
sizes between 15 × 15 and 35 × 35, and contain less feature information. Therefore, special
algorithms need to be designed for small target detection tasks of low altitude UAV.

5.3. UAV Swarm Multiple Object Tracking

MOT is an important computer vision problem, which has attracted more and more
attention due to its great academic and commercial potential. Although there are many
different methods to solve this problem, it is still a huge challenge due to factors such as
sudden appearance changes and serious object occlusion. As far as we know, there is no
broad comment on UAV swarm in the field of MOT.

6. Conclusions

In the paper, an image dataset for detecting and tracking UAV swarm is established,
called the UAVSwarm dataset. It contains 13 different scenes and 19 types of UAV, including
12,598 annotated images, and the number of UAV in each sequence is 3 to 23. Then, our
dataset is validated on two tasks: UAV detection and UAV swarm MOT. For UAV detection
tasks, the widely used object detection methods, Faster R-CNN and YOLOX, are used
as the baseline models. In addition, Resnet-50 and Darknet-53 are used as backbone
models for UAV detection methods to extract more UAV-related image information. These
models achieve high results in UAV detection tasks, which reveal that our dataset plays
an essential and significant role in UAV detection. For UAV swarm MOT tasks, two of
the most advanced MOT models, GNMOT and ByteTrack, are applied. The experimental
results verify the availability, consistency, and versatility of the UAVSwarm dataset on IDF1
and MOTA evaluation metrics. The dataset constructed in this study will play a vital role
in UAV swarm MOT tasks.

In future work, on the one hand, more types of UAV should be collected, including
more information such as description and segmentation. On the other hand, more excellent
UAV detection models and UAV swarm MOT models should be designed, which provides
technical support for timely detection and accurate tracking of incoming UAV swarm.
Finally, most current datasets (like PASCAL, ImageNet, etc.) for object detection are built to
contain many images for nearly all object classes, rather than focusing on one issue. With
the lack of dataset focusing on UAV detection and UAV swarm MOT, we believe that the
high quality and large scale of UAVSwarm Dataset will become a new and challenging
benchmark dataset for future research.
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