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Abstract: An accurate estimation of soil electrical conductivity (EC) using hyperspectral techniques
is of great significance for understanding the spatial distribution of solutes and soil salinization.
Although spectral transformation has been widely used in data pre-processing, the performance
of different pre-processing techniques (or combination methods) on different models of the same
data set is still ambiguous. Moreover, extremely randomized trees (ERT) and light gradient boosting
machine (LightGBM) models are new learning algorithms with good generalization performance
(soil moisture and above-ground biomass), but are less studied in estimating soil salinity in the
visible and near-infrared spectra. In this study, 130 soil EC data, soil measured hyperspectral data,
topographic factors, conventional salinity indices such as Salinity Index 1, and two-band (2D) salinity
indices such as ratio indices, were introduced. The five spectral pre-processing methods of standard
normal variate (SNV), standard normal variate and detrend (SNV-DT), inverse (1/OR) (OR is original
spectrum), inverse-log (Log(1/OR) and fractional order derivative (FOD) (range 0–2, with intervals
of 0.25) were performed. A gradient boosting machine (GBM) was used to select sensitive spectral
parameters. Models (extreme gradient boosting (XGBoost), LightGBM, random forest (RF), ERT,
classification and regression tree (CART), and ridge regression (RR)) were used for inversion soil EC
and model validation. The results reveal that the two-dimensional correlation coefficient highlighted
EC more effectively than the one-dimensional. Under SNV and the second order derivative, the
two-dimensional correlation coefficient increased by 0.286 and 0.258 compared to the one-dimension,
respectively. The 13 characteristic factors of slope, NDI, SI-T, RI, profile curvature, DOA, plane
curvature, SI (conventional), elevation, Int2, aspect, S1 and TWI provided 90% of the cumulative
importance for EC using GBM. Among the six machine models, the ERT model performed the best for
simulation (R2 = 0.98) and validation (R2 = 0.96). The ERT model showed the best performance among
the EC estimation models from the reference data. The kriging map based on the ERT simulation
showed a close relationship with the measured data. Our study selected the effective pre-processing
methods (SNV and the 2 order derivative) using one- and two-dimensional correlation, 13 important
factors and the ERT model for EC hyperspectral inversion. This provides a theoretical support for the
quantitative monitoring of soil salinization on a larger scale using remote sensing techniques.

Keywords: soil EC inversion; hyperspectral reflectance; extremely randomized trees; light gradient
boosting machine; northwestern China
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1. Introduction

Salinization is a major soil degradation process that threatens the ecosystem, agricul-
tural production and sustainability of the ecological environment in arid and semiarid
regions worldwide [1–4]. There are nearly 10 × 108 hm2 of area harmed by salinization
worldwide, and more than 33 million hm2 in China [5,6]. This has a negative impact on crop
yields and agricultural productivity, seriously threatening ecosystem health and economic
sustainability. Therefore, timely and accurate monitoring of soil salt content is important to
combat soil salinity and improve agricultural productivity in the face of climate change
and human activities.

In agricultural production, soil salinization monitoring plays a very important guiding
role in crop management [7,8]. Soil electrical conductivity (EC) is widely used in the study
of saline soil [9], which can directly reflect soil salinity [10]. EC is an important indicator in
measuring the degree of soil salinization and evaluating crop yield at regional scales [11,12].

Hyperspectral remote sensing techniques can fully exploit spectral information in
order to realize real-time and non-contact monitoring of soil salinization, which has become
a major detection method for soil salinization monitoring at present [13,14]. Due to the
complex causes of soil salinization, its spectral characteristics are significantly affected
by soil texture, organic matter content, soil moisture, soil salt content and other factors.
Hyperspectral resolution is high. The fine spectral resolution reflects the fine characteristics
of the ground object spectrum, and inhibits the influence of other interference factors to
a large extent. Several scholars have explored models of the function between measured
soil EC and spectral reflectance, and have successfully predicted salt content in soils using
reflectance spectroscopy [15,16]. The pre-processing of hyperspectral data is the key to
improving the accuracy of the inversion. At present, in terms of data pre-processing, the
common methods include spectral transformation and the Savitzky-Golay filtering method,
among the others [17,18]. However, no single pre-processing technique (or combination
method proposed) is suitable for different data sets. Moreover, these studies mainly
considered the sensitivity of the spectrum without deeply studying the interaction between
the spectral bands. The optimal band combination algorithm overcame this problem by
calculating the spectral index (two-band (2D) salinity indices) and reducing the interference
of irrelevant wavelengths [19]. It enhances the relationship between soil attributes and
spectral features, and minimizes the effects of irrelevant wavelengths [20,21]. Thus, the
optimal band combination algorithm has been widely used locally [10,22]. However, this
method is not currently used in the study of hyperspectral inversion of soil salinization.

The causes of soil salinization and the composition of soil salinity are complex. They
differ according to different regions in the selection of sensitive bands, salinity index, vege-
tation index, topographic factors and other environmental variables in the remote sensing
and monitoring of soil salinity [23–26]. Although most of these variables can be obtained
by band operation, there are different degrees of information redundancy. Therefore, band
selection strategies need to be developed [27,28], such as Pearson’s correlation coefficient
(PCC), gray relational analysis (GRA), and variable importance in projection (VIP). This
feature filtering method reduces information redundancy, but it is difficult to obtain the
optimal inversion parameter subset. Compared with the above variable optimization
method, gradient boosting machines (GBM) can effectively construct and run the enhanced
tree, perform parallel computation, and effectively process sparse data [29]. However, it is
rarely used in the optimization of characteristic variables in soil salinization modeling.

Soil is a spatio-temporal continuum with high variability, and the non-linear effects
of soil-forming factors on soil development lead to obvious varied properties in larger
areas [20,30,31]. At present, remote sensing technology is the most effective means of
soil surface monitoring, but the lack of data mining has become a bottleneck to high
efficiency and high precision monitoring. The research shows that the machine learning
(ML) inversion model has strong nonlinear fitting ability and excellent data mining ability,
which will increase the use of spectral reflection information [32,33]. Back propagation
neural networks (BPNN), support vector machines (SVM), multiple adaptive regression



Remote Sens. 2022, 14, 2602 3 of 20

splines (MARS), etc., have all been used to invert soil salt content [34–36]. However,
the effectiveness of different modelling methods varies. Ensemble learning methods
have the advantages of high flexibility and generalization. The new developed extremely
randomized trees (ERT) [37] and light gradient boosting machine (LightGBM) [38] are
simple and fast learning algorithms. They have shown good results for adsorption energy of
metal ions [39], soil moisture [40] and above-ground biomass [41], but are currently less well
studied for applications in estimating soil salinity in visible-near-infrared (Vis-NIR) spectra.

Yinchuan Plain irrigation area is located in the upper reaches of the Yellow River,
where the salinized soil area is about 2406 km2 (where alkaline represents takyr solonetzs).
Among salinized soils, the area with high salt content is mainly located in Pingluo County
in the north, a typical salinized land in Yinchuan Plain, where light, moderate and heavily
salinized soils account for 25.2%, 39.8% and 2.7% of the county area, respectively [42]. In
addition, the prediction and inversion results of EC by previous pre-treatment technologies
and multivariate methods are different due to the region, soil type and spectral range.
Few studies have simultaneously explored multiple forms of pre-processing and modeling
methods in the same database. This study aims to provide a new train of thought for
assessing soil salinization using hyperspectral analysis.

For this purpose, the saline-alkali soil samples were collected and hyperspectral data
were acquired in the study area from 2018, 2019 and 2021. Spectral pre-processing methods
and machine learning methods were used for data simulation, best model selection and
validation. The main objectives of our research were as follows: (1) explore the response
of saline properties to sensitive spectral wavelengths; (2) compare the optimal spectral
parameters under one- and two-dimensional correlation coefficients, and point out the
influencing factors for the EC model; (3) acquire the best-performing model for predicting
soil salinity, and map soil salinity in the study region; (4) apply and provide technical
support for saline soil evaluation.

2. Materials and Methods
2.1. Study Area

The study area is located in Pingluo county (38◦26′60′′–39◦14′09′′N, 105◦57′40′′–
106◦52′52′′E), northern Yinchuan Plain, Ningxia Province, China (Figure 1), covering an
area about 2060 km2. The area is located in the irrigated middle and upper reaches of
the Yellow River and lies between the diluvial fan and plain at the eastern foot of Helan
Mountain. The study area experiences a warm temperate monsoon climate, with an annual
mean temperature of 9 ◦C, low precipitation (annual mean: 150–203 mm), and strong
evaporation (annual mean > 1825 mm). The research area is one of the most serious areas
of soil salinization in Ningxia Province, due to the low-lying terrain, poor drainage condi-
tions, shallow groundwater depth, strong evaporation, water salinity pooling, the terrain,
and unreasonable irrigation. The major types of land use and land cover include water
bodies, deserts, wastelands and basic farmland. The major soil types are lime calcite, saline,
alkaline, and irrigated silt (Calcite Solonchack, Petrosalic Solonchack, Sodic Solonchack,
Haplic Cambisol Salic according to the World Reference Base for Soil Resources (WRB)).
The parent materials are mainly carbonate. The natural vegetation is dominated by salt
tolerant vegetation (such as Nitraria tangutorum and Phragmites australis) [43].
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by weight) was determined using the drying method, and the soil EC was determined 
using the electrical conductivity method [44]. According to the definition of Brady and 
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Figure 1. Locations of the Yinchuan Plain, China (a), distribution of sampling (b) sampling
sites in 2018 (green circle), 2019 (red square) and 2021 (yellow triangle), and typical landscape
photographs (c–e).

2.2. Data Collection
2.2.1. Soil Sampling and Laboratory Analysis

Based on soil surface features, pH conditions, and land use patterns, nine sampling
sites (57 samples) were selected throughout Pingluo County from northern Yinchuan
Plain in Ningxia Province in October 2018 (Figure 1). The sampling sites included basic
farmland (non-alkaline or slightly saline-alkaline soil), medium- and low-yielding farmland
(moderate-strongly saline-alkaline soil), and abandoned land (strongly saline-alkaline or
alkaline soil) with varying levels of alkalinity. At each site, a soil auger was used to
collect intact soil cores (0–20 cm in length) at intervals of 30, 60, 100, 200, and 300 m,
after conducting the hyperspectral measurements. The sampling method was the same
in March 2019 and May 2021. A total of 130 soil samples were collected, including 57
in 2018, 41 in 2019 and 32 in 2021. Sampling was carried out in a 5 km × 5 km grid of
sample points (Figure 1). The collected soil samples (0–20 cm, non-mixed soil samples)
were stored in sealed bags until use. The latitude and longitude of the sampling sites
were recorded by a handheld global positioning system (GPS). The information including
the surface salinity accumulation, land use patterns, vegetation types and cover were
documented. After the samples were brought back to the laboratory, the soil moisture
content (water content by weight) was determined using the drying method, and the
soil EC was determined using the electrical conductivity method [44]. According to the
definition of Brady and Weil [45], the soil in the study area was partitioned into five levels
of salinity: non saline (0–0.4 dS m−1), very slightly saline (0.4–0.8 dS m−1) slightly saline
(0.8–1.6 dS m−1), moderately alkaline (1.6–2.4 dS m−1) and strongly alkaline (>2.4 dS m−1).

2.2.2. Hyperspectral Measurement and Data Processing

Field spectra were acquired at the time of soil sampling in each year. Soil spectroscopy
was conducted at each sampling site using an SR-3500 spectrometer (Spectral Evolution,
Esses, MA, USA), at wavelengths of 350 to 2500 nm. The spectral resolution was set



Remote Sens. 2022, 14, 2602 5 of 20

at 3.5 nm from 350 to 1000 nm, 10 nm from 1000 to 1500 nm, and 7 nm from 1500 to
2100 nm. Measurements were carried out between 10:00–14:00 on a sunny day. During the
hyperspectral measurements, the spectrometer was vertically downwards with the probe
at about 80 cm (waist height) above the surface. Before each measurement, the reference
panel on the spectrometer was initialized, then five measurements per sampling site were
obtained and averaged to minimize instrument noise.

2.3. Extraction of Salinization Related Factors
2.3.1. Spectral Reflectance Transformation and Selection of Spectral Indices

In order to eliminate the instrument noise and environmental background interference,
the edge bands (350~399 nm and 2401~2500 nm) with excessive noise were removed.
The spectral curves consisting of 201 band numbers were obtained by resampling the
400~2400 nm spectral data at 10 nm intervals original spectrum (OR), taking into account
the smoothing and features of the spectral curves. Five types of spectrum pre-processing
methods, including standard normal variate (SNV), standard normal variate and detrend
(SNV-DT), inverse (1/OR), inverse-log (Log(1/OR) and fractional order derivative (FOD)
(range 0–2, with intervals of 0.25, 0 order means OR), were implemented on the OR.

Spectral index is a linear or non-linear combination of reflectance in different bands.
Spectral index was used to establish the correlation between spectral data and specific
targets, and to provide a scientific basis for soil salinity research [46]. This research mainly
applies the spectral characteristic indices including Deviation of arch (DOA), Salinity index
(Table 1) and Two-band (2D) index (Table 2):

(1) Deviation of arch (DOA) [47]

DOA = R600 − (R550 − R650)/2 (1)

(2) Salinity index (conventional)

Table 1. Reference overview of studies of spectral salinity indices and formula.

Acronym Spectral Index Formula Reference

SI-T Salinity Index R/NIR× 100 [48]
SI Salinity Index (B× R)1/2 [48]
SI1 Salinity Index 1 (G× R)1/2 [49]
SI2 Salinity Index 2 (G2 + R2 + NIR2)

1/2 [49]

SI3 Salinity Index 3 (G2 + R2)
1/2 [49]

S1 Salinity Index I B/R [50]
S2 Salinity Index II (B− R)/(B + R) [50]
S3 Salinity Index III G× R/B [50]

Int1 Intensity Index 1 (G + R)/2 [51]
Int2 Intensity Index 2 (G + R + NIR)/2 [51]

NDSI Normalized Difference Salinity Index (R−NIR)/(R + NIR) [52]
B, G, R, and NIR correspond to reflectance in blue (455~492 nm), green (492~577 nm), red (622~770 nm), and
near-infrared (770~1050 nm) after conversion by the best way, respectively.

(3) Two-band (2D) index

Table 2. Reference overview of studies of spectral indices and formula.

Acronym Spectral Indices Formula Reference

DI Difference Index Ri − Rj [53]
RI Ratio Index Ri/Rj [53]

NDI Normalized Index (Ri − Rj)/(Ri + Rj) [54]
PI Product Index Ri × Rj [54]
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Table 2. Cont.

Acronym Spectral Indices Formula Reference

SI Sum Index Ri + Rj [54]
RDVI Renormalized Difference Vegetation Index (Ri − Rj)/(Ri + Rj)

1/2 [55]
NPDI Nitrogen Planar Domain Index

(
Ri + Rj

)
× Rj [56]

Note: Ri and Rj in the formula belong to any two wavelengths in 400–2400 nm, and Ri 6= Rj. All thirteen spectral
transformations were involved in the calculation of the seven spectral indices mentioned above. For each spectral
index, the wavelength combination with the largest correlation with soil EC was extracted and deemed to be the
optimal band combination.

2.3.2. Topographical Factors

Topography is the main factor of soil formation and development in arid and semi-
arid regions, affecting surface material energy and redistribution. Digital Elevation Model
(DEM) data were downloaded from the website of Geospatial Data Cloud (http://www.
gscloud.cn/, 24 May 2022) at a spatial resolution of 30 m. The DEM of each sampled point
was extracted using the Extract Multi Values to Points tool in Spatial Analyst Tools in
ArcGIS 10.4, along with slope, aspect, plane curvature, profile curvature and topographic
wetness index (TWI) as input variables to the model.

2.4. Machine Learning Algorithms
2.4.1. Feature Selection Based on Gradient Boosting Machine

Twenty-four variables (eleven conventional soil salinity indices, seven 2D indices, and
six terrain parameters) were selected as feature descriptors. In consideration of the possible
over-fitting risk, GBM was introduced to screen out the most important features from the
24 feature descriptors for participation in the subsequent construction of the soil EC model.

2.4.2. Modeling Strategies and Accuracy Assessment

In order to achieve EC predictions and to ensure the generalization and robustness of
the models, we divided the dataset into two disjoint sets, and the training and validation
sets were assigned by the 5-fold cross validation method [57]. XGBoost, LightGBM, RF,
ERT, CART, and RR were used to build an EC inversion model based on the factors selected
by GBM. In the toolkit Scikit-Learn (http://scikit-learn.org, 24 May 2022), ML models
were first trained with training sets and then the model was used to predict the EC of
the validation set. The main parameters were grid searched [58], and the default values
of other parameters were Scikit-Learn. The optimal hyperparameters of the model are
shown in Table 3. The determination coefficient (R2), mean squared error (MSE), correlation
coefficient, standard deviation and root mean square error (RMSE) between the predicted
and true values were calculated to evaluate the predictability. A scoring mechanism was
developed to pre-evaluate the six ML models. The model with the largest R2 and lowest
MSE values was considered the most robust.

Table 3. Optimal hyperparameters of six machine learning methods.

Category Method Optimal Hyperparameters

Boosting

Extreme gradient boosting
(XGBoost)

n_estimators = 5, max_depth = 4,
min_child_weight = 2,

learning_rate = 0.32

Light gradient boosting
machine (LightGBM)

n_estimators = 16,
objective = regression,

num_leaves = 31,
learning_rate = 0.32

http://www.gscloud.cn/
http://www.gscloud.cn/
http://scikit-learn.org
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Table 3. Cont.

Category Method Optimal Hyperparameters

Bagging

Random forest (RF) n_estimators = 27, max_depth = 10,
max_features = 4, random_state = 1

Extremely randomized trees
(ERT)

n_estimators = 21, max_depth = 14,
random_state = 1

Classification and Regression
Trees (CART)

max_depth = 6, max_features = 4,
max_leaf_nodes = 12,

random_state = 1

Linear Ridge regression (RR) alpha = 0.1

2.5. Kriging

Kriging interpolation is a spatial local interpolation method [42], which makes use of
the original data and the structure of the semi-variance function in order to get the unbiased
best estimate of the unsampled regional variables. It mainly analyzes the structural and
random characteristics of the regional variables, and then obtains their spatial distribution
characteristics. The soil EC model with the highest inversion accuracy was selected. The
kriging interpolation method was used to invert the spatial distribution of the soil EC. The
inverted soil EC values were then compared with the interpolation results of 320 measured
data by our research group, from 0–20 cm depths of soils from the whole Yinchuan Plain in
2019 and 2021, in order to verify the adaptability of the model on a large scale.

3. Results
3.1. The Spectral Characteristic of the Soil Samples

All hyperspectral characteristic curves of soil were analyzed (Figure 2). The soil
spectral reflectance increased with an increase in the wavelength and with a certain volatility.
The pattern of spectra curves was similar across different saline levels, with absorption
valleys at 1400 nm and 1900 nm. The spectral curves of salinized soil between 400 and
1400 nm show regular changes with the increase of salinization, that is, the soil reflectance
increases with the increase of salinization. Although this rule is not obvious after 1400 nm,
this regularity can distinguish different degrees of salinization; based on this we can
accurately distinguish different salinization soils through certain treatment.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 20 
 

 

 
Figure 2. Hyperspectral reflectance of the soil measured on the ground under different saline levels 
(a) and mean original spectral reflectance (n = 130) (b). 

 
Figure 3. Pre-processing of mean spectral curves including standard normal variate (SNV), standard 
normal variate and detrend (SNV-DT), inverse (1/OR) (OR is original spectrum), inverse-log 
(Log(1/OR) and fractional order derivative (FOD) (range 0–2, with intervals of 0.25) (green areas 
represent the standard deviations of the spectra) collected from soil measured on the ground. 

3.2. Correlation Analysis of Spectral Reflectance and EC 
The correlation coefficients between EC and the reflectance processed by SNV, SNV-

DT, 1/OR, Log (1/OR), 1 order and 2 order derivatives in the range of 400~2400 nm were 
computed and plotted, respectively (Figure 4). In the OR, the correlation coefficient 
showed a steady downward trend with the increase of wavelength. The SNV correlation 
was slightly higher than the OR correlation in the range of 400~700 nm, and then the cor-
relation coefficient decreased and became negative from 1400 nm. The SNV-DT correla-
tion trends increased in the 400~1100 nm range, crossing with the SNV correlation near 
1100 nm, and then the correlation gradually became negative. In 1/OR and Log (1/OR), EC 
was negatively correlated with the spectral reflectance over the whole wavelength range 
with smooth change and stronger correlation in the visible and near-infrared parts. The 
correlation coefficients in the 1 order and 2 order derivatives were alternately positive and 
negative in wavelength, which increased the correlation of several specific bands. The 

Figure 2. Hyperspectral reflectance of the soil measured on the ground under different saline levels (a)
and mean original spectral reflectance (n = 130) (b).



Remote Sens. 2022, 14, 2602 8 of 20

The pattern of SNV transformation was similar to that of the OR reflectance curve, but
the characteristics of the absorption valley and reflection peak of the curve were obviously
enhanced (Figure 3). After SNV-DT transformation, the spectral absorption and reflection
characteristics of the curve were enhanced, and several new characteristics lacking in the
OR were present, including two reflection peaks in the visible region (near 700 and 800 nm)
and the absorption valley (near 2200 nm). After 1/OR and Log (1/OR) transformation,
the reflectance showed a downward trend, compared with the OR, the absorption valley
features were weakened, and at 1400 and 1900 nm, contrary to the OR features. As the
FOD increases from 0 to 2, the intensity of spectral signals weakened, but the spectral
detail increased. The absorption valleys at 1400 nm and 1900 nm became more and more
obvious, and two small absorption valleys and a reflection peak were observed at 1400 nm.
Meanwhile, the absorption valley peaked at 1900 nm gradually with the increase of overall
absorption characteristics of the visible region (FOD 0–2). When the order increased from
1 to 2, most of the reflectance values approached zero, one positive peaked at 580 nm,
and two negative peaks at 480 nm and 660 nm. Moreover, the 1 order derivative better
identified both positive and negative peaks.
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(Log(1/OR) and fractional order derivative (FOD) (range 0–2, with intervals of 0.25) (green areas
represent the standard deviations of the spectra) collected from soil measured on the ground.

3.2. Correlation Analysis of Spectral Reflectance and EC

The correlation coefficients between EC and the reflectance processed by SNV, SNV-DT,
1/OR, Log (1/OR), 1 order and 2 order derivatives in the range of 400~2400 nm were com-
puted and plotted, respectively (Figure 4). In the OR, the correlation coefficient showed
a steady downward trend with the increase of wavelength. The SNV correlation was
slightly higher than the OR correlation in the range of 400~700 nm, and then the correlation
coefficient decreased and became negative from 1400 nm. The SNV-DT correlation trends
increased in the 400~1100 nm range, crossing with the SNV correlation near 1100 nm,
and then the correlation gradually became negative. In 1/OR and Log (1/OR), EC was
negatively correlated with the spectral reflectance over the whole wavelength range with
smooth change and stronger correlation in the visible and near-infrared parts. The cor-
relation coefficients in the 1 order and 2 order derivatives were alternately positive and
negative in wavelength, which increased the correlation of several specific bands. The
maximum absolute correlation coefficient (MACC) between EC was 0.596 at 420 nm in
2 order derivation reflectance, which was only 0.396 at 400 nm in OR.
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tion reflectance (OR, SNV, SNV-DT, 1/OR, Log (1/OR), 1 and 2 order derivative) in the range of
400~2400 nm.

In each spectral transformation, the band with the largest correlation coefficient was
extracted (Table 4). The correlation coefficient was best in all four bands under SNV
transformation, because the salinity index was calculated according to required optimum
wavelengths varying from 450 to 1050 nm, i.e., blue: 455~492 nm; green: 492~577 nm; red:
622~770 nm; and near-infrared: 770~1050 nm (Figure 5a). Therefore, the corresponding
best reflectance under SNV transformation was selected for salinity index calculation.

Table 4. Most sensitive spectral parameters by one- and two-dimensional correlation coefficients.

Dimensionality Spectral Parameters MACC

One-dimensional
OR400, SNV1580, SNVDT2180, 1/OR880, 0.396, 0.488, 0.376, 0.270,

Log(1/OR)400, FOD(0.25400, 0.51860, 0.75400, 0.384, (0.395, 0.412, 0.396,
1410, 1.25410, 1.5410, 1.75490, 2420) 0.509, 0.443, 0.421, 0.437, 0.596)

One-dimensional
(using SNV) Blue480, Green520, Red710, NIR780 0.394, 0.403, 0.360, 0.315

Two-dimensional

DI (2 order derivative930, 2 order derivative430), 0.652,
RI (SNVDT2410, SNVDT760), 0.633,

NDI (SNV1220, SNV1290), 0.689,
SI (2 order derivative1790, 2 order derivative430) 0.647,

RDVI (1/OR1120, 1/OR1290), 0.533,
NPDI (2 order derivative1830,

2 order derivative430), 0.677,

PI (2 order derivative430, 2 order derivative420) 0.643

Two-dimensional
(using 2 order derivative)

DI (930, 430), RI (2050, 510), NDI (520, 1200), 0.652, 0.585, 0.583,
NPDI (1830,430), PI (430, 420), SI (1790, 430) 0.677, 0.643, 0.647

The bands with high correlation of SNVDT-RI, SNV-NDI, 1/OR-RDVI, 2 order
derivative-DI, 2 order derivative-NDI, 2 order derivative-NPDI and 2 order derivative-PI to
EC, respectively (Figure 6). The best bands of SNVDT-RI, SNV-NDI, and 1/OR-RDVI were
more concentrated, while the best bands under 2 order derivative were more dispersed,
mostly in the form of grids and dots. The MACC between SNV-NDI and EC was 0.69, and
the high bands were mainly concentrated around 1200 nm and 1600 nm with the explicit
expression [(Ri − Rj)/(Ri + Rj)]. Overall, all 2D indices under 2 order derivative were
subsequently selected to participate in the EC modeling, because the best spectral indices
under 2 order derivative transformation were more numerous (Figure 5b).
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different transformation reflectance and two derivative orders (The x and y axis represent the
wavelength 400~2400 nm, the right-side color bar indicates the color of the PCC values. The colors
dark red and dark blue represent a relatively high PCC (red for positive and blue for negative)
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In general, two-dimensional correlation coefficients show higher correlation values
compared to one-dimensional. In the case of NDI at SNV, the best correlation coefficient
between spectral reflectance and EC in one dimension was 0.488, which increased by 0.201
at a two-dimensional spectral index (Table 4).

3.3. Model Inversions and Comparisons
3.3.1. Feature Selection and Importance Analysis

Based on GBM results, the top 13-ranked features could provide more than 90% of the
cumulative importance for the model (Figure 7) (the salinity index SI was denoted as SI (1),
and the 2D index SI as SI (2)). Therefore, the top 13 feature variables were selected as the
independent variables for the subsequent model.
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3.3.2. Establishment and Verification of Soil EC Inversion Models

The selected spectral parameters and topographic factors by GBM and EC contents
were applied as input and output datasets, respectively, to construct an EC model via the
XGBoost, LightGBM, RF, ERT, CART and RR methods. The prediction effect of different
models on the training set is shown in Figure 8. The ERT model had excellent results with
the most reliable estimation (R2 = 0.98), which was followed by the RF method (R2 = 0.87),
XGBoost methods (R2 = 0.85), the CART model (R2 = 0.84), LightGBM methods (R2 = 0.55)
and the RR model (R2 = 0.26). The standard deviation of the tree model does not differ
significantly based on the Taylor diagram (Figure 9a). The MSE (Train and Validation)
order was ERT (0.37, 0.40) < RF (1.60, 1.72) < XGBoost (1.85, 1.96) < CART (2.02, 2.00) <
LightGBM (5.47, 5.3) < RR (9.08, 9.00) (Figure 9b), and the correlation coefficient order
was ERT (0.98) > XGBoost (0.96) > RF (0.94) > CART (0.91) > LightGBM (0.80) > RR (0.51)
(Figure 9a). Overall, the ERT model performs the best. ERT, XGBoost, RF and CART better
predicted soil EC within the MSE range of 0.37 to 2.02 (Figure 9b).
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3.3.3. Testing of Predictive Models

This study employed the trained model for the July 2018 data (n = 42) to examine
the ERT model’s prediction performance for soil EC inversion. All of the procedures for
calculating salinity indices and modeling were the same as those stated previously. The
model showed significant correlation with the measured (true) data (R2 = 0.96) (Figure 10a).
The model had a strong linear relationship between the measured and simulated (true)
values (y = ax + b, R2 = 0.96) (Figure 10b). Therefore, the ERT model was the best model for
EC simulation.
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3.4. Digital Soil Maps of EC

The kriging interpolation method of inversion of the spatial distribution of soil EC
was used (Figure 11). The ERT model inversion effect and the measured value were very
close. In general, overall trends in soil EC in the north-east and midwest are relatively
serious, with salinity conditions from north to south continuously reducing. The results
were consistent with the field investigation and demonstrated the validity of the model to
some extent. To verify the application of the model on a large scale, 320 data collected in
2019 and 2021 from Yinchuan Plain were used. Topographically, the areas with the lowest
degree of salinization were mainly located in the mountainous areas in the southern part of
the plain. The highest salinity in the region was found in the Xidatan area in the northwest.
In addition, it can be seen that the EC values in Pingluo county in Yinchuan Plain are
relatively consistent with the validation effect of the model, which indicates that the model
can be used for large-scale inversion.
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4. Discussion
4.1. Hyperspectral Pre-Processing

Spectral data pre-processing can effectively remove background noise, baseline ef-
fect and multiplier interference, which is an important step in extracting useful spectral
information and optimizing quantitative effects of models [59]. Selecting the most suit-
able pre-processing method to process all the datasets is difficult and infeasible [13]. In
this study, five kinds of mathematical transformations (SNV, SNV-DT, 1/OR, Log (1/OR),
and FOD (range 0–2, with intervals of 0.25)) were carried out on the basis of the original
characteristic spectrum, pre-processing the spectral data with different degrees of change
(Figure 3). Through pre-processing, the reflection and absorption peak valley were better
identified in FOD transformation. Although spectral intensity gradually decreased, spectral
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details increased. Many tiny peaks began to appear and grew with the increase of the
derivative order, which achieved the purpose of refining the variation trend and reducing
the information defect [60].

According to the analysis of the correlation between the reflectance of spectral trans-
formation and EC, the MACC of the two-dimensional correlation coefficient was much
higher than that of the one-dimensional (Table 4). In one-dimensional, the MACC of SNV
and of FOD were higher than that of OR. These results confirmed that partial spectral
pre-processing eliminates or reduces unwanted side effects in reflection spectra. The two-
dimensional correlation coefficient was much larger than the one-dimensional, indicating
that the two-band spectral index fully considers the interaction between spectral bands
and effectively eliminates the overlapping absorption of soil components [21]. The two-
dimensional correlation coefficient further reveals the potential use of the optimal band
algorithm in determining sensitive spectral variables related to EC content. It can be seen
that SNV has the best transformation effect in the Vis-NIR band, which may be because SNV
improves the signal-to-noise ratio of the original absorbance spectrum and enhances the
spectral absorption information related to component content [61]. The best transformation
band correlated with EC in the 2 order derivative (PCC420nm = 0.596), because the spectral
derivative effectively deals with nonlinear problems, enhances the difference between
similar spectra, and eliminates background noise. SNV and 2 order derivative have the
largest improvement in two dimensions compared with one dimension, which were 0.286
and 0.258, respectively. Peon et al. [62] successfully transferred the spectral reflectance of
the laboratory to different satellite sensors by means of different spectral response functions,
or directly extracted sensitive spectral parameters from satellite sensors. Therefore, we can
use SNV and 2 order derivative to calculate the optimal spectral index in order to simplify
the input variables and develop increasingly efficient and specific EC estimation models.

4.2. Feature and Model Selection

Studies show that the robustness of the model improves by removing potentially
irrelevant environmental variables [19]. In this study, the importance of variables was
ranked based on GBM, and it was found that DEM, slope, aspect, plane curvature, profile
curvature and TWI all participate in EC modeling. Topographic variables determine the
movement direction of run-off water, thus changing the accumulation mode and location of
salt in soil [25]. Taghizadeh-mehrjardi et al. [63] proved that DEM and its derivatives were
significantly correlated with soil salinity and have great potential in monitoring soil salinity.
Peng et al. [64] established an EC inversion model of the Aksu River Basin in Xinjiang using
terrain attributes and Landsat 8 OLI index, with R2 reaching 0.92. It is possible to apply
this hyperspectral feature and model for remote sensing.

Prediction accuracy is the most important factor for soil properties inversion. At
present, scholars have conducted relevant studies on the inversion of soil EC, but the
models have mixed results [65–69]. In this study, ERT and RF models perform better than
XGBoost, LightGBM, CART, and RR (Figure 8). This may be due to introducing random
attribute selection during the training of the RF model, and due to the extraction of data
based on randomness and difference [70], which greatly improved the accuracy of decision
making [33,71]. Studies have shown that ensemble learning and variable selection can
improve the consistency of models with predicted values and true values when variables are
complex [72]. Compared with bagging, boost’s prediction of EC was slightly inferior, and
the comparison of the two boosting methods shows that the XGBoost algorithm has a better
prediction effect. XGBoost avoids the over-fitting problem to a large extent by introducing
regularization terms, thus improving the generalization ability of the model [39]. Therefore,
XGBoost can be used as an effective method to build a simulation estimation model of salt
content in a certain region. LightGBM is an efficient implementation of a gradient boosting
decision tree (GBDT). As a distributed gradient lifting framework, it is mainly optimized
in the training speed and memory of the model. Due to the unique leaf-wise strategy of
LightGBM, it is easier to control the model complexity, however, it is difficult to give full
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play to its advantages in the case of small data sets [38]. This may be the reason for the poor
performance of LightGBM in the problem background of this study. It should be pointed
out that the best single model cannot guarantee the highest accuracy under changing input
data or future conditions [73].

4.3. Spatial Distribution of Soil Salinity

Interpolation through the model between the predicted values and measured values
show that soil EC values in the midwest and northeast of Pingluo County are more serious.
From north to south, the salinity condition continuously decreases, where most soils with
low salinity are distributed. In general, both in the region landform, groundwater, drainage
and other related factors, distribution of Sha lakes, the west lake, and Mingshui lake in
midwest Pingluo county, in the west Xidatan town was more serious. In the north of the
plain, due to shallow groundwater, poor drainage and a high evaporation ratio, salt crusts
commonly form. In the south, the terrain elevation is higher and the drainage is smooth.
Therefore, the salinization degree is low, and most soils are slightly saline or non-saline.

Yinchuan Plain is an important ecological barrier of China’s western region and
reserved cultivated land resources, with 30% arable land. Yinchuan Plain provides 50%
of the food produced in Ningxia Province. However, soil salinization in the Yinchuan
Plain has become a particular inhibitor of crop growth and of the healthy development of
agricultural and ecological systems [74]. Thus, various approaches, including leaching with
low EC water and adding gypsum, as well as cultivating salt-tolerant plants, have already
been attempted in order to alleviate salinization effects [75]. Nevertheless, the success of
such approaches needs continuous monitoring of changes in soil EC, which can be time
consuming or infeasible for large areas. An accurate remote sensing approach to monitor
soil salinization, as suggested in this study, will overcome these problems and will enable
the avoidance of future salinization, especially when the cultivated land area and grain
yield should be increased to guarantee national food security.

4.4. Uncertainty Analysis of Soil EC Inversion Model

The accuracy of hyperspectral based monitoring of soil salinization is susceptible to
data pre-processing, and factors such as soil texture, moisture content, organic matter con-
tent, etc. that affect the soil spectrum and the selection of salt indices and vegetation indices.
Moreover, the division of modeling validation sets also affects the model accuracy [76,77].
In the inversion study of soil electrical conductivity, the correlations were mainly between
the reflectance and the degree of salinity. Although the properties of saline soils are com-
paratively changeable and so may affect the reflectance, such changes, or the intensity of
changes and consequences for the reflectance, are also due to or dependent on the salinity
levels. Our results show that the 2 order derivative is the best spectral processing method
and that the terrain factor plays a dominant role in the model, which makes it superior
to spectral variables and provides a basis for the simulation of soil salinization at larger
scales. Nevertheless, no universal spectral index or variable can give a single satisfactory
result under any environmental condition. Therefore, the selection of optimal modeling
parameters should be based on the regional and environmental conditions, rather than on
fixed parameters.

Simple near-ground remote sensing methods cannot reflect the characteristics of
salinization. Therefore, comprehensive multisource data is needed as a new way to
study the complex salinization monitoring problem, by obtaining more soil and train-
ing information [78]. The soil samples used in this paper are mainly concentrated in arid
areas: whether the established optimal model can be applied to other areas remains to be
further discussed and verified. The applicability of different ensemble learning algorithms
needs to be explored for arid oasis and for coastal saline soils, and other types of models
should be selected for comparison and optimization. Our approach can also be applied to
predict other soil properties such as texture and clay mineralogy, or to determine different
soil layers or soil types based on different data sets and verifications. Nevertheless, in the
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future, the study range and soil sample size need further expansion to complete the soil hy-
perspectral database, and the environmental variables should be appropriately considered
in order to improve the accuracy of the model. It is necessary to study how soil properties
affect the response mechanism of the hyperspectral inversion of the EC content, and to
combine models and images in order to conduct large-scale mapping and monitoring of
soil salinization [10].

5. Conclusions

To find the best hyperspectral inversion of soil electrical conductivity, this study was
conducted at northern Yinchuan Plain, China, where serious soil salinization is faced. The
performance of different pre-processing techniques on different models of the same data set
were applied. The extremely randomized trees (ERT) and light gradient boosting machine
(LightGBM) models were studied. We used soil measured hyperspectral and salinity data to
explore the feasibility of identifying EC via Vis–NIR spectral model outputs. The correlation
between reflectance and EC was analyzed using different hyperspectral pre-processing
methods, and the spectral indices were calculated. Under different spectral transformation
and salinity indices, the correlation between 2 order derivative and SVN-NDI and EC
were the largest, with 0.596 and 0.689, respectively. The SNV and 2 order derivative
pre-processing techniques exerted a strong influence on improving the correlations. The
salinity features selected based on GBM include slope, NDI, SI-T, RI, profile curvature,
DOA, plane curvature, SI (conventional), elevation, Int2, aspect, S1 and TWI. Among the
six EC inversion models (XGBoost, LightGBM, RF, ERT, CART and RR), the ERT model
performs best. The optimal parameter combination after the grid search was as follows: the
n_estimator was 21, the max_depth was 14, and R2 and MSE were 0.98 and 0.37, respectively.
Based on the validation of the prediction model, the machine learning model (ERT) can be
applied to the prediction of EC. The ERT model provides a new method for the accurate
inversion of soil EC. Our study provides a reference for the inversion of soil EC, and a
basis for soil salinization simulation on a larger scale, which can support the sustainable
development of local agriculture and protect the ecological environment in arid areas.
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