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Abstract: Rotated object detection in aerial images is still challenging due to arbitrary orientations,
large scale and aspect ratio variations, and extreme density of objects. Existing state-of-the-art rotated
object detection methods mainly rely on angle-based detectors. However, angle-based detectors
can easily suffer from a long-standing boundary problem. To tackle this problem, we propose a
purely angle-free framework for rotated object detection, called Point RCNN. Point RCNN is a
two-stage detector including both PointRPN and PointReg which are angle-free. Given an input
aerial image, first, the backbone-FPN extracts hierarchical features, then, the PointRPN module
generates an accurate rotated region of interests (RRoIs) by converting the learned representative
points of each rotated object using the MinAreaRect function of OpenCV. Motivated by RepPoints,
we designed a coarse-to-fine process to regress and refine the representative points for more accurate
RRoIs. Next, based on the learned RRoIs of PointRPN, the PointReg module learns to regress and
refine the corner points of each RRoI to perform more accurate rotated object detection. Finally,
the final rotated bounding box of each rotated object can be attained based on the learned four
corner points. In addition, aerial images are often severely unbalanced in categories, and existing
rotated object detection methods almost ignore this problem. To tackle the severely unbalanced
dataset problem, we propose a balanced dataset strategy. We experimentally verified that re-sampling
the images of the rare categories can stabilize the training procedure and further improve the
detection performance. Specifically, the performance was improved from 80.37 mAP to 80.71 mAP
in DOTA-v1.0. Without unnecessary elaboration, our Point RCNN method achieved new state-of-
the-art detection performance on multiple large-scale aerial image datasets, including DOTA-v1.0,
DOTA-v1.5, HRSC2016, and UCAS-AOD. Specifically, in DOTA-v1.0, our Point RCNN achieved
better detection performance of 80.71 mAP. In DOTA-v1.5, Point RCNN achieved 79.31 mAP, which
significantly improved the performance by 2.86 mAP (from ReDet’s 76.45 to our 79.31). In HRSC2016
and UCAS-AOD, our Point RCNN achieved higher performance of 90.53 mAP and 90.04 mAP,
respectively.

Keywords: rotated object detection; angle-based detector; angle-free framework; rotated region of
interests (RRoIs); representative points

1. Introduction

Object detection has been a fundamental task in computer vision and has progressed
dramatically in the past few years using deep learning. It aims to predict a set of bounding
boxes and the corresponding categories in an image. Modern object detection methods of
natural images can be categorized into two main categories: two-stage detectors, exempli-
fied by Faster RCNN [1] and Mask RCNN [2], and one-stage detectors, such as YOLO [3],
SSD [4], and RetinaNet [5].

Although object detection has achieved significant progress in natural images, it still
remains challenging for rotated object detection in aerial images, due to the arbitrary
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orientations, large scale and aspect ratio variations, and extreme density of objects [6].
Rotated object detection in aerial images aims to predict a set of oriented bounding boxes
(OBBs) and the corresponding classes in an aerial image, which serves an important role
in many applications, e.g., urban management, emergency rescue, precise agriculture,
automatic monitoring, and geographic information system (GIS) updating [7,8]. Among
these applications, antenna systems are very important for object detection, and many
excellent examples [9–11] have been proposed.

Modern rotated object detectors can be divided into two categories in terms of the
representation of OBB: angle-based detectors and angle-free detectors.

In angle-based detectors, an OBB of a rotated object is usually represented as a five-
parameter vector (x, y, w, h, θ). Most existing state-of-the-art methods are angle-based
detectors relying on two-stage RCNN frameworks [12–16]. Generally, these methods use
an RPN to generate horizontal or rotated region of interests (RoIs), then a designed RoI
pooling operator is used to extract features from these RoIs. Finally, an RCNN head is
used to predict the OBB and the corresponding classes. Compared to two-stage detectors,
one-stage angle-based detectors [17–21] directly regress the OBB and classify them based
on dense anchors for efficiency. However, angle-based detectors usually introduce a long-
standing boundary discontinuity problem [22,23] due to the periodicity of the angle and the
exchange of edges. Moreover, the unit between (x, y, w, h) and angle θ of the five-parameter
representation is not consistent. These obstacles can cause the training to be unstable and
limit the performance.

In contrast to angle-based detectors, angle-free detectors usually represent a rotated
object as an eight-parameter OBB (x1, y1, x2, y2, x3, y3, x4, y4), which denotes the four corner
points of a rotated object. Modern angle-free detectors [24–27] directly perform quadri-
lateral regression, which is more straightforward than the angle-based representation.
Unfortunately, although abandoning angle regression and the parameter unit is consistent,
the performance of existing angle-free detectors is still relatively limited.

How to design a more straightforward and effective framework to alleviate the bound-
ary discontinuity problem is the key to the success of rotated object detectors.

However, all the above methods use predefined (rotated) anchor boxes, whether angle-
based or using angle-free methods. Compared to anchor boxes, representation points can
provide more precise object localization, including shape and pose. Thus, the features
extracted from the representative points may be less influenced by background content
or uninformative foreground areas that contain little semantic information. In this paper,
based on the learning of representative points, we propose a purely angle-free framework
for rotated object detection in aerial images, called Point RCNN, which can alleviate the
boundary discontinuity problem and attain state-of-the-art performance. Our Point RCNN
is a two-stage detector and mainly consists of an RPN (PointRPN) and an RCNN head
(PointReg), which are both angle-free. PointRPN serves as an RPN network. Given an input
feature map, first, PointRPN learns a set of representative points for each feature point in a
coarse-to-fine manner. Then, a rotated RoI (RRoI) is generated through the MinAreaRect

function of OpenCV [28]. Finally, serving as an angle-free RCNN head, PointReg applies a
rotate RoI Align [13,15] operator to extract RRoI features, and then refines and classifies
the eight-parameter OBB of the corner points. In addition, the existing methods almost
ignore the category imbalance in aerial images, and we propose to resample images of rare
categories to stabilize convergence during training.

The main contributions of this paper are summarized as follows:

• We propose Point RCNN, a purely angle-free framework for rotated object detection
in aerial images. Without introducing angle prediction, Point RCNN is able to address
the boundary discontinuity problem.

• We propose PointRPN as an RPN network, which aims to learn a set of representative
points for each object of interest, and can provide better detection recall for rotated
objects in aerial images.
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• We propose PointReg as an RCNN head, which can responsively regress and refine
the four corners of the rotated proposals generated by PointRPN.

• Aerial images are usually long-tail distributed. We further propose to resample images
of rare categories to stabilize training and improve the overall performance.

• Compared with state-of-the-art methods, extensive experiments demonstrate that our
Point RCNN framework attains higher detection performance on multiple large-scale
datasets and achieves new state-of-the-art performance.

2. Materials and Methods
2.1. Related Work
2.1.1. Horizontal Object Detection

In the past decade, object detection has become an important computer vision task
and has received considerable attention from academia and industry. Traditional methods
use hand-crafted features (e.g., HoG, SIFT) to solve detection as classification on a set of
candidate bounding boxes. With the development of deep convolutional neural networks
(CNN), modern horizontal object detection methods can be mainly categorized into three
types: two-stage detectors, one-stage detectors, and recent end-to-end detectors.

One line of research focuses on two-stage detectors [2,29–33], which first generate a
sparse set of regions of interests (RoIs) with a region proposal network (RPN), and then
perform classification and bounding box regression. While two-stage detectors still attract
much attention, another line of research focuses on developing efficient one-stage detectors
due to their much simpler and cleaner design [3–5,34–37], in which SSD [4] and YOLO [3]
are the fundamental methods that use a set of pre-defined anchor boxes to predict object cat-
egory and anchor box offsets. Note that anchors were first proposed in the RPN module of
faster RCNN to generate proposals. Recently, more studies [38,39] that use bounding boxes
for object detection have been reported. In addition, effort has been spent on designing
anchor-free detectors [35,40]. FCOS [35] and Foveabox [40] use the center region of targets
as positive samples. In addition, FCOS introduces the so-called centerness score to make
non-maximum suppression (NMS) more accurate. The authors of [41] propose an adaptive
training sample selection (ATSS) scheme to automatically define positive and negative
training samples. PAA [42] involves a probabilistic anchor assignment strategy, leading
to easier training compared to heuristic IoU hard-label assignment strategies. In addition
to improve the assignment strategy of FCOS, efforts has been devoted to the detection
features [43] and loss functions [44] to further boost anchor-free detector performance.

Very recently, several studies have proposed end-to-end frameworks for horizontal
object detection by removing NMS from the pipeline. DETR [45] introduces a transformer-
based attention mechanism to object detection. Essentially the sequence-to-sequence
learning task in [46] was solved in parallel by a self-attention-based transformer rather than
RNN. Deformable DETR [47] accelerates the training convergence of DETR by proposing
to only attend to a small set of key sampling points. DeFCN [48] adopts a one-to-one
matching strategy to enable end-to-end object detection based on a fully convolutional
network with competitive performance. PSS [49] involves a compact and plug-in PSS head
to eliminate heuristic NMS and achieve better performance.

2.1.2. Rotated Object Detection

With the development of deep-learning technology, rotated object detection in aerial
images has achieved great success in the past few years, especially with the release of the
largest aerial image dataset DOTA [6], which has become a standard benchmark and has
significantly boosted the development of rotated object detectors. In terms of the represen-
tation of the oriented bounding box (OBB), modern rotated object detectors can be mainly
divided into two categories: angle-based detectors and angle-free detectors. As depicted in
Figure 1, we show the main differences between angle-based detectors and angle-free
detectors. Figure 1a shows the learning targets (x, y, w, h, θ) of angle-based detectors, where
(x, y) denote the coordinates of the center points, (w, h) denote the shorter and longer edges
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of the rotated bounding box, and θ denotes the angle between the longer edge and the
horizontal axis. Figure 1b shows the learning targets (x1, y1, x2, y2, x3, y3, x4, y4) of angle-
free detectors, which represent the coordinates of four corner points of a rotated bounding
box. Compared to angle-based detectors, angle-free detectors are more efficient since they
are more straightforward and can alleviate the boundary discontinuity problem without
introducing angle prediction.

𝜃
h

w

(x,y)

(𝑥!,𝑦!)
(𝑥",𝑦")

(𝑥#,𝑦#)
(𝑥$,𝑦$)

(a) Angle-based (b) Angle-free

Figure 1. Comparison of angle-based and angle-free detectors.

Angle-based detectors: Figure 2 illustrates three different methods for generating
RRoIs: (a) and (b) denote two classical and mainstream RRoI generating methods. As shown
in Figure 2a, one line of early research in the generation of RRoIs is the rotated region
proposal network (rotated RPN) [17,18], which sets 54 anchors with different scales, angles,
and aspect rations (three scales × six angles × three ratios) on each location to cover
oriented objects. With the help of densely rotated anchors, the detection recall performance
is thus improved. However, the introduction of massive rotated anchors increases the
computational complexity and memory consumption, which limits the application of these
methods. To tackle this issue, as shown in Figure 2b, the RoI transformer [13] proposes
that RRoIs learn from horizontal RoIs by transforming default horizontal RoIs into RRoIs.
The RoI transformer avoids introducing abundant anchors; however, it involves RPN,
RoI alignment and regression, which are also complex processes. R2CNN [12] proposes
the detection of the horizontal and rotated bounding box simultaneously with multi-task
learning. SCRDet [14] enhances features with an attention module and proposes an IoU-
smooth L1 loss to alleviate the loss discontinuity issue. SCRDet++ [23] extends SCRDet with
image-level and instance-level de-noising modules to enhance the detection of small and
cluttered objects. CSL [19] reformulates angle prediction from regression to classification
to alleviate the discontinuous boundary problem. GWD [50] and KLD [51] propose a
more efficient loss function for OBB regression. R3Det [20] proposes a refined single-stage
rotation detector for fast and accurate object detection using a progressive regression
approach from coarse to fine granularity. Constraint loss [52] proposes a decoupling
modulation mechanism to overcome the problem of sudden changes in loss. S2A-Net [21]
proposes a single-shot alignment network to realize full feature alignment and alleviates
the inconsistency between regression and classification. Recently, ReDet [15] has proposed
the use of a rotation-equivariant network to encode rotation equivariance explicitly and
presents a rotation-invariant RoI aligned to extract rotation-invariant features. The oriented
RCNN [16] proposes a two-stage detector that consists of an oriented RPN for generating
the RRoI and an oriented RCNN for refining the RRoI. Both ReDet and the oriented RCNN
provide promising accuracy.

However, the boundary problem in the angle regression learning still causes training to be
unstable and limits the performance. While angle-based detectors still find many applications,
angle-free methods are receiving more and more attention from the research community.

Angle-free detectors: Textboxes++ [53] directly predict arbitrarily oriented word
bounding boxes via a regression model by quadrilateral representation. ICN [24] proposes
to directly estimate the four vertices of a quadrilateral to regress an oriented object based
on an image pyramid and feature pyramid. RSDet [25] and gliding vertex [26] achieve
more accurate rotated object detection via directly quadrilateral regression prediction. LR-
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TSDet [8] proposes an effective tiny ship detector for low-resolution remote-sensing images
based on horizontal bounding box regression. TPR-R2CNN [54] proposes an improved
R2CNN based on a double-detection head structure and a three-point regression method.
Recently, BBAVectors [27] have extended the horizontal keypoint-based object detector
to an oriented object detection task. CFA [55] proposes a convex-hull feature adaptation
approach for configuring convolutional features. Compared to angle-based methods, angle-
free detectors are more straightforward and can alleviate the boundary problem to a large
extent. However, the performance of current angle-free oriented object detectors is still
relatively limited.

(a) Rotated RPN

…

54 anchors RRoI

(b) RoI Transformer

3 anchors HRoI RRoI

RRoI
Learner

(c) PointRPN (Ours)

Offset

Anchor-free RRoI

Figure 2. Comparison of different methods for generating rotated RoI (RRoI). (a) Rotated RPN
places multiple rotated anchors with different angles, scales, and aspect ratios. (b) RoI transformer
proposes an RRoI learner to model the RRoI from the horizontal RoI (HRoI) for each feature point
based on 3 anchors. (c) Our proposed PointRPN generates accurate RRoI in an anchor-free and
angle-free manner.

In this paper, we propose an effective angle-free framework for rotated object detection,
called Point RCNN, which mainly consists of an RPN network (PointRPN) and an RCNN
head (PointReg). Compared to the methods of Figure 2a,b, our proposed PointRPN
generates accurate RRoIs in an anchor-free and angle-free manner. Specifically, PointRPN
directly learns a set of implicit representative points for each rotated object. Based on
these points, RRoIs can be easily attained with the MinAreaRect function of OpenCV.
Without introducing anchors and angle regression, PointRPN becomes more efficient
and accurate.

2.2. Methods

The overall structure of our Point RCNN is depicted in Figure 3. We start by revis-
iting the boundary discontinuity problem of angle-based detectors. Then, we describe
the overall pipeline of Point RCNN. Finally, we elaborate the PointRPN and PointReg
modules, and propose a balanced dataset strategy to rebalance the long-tailed datasets
during training.

Point prediction Pseudo OBB

PointRPN

Backbone-FPN

RRoIAlign

RRoI ×2

C1 B1

FC1

FC2

RRoIAlign

×2

C2 B2

PointReg

Figure 3. The overall pipeline of the proposed angle-free Point RCNN framework for rotated object
detection. Point RCNN mainly consists of two modules: PointRPN for generating rotated proposals,
and PointReg for refining for more accurate detection. “RRoI” denotes rotated RoI, “FC” denotes
fully-connected layer, “C” and “B” represent the predicted category and rotated box coordinates of
each RRoI, respectively.
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2.2.1. Boundary Discontinuity Problem

The boundary discontinuity problem [22,23] is a long-standing problem that has
existed in angle-based detectors. Taking the commonly used five-parameter OBB repre-
sentation (x, y, w, h, θ) as an example, where (x, y) represent the center coordinates, (w, h)
represent the shorter and longer edges of the bounding box, and θ represents the angle
between the longer edge and the horizontal axis. As shown in Figure 4, when the target
box is approximately square, a slight variation in edge length may cause w and h to swap,
leading to a substantial variation in π/2 in angle θ.

This boundary discontinuity issue in angle prediction will confuse the optimization of
the network and limit the detection performance.

h

w

w

h
𝜃
𝜃

𝜃
𝜃

h

w

w

h

Figure 4. Boundary discontinuity problem of angle prediction. The red and yellow bounding boxes
indicate two different targets. Although the two square-like targets have slightly different edge (w
and h) lengths, there is a huge gap between the angle target θ.

2.2.2. Overview

To tackle the boundary problem in angle regression, in this paper, we propose a
straightforward and efficient angle-free framework for rotated object detection. Instead
of predicting the angle, as many previous angle-based two-stage methods do [13,15,16],
our proposed Point RCNN reformulates the oriented bounding box (OBB) task as learning
the representative points of the object in the RPN phase and modeling the corner points
in the RCNN refine phase, which are both totally angle-free. Figure 5 shows the entire
detection process, from the representative point learning to the final refined four corners of
the oriented object.

(𝑥!,𝑦!)

(𝑥#,𝑦#) (𝑥$,𝑦$)

(𝑥%,𝑦%)

(a) (b) (c)

Figure 5. Illustration of the detection process of the Point RCNN framework. (a) denotes the predicted
representative points with the PointRPN module. (b) denotes the conversion from the representative
points to the rotated proposals. (c) denotes the refinement process of the corner points with the
PointReg module.

The overall pipeline of Point RCNN is shown in Figure 3. During training, Backbone-
FPN first extracts pyramid feature maps given an input image. Then, PointRPN performs
representative points regression and generates a pseudo-OBB for the rotated RoI (RRoI).
Finally, for each RRoI, PointReg regresses and refines the corner points and classifies them
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for final detection results. Furthermore, we propose to resample images of rare categories
to stabilize training and further improve the overall performance.

The overall training objective is described as:

L = LPointRPN + LPointReg, (1)

where LPointRPN denotes the losses in PointRPN, and LPointReg denotes the losses in
PointReg. We will describe them in detail in the following sections.

2.2.3. PointRPN

Existing rotated object detection methods generate rotated proposals indirectly by
transforming the outputs of RPN [1] and suffer from the boundary discontinuity problem
caused by angle prediction. For example, Refs. [13,15] use an RoI transformer to convert
horizontal proposals to rotated proposals with an additional angle prediction task. Unlike
these methods, in this paper, we propose to directly predict the rotated proposals with
representative point learning. The learning of points is more flexible, and the distribution
of points can reflect the angle and size of the rotated object. The boundary discontinuity
problem can thus be alleviated without angle regression.

Representative Points Prediction: Inspired by RepPoints [37] and CFA [55], we pro-
pose PointRPN to predict the representative points in the RPN stage. The predicted points
can effectively represent the rotating box and can be easily converted to rotated proposals
in subsequent RCNN stages.

As shown in Figure 6, PointRPN learns a set of representative points for each feature
point. In order to make the features adapt more effectively to the representative points
learning, we adopt a coarse-to-fine prediction approach. In this way, the features are refined
with deformable convolutional networks (DCN) [56] and predicted offsets in the initial
stage. For each feature point, the predicted representative points of the two stages are
as follows:

Rinit = {(x0
i + ∆x0

i , y0
i + ∆y0

i )}
K
i=1,

Rre f ine = {(x1
i + ∆x1

i , y1
i + ∆y1

i )}K
i=1,

(2)

where K denotes the number of predicted representative points and we set K = 9 by default.
{(x0

i , y0
i )}

K
i=1 denotes the initial location, {(∆x0

i , ∆y0
i )}

K
i=1 denote the learned offsets in the

initial stage, and {(∆x1
i , ∆y1

i )}K
i=1 denote the learned offsets in the refine stage.

Offset

Deformable conv.

Offset

Foreground

Initial Stage Refine Stage

ℱ!"!# ℱ$%&!"%

Figure 6. The structure of the proposed PointRPN. The red points are the learned representative
points, and the green polygon represents the converted convex-hull. The red dotted OBB is converted
from the representative points with the MinAreaRect function of OpenCV [28] for generating RRoI.



Remote Sens. 2022, 14, 2605 8 of 23

Label Assignment: PointRPN predicts representative points for each feature point
in the initial and refine stages. This section will describe how we determine the positive
samples among all feature points for these two stages.

For the initial stage (see the initial stage in Figure 6), we project each ground-truth box
to the corresponding feature level li according to its area, and then select the feature point
closest to its center as the positive sample. The rule used for projecting the ground-truth
box b∗i to the corresponding feature level is defined as:

li = log2

(√
wihi

s

)
, (3)

where s is a hyper-parameter and is set to 16 by default. wi and hi are the width and
height of the ground-truth box b∗i . The calculated li will be further limited to the range
of [3, 7], since we make predictions for the five feature levels of (P3, P4, P5, P6, P7). It is
beneficial to optimize the overall detector by placing objects with different scales into
different feature levels.

For the refine stage (see the refine stage in Figure 6), considering that the initial stage
can already provide coarse prediction, we use the predicted representative points from
the initial stage to help determine the positive samples for refined results. To be specific,
for each feature point with its corresponding predictionRinit, if the maximum convex-hull
GIoU (defined in Equation (6)) betweenRinit and ground-truth boxes exceeds the threshold
τ, we select this feature point as a positive sample. We set τ = 0.1 in all our experiments.

Optimization: The optimization of the proposed PointRPN is driven by classification
loss and rotated object localization loss. The learning objective is formulated as follows:

LPointRPN = λ1
+Linit

loc + λ2 L
re f ine
cls + λ3

+Lre f ine
loc , (4)

where λ1, λ2, and λ3 are the trade-off parameters and are set to 0.5, 1.0, and 1.0 by default,
respectively. +Linit

loc denotes the localization loss of the initial stage. Lre f ine
cls and +Lre f ine

loc
denote the classification loss and localization loss of the refine stage. Note that the classifi-
cation loss is only calculated in the refine stage, and the two localization losses are only
calculated for the positive samples.

In the initial stage, the localization loss is calculated between the convex-hulls con-
verted from the learned points Rinit and the ground-truth OBBs, respectively. We use
convex-hull GIoU loss [55] to calculate the localization loss:

+Linit
loc =

1
N0

pos
∑

i

(
1−CIoU

(
Γ(Rinit

i ), Γ(b∗i )
))

, (5)

where N0
pos indicates the number of positive samples of the initial stage. b∗i is the matched

ground-truth OBB. CIoU represents the convex-hull GIoU between the two convex-hulls
Γ(Rinit

i ) and Γ(b∗i ), which are differential and can be calculated as follows:

CIoU
(
Γ(Rinit

i ), Γ(b∗i )
)
=

∣∣Γ(Rinit
i ) ∩ Γ(b∗i )

∣∣∣∣Γ(Rinit
i ) ∪ Γ(b∗i )

∣∣ −
∣∣Pi \

(
Γ(Rinit

i ) ∪ Γ(b∗i )
)∣∣

Pi
, (6)

where the first term denotes the convex-hull IoU, and Pi denotes the smallest enclosing
convex object area of Γ(Rinit

i ) and Γ(b∗i ). Γ(·) denotes Jarvis’s march algorithm [57] used
to calculate the convex-hull from points.

The learning of the refine stage, which is responsible for outputting more accurate
rotated proposals, is driven by both classification loss and localization loss. Lre f ine

cls is a
standard focal loss [5], which can be calculated as:

Lre f ine
cls =

1
N1

pos
∑

i
FL(pi, c∗i ), (7)
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FL(pi, c∗i ) =

{
−α(1− pi)

γ log(pi), if c∗i > 0;
−(1− α)pγ

i log(1− pi), otherwise,
(8)

where N1
pos denotes the number of positive samples in the refine stage, pi and c∗i are the

classification output and the assigned ground-truth category, respectively. α and γ are
hyper-parameters and are set to 0.25 and 2.0 by default. The localization loss Lre f ine

loc is
similar to Equation (5) and can be formulated as:

+Lre f ine
loc =

1
N1

pos
∑

i

(
1−CIoU

(
Γ(Rre f ine

i ), Γ(b∗i )
))

. (9)

With the refined representative points, the pseudo-OBB (see red-dotted OBB in
Figure 6) is converted using the MinAreaRect function of OpenCV [28], which is then
used for generating the RRoI for PointReg.

2.2.4. PointReg

Corner Points Refine: The rotated proposals generated by PointRPN already provide
a reasonable estimate for the target rotated objects. To avoid the problems caused by angle
regression and to further improve the detection performance, we refine the four corners of
the rotated proposals in the RCNN stage. As shown in Figure 7, with the rotated proposals
as input, we use an RRoI feature extractor [13,15] to extract the RRoI features. Then, given
the RRoI features, two consecutive fully connected and ReLU layers are used to encode the
RRoI features. Finally, two fully connected layers are responsible for predicting the class
probability P and refined corners C of the corresponding rotated object. The refined corner
points can be represented as follows:

C = {(xi + ∆xi, yi + ∆yi)}4
i=1, (10)

where {(xi, yi)}4
i=1 denotes the four corner coordinates of the input rotated proposals,

and we denote the corresponding four predicted corner offsets as {(∆xi, ∆yi)}4
i=1.

In PointReg, instead of directly performing angle prediction, we refine the four corners
of the input rotated proposals. There are three advantages of adopting corner points refine-
ment: (1) it can alleviate the boundary discontinuity problem caused by angle prediction;
(2) the parameter units are consistent among the eight parameters {(xi, yi)}4

i=1; and (3) it is
possible to improve the localization accuracy using a coarse-to-fine approach.
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Figure 7. The diagram of the proposed PointReg. For simplicity, we only show the first stage of
PointReg. The blue and red points represent the four corner points of the input RRoI and the refined
results, respectively.

We can easily extend PointReg to a cascade structure for better performance. As shown
in Figure 3, in the cascade structure, the refined rotated proposals of the previous stage are
used as the input of the current stage.

Optimization: The learning of PointReg is driven by the classification loss and the
rotated object localization loss:
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LPointReg = µ1Lcls + µ2
+Lloc, (11)

where µ1 and µ2 are the trade-off coefficients and are both set to 1.0 by default. Lcls indicates
the classification loss, which is a standard cross-entropy loss:

Lcls = −
1
N ∑

i

C

∑
c=0

Yi→c log(Pi), (12)

where N denotes the number of training samples in PointReg, C is the number of categories
excluding the background, Pi is the predicted classification probability of the ith RRoI.
Yi→c = 1 if the ground-truth class of the ith RRoI is c; otherwise it is 0. +Lloc represents the
localization loss between the refined corners and the corners of the ground-truth OBB. We
use L1 loss to optimize the corner points refinement learning which can be calculated as:

+Lloc =
1
N ∑

i
|Ci − ϑ(b∗i )|, (13)

where we let Ci(= {(xj, yj)}4
j=1) denote the refined corners for the ith rotated proposal, let

b∗i (= {(x∗j , y∗j )}4
j=1) denote the corners of the matched ground-truth OBB. ϑ(b∗i ) denotes

the permutation of four corners of b∗i with the smallest L1 loss
∣∣Ci − ϑ(b∗i )

∣∣, which can
alleviate the sudden loss change issue in angle-free detectors. Note that +Lloc is only
calculated for positive training samples.

2.2.5. Balanced Dataset Strategy

The extremely non-uniform object densities of aerial images usually make the dataset
long-tailed, which may cause the training process to be unstable and limit the detec-
tion performance. For instance, DOTA-v1.0 [6] contains 52, 516 ship instances but only
678 ground-track field instances [7]. To alleviate this issue, in this section, we propose a
balanced dataset strategy. Specifically, we resample the images of rare categories, which
was inspired by [58]. More concretely, first, for each category c ∈ C, we compute the
fraction of images Fc that contains this category. Then, we compute the category-level
repeat factor for each category:

rc = max(1.0,
√

βthr/Fc), (14)

where βthr is a threshold which indicates that there will not be oversampling if “Fc > βthr”.
Next, we compute the image-level repeat factor rI for each image I:

rI = max
c∈CI

(rc), (15)

where CI denotes the categories contained in image I. Finally, we can resample the images
according to the image-level repeat factor. In other words, those images that contain
long-tailed categories will have a greater chance of being resampled during training.

3. Results

In this section, we describe the dataset, evaluation protocol, implementation de-
tails, and demonstrate an overall evaluation and describe detailed ablation studies of the
proposed method.

3.1. Datasets

To evaluate the effectiveness of our proposed Point RCNN framework, we performed
experiments on four popular large-scale oriented object detection datasets: DOTA-v1.0 [6],
DOTA-v1.5, HRSC2016 [59], and UCAS-AOD [60], which are widely used for rotated object
detection. The statistic information comparison of these datasets is depicted in Table 1.

DOTA [6] is a large-scale and challenging aerial image dataset for oriented object de-
tection with three released versions: DOTA-v1.0, DOTA-v1.5 and DOTA-v2.0. To compare



Remote Sens. 2022, 14, 2605 11 of 23

the performance with the state-of-the-art methods, we performed experiments on DOTA-
v1.0 and DOTA-v1.5. DOTA-v1.0 contains 2806 images ranging in size from 800 × 800 to
4000 × 4000, and contains 188, 282 instances in 15 categories, abbreviated as: Bridge (BR),
Harbor (HA), Ship (SH), Plane (PL), Helicopter (HC), Small vehicle (SV), Large vehicle
(LV), Baseball diamond (BD), Ground track field (GTF), Tennis court (TC), Basketball court
(BC), Soccer-ball field (SBF), Roundabout (RA), Swimming pool (SP), and Storage tank (ST).
The dataset is divided into a training set, validation set, and test set, which account for one
half, one sixth, and one third of the total dataset, respectively. DOTA-v1.5 is an updated
version of DOTA-v1.0. It has the same images as DOTA-v1.0 but contains 402, 089 instances.
DOTA-v1.5 has revised and updated the annotation of objects, where many small object
instances about or below 10 pixels that were missed in DOTA-v1.0 have been additionally
annotated. This is a more challenging dataset, which introduces a new category Container
Crane (CC) and more small instances. For a fair comparison, we used the training set and
validation set for training, and the test set was used to verify the performance of our model.
The performances were obtained by submitting the prediction results to DOTA’s evaluation
server. The official evaluation protocol of the DOTA dataset in terms of the mAP was used.

Table 1. The statistic information comparison of the datasets. OBB denotes the oriented bounding box.

Dataset Source Annotation Categories Instances Images Year

UCAS-AOD [60] Google Earth OBB 2 14,596 1510 2015
HRSC2016 [59] Google Earth OBB 1 2976 1061 2016
DOTA-v1.0 [6] multi source OBB 14 188,282 2806 2018

DOTA-v1.5 multi source OBB 15 402,089 2806 2019

HRSC2016 [59] is another popular dataset for oriented object detection. The images
of this dataset were mainly collected from two scenarios, including ships on the sea and
ships close to the shore. The dataset contains 1061 aerial images with size ranges from
300 × 300 to 1500 × 900, with most larger than 1000 × 600. There are more than 25 types
of ships with large varieties in scale, position, rotation, shape, and appearance. This
dataset can be divided into a training set, validation set and test set. There are 436 images,
181 images, and 444 images in the training set, validation set and test set, respectively. For a
fair comparison, we used both the training and validation sets for training. The standard
evaluation protocol of HRSC2016 dataset in terms of mAP was used.

UCAS-AOD [60] is another dataset for small oriented object detection with two categories
(car and plane), which contains 1510 aerial images with 510 car images and 1000 airplane im-
ages. There are 14,596 instances in total, and the image size is approximately
659 × 1280. For a fair comparison, equivalent to the UCAS-AOD-benchmark (https:
//github.com/ming71/UCAS-AOD-benchmark, accessed on 29 March 2022), we also
divided the dataset into 755 images for training, 302 images for validation, and 453 images
for testing with a ratio of 5:2:3. The standard evaluation protocol of the UCAS-AOD dataset
in terms of mAP was used.

3.2. Implementation Details

We implemented Point RCNN using the MMDetection tool-box [61]. We followed
ReDet [15] to use ReResNet with ReFPN as our backbone (ReR50-ReFPN), which has
shown the ability to extract rotation-equivariant features. We also verified with the more
generalized transformer backbone (Swin-Tiny) to show the generalization and scalability
of our Point RCNN framework.

For the DOTA dataset, following previous methods [13,15,21], we cropped the images
to 1024 × 1024 with 824 pixels as a stride and we also resized the image to three scales
{0, 5, 1.0, 1.5} to prepare multi-scale data. Random horizontal flipping and random rotation
([−45◦, 45◦]) were adopted as the data augmentation for multi-scale training. For the
HRSC2016 dataset, as in the previous method [15], we resized all the images to (800, 512),
and we used random horizontal flipping as the data augmentation method during training.

https://github.com/ming71/UCAS-AOD-benchmark
https://github.com/ming71/UCAS-AOD-benchmark
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For the UCAS-AOD dataset, following the UCAS-AOD-benchmark, we resized all the
images to (800, 800) and only used the training set for training. We also used random
horizontal flipping, HSV augment and random rotation as the data augmentation approach
during training. Unless otherwise specified, we trained all the models with 19 epochs for
DOTA, 36 epochs for HRSC2016, and 36 epochs for UCAS-AOD. Specifically, we trained
all the models using the AdamW [62] optimizer with β1 = 0.9 and β2 = 0.999. The initial
learning rate was set to 0.0002 with warming up for 500 iterations, with the learning rate
decaying by a factor of 10 at each decay step. The weight decay was set to 0.05, and the
mini-batch size was set to 16 (two images per GPU). We conducted the experiments on a
server with 8 Tesla-V100 GPUs. The code will be released.

3.3. Main Results

We compared our Point RCNN framework with other state-of-the-art methods for four
datasets: DOTA-v1.0, DOTA-v1.5, HRSC2016, and UCAS-AOD. As shown in Tables 2–5,
without unnecessary elaboration, our Point RCNN demonstrated superior performance
compared to state-of-the-art methods.

Results on DOTA-v1.0: As reported in Table 2, we first evaluated our method on the
DOTA-v1.0 dataset and compared it with the popular and the state-of-the-art rotated object
detection methods. We obtained the overall detection performance by submitting our
results to the official DOTA-v1.0 evaluation server. In this comparison experiment, we
compared many classic and impressive methods [13,19,21,23,26,27,55,63–65] and some
state-of-the-art methods, e.g., Oriented RCNN [16] and ReDet [15].

As shown in Table 2, our Point RCNN method achieved new, state-of-the-art, detection
performance against the comparison methods. More specifically, with the ReR50-ReFPN
backbone, our Point RCNN improved the detection performance by 0.61 mAP against
ReDet (form 80.10 to 80.71). Compared with Oriented RCNN, Point RCNN improved the
performance by about 0.2 mAP. We observed that, with the proposed balanced dataset
strategy, our Point RCNN was able to improve the performance by 0.34 mAP (from 80.37
to 80.71), which confirms that the extremely non-uniform rotated object densities of aerial
images do limit detection performance.

In addition, we also evaluated our Point RCNN with the more generalized transformer
backbone Swin-Tiny [66] (Swin-T). The Swin transformer [66] is a new vision transformer,
which has been used as a general backbone of computer vision in recent years. Our
proposed Point RCNN was able to further improve the performance by 0.61% (from 80.71
to 81.32), indicating that Point RCNN is scalable to general backbone networks.

Results on DOTA-v1.5: As reported in Table 3, we then evaluated our method on the
DOTA-v1.5 dataset, which is a more challenging dataset, since it contains more categories
and more small object instances. We obtained the overall detection performance by sub-
mitting our results to the official DOTA-v1.5 evaluation server. In this experiment, we
compared some traditional strong two-stage oriented object detectors, e.g., Faster RCNN
OBB (FR-O) [6], Mask RCNN [2], the Hybrid Task Cascade (HTC) [67] and state-of-the-art
methods, including Oriented RCNN [16] and ReDet [15].

As shown in Table 3, our Point RCNN method achieved the new state-of-the-art
detection performance on DOTA-v1.5 against the comparison methods. More specifically,
our Point RCNN improved the detection performance by 2.51 mAP against ReDet (form
76.80 to 79.31), which represents a significant improvement for oriented object detection.
Compared with Oriented RCNN, Point RCNN also significantly improved the performance
by 2.86 mAP (from 76.45 to 79.31). We also observed that, with our proposed balanced
dataset strategy, Point RCNN was able to further improve the performance by 0.57 mAP
based on a high performance baseline (from 78.74 to 79.31). We also evaluated Point
RCNN with the Swin-Tiny [66] (Swin-T) backbone. With the more generalized transformer
backbone, our proposed Point RCNN was able to further improve the performance by
0.83 mAP (from 79.31 to 80.14), indicating that Point RCNN is scalable to general backbone
networks and more challenging aerial image datasets.
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Table 2. Performance comparisons on the DOTA-v1.0 test set (AP (%) for each category and overall mAP (%)). * denotes multi-scale training and testing, *† denotes
the results of using our balanced dataset strategy. “R50” denotes ResNet-50, “R101” denotes ResNet-101, “R152” denotes ResNet-152, “H104” denotes Hourglass-104,
“ReR50” denotes ReResNet-50, “Swin-T” denotes Swin Transformer Tiny.

Method Backbone PL BD BR GTF SV LV SH TC

RoI Trans. * [13] R101-FPN 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74
O2-DNet * [63] H104 89.30 83.30 50.10 72.10 71.10 75.60 78.70 90.90

DRN * [64] H104 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57
Gliding Vertex

* [26] R101-FPN 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74

BBAVectors
* [27] R101 88.63 84.06 52.13 69.56 78.26 80.40 88.06 90.87

CenterMap
* [65] R101-FPN 89.83 84.41 54.60 70.25 77.66 78.32 87.19 90.66

CSL * [19] R152-FPN 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84
SCRDet++ * [23] R152-FPN 88.68 85.22 54.70 73.71 71.92 84.14 79.39 90.82

CFA ∗ [55] R-152 89.08 83.20 54.37 66.87 81.23 80.96 87.17 90.21
S2A-Net * [21] R50-FPN 88.89 83.60 57.74 81.95 79.94 83.19 89.11 90.78
ReDet * [15] ReR50-ReFPN 88.81 82.48 60.83 80.82 78.34 86.06 88.31 90.87

Oriented RCNN
* [16] R101-FPN 90.26 84.74 62.01 80.42 79.04 85.07 88.52 90.85

Point RCNN *
(Ours) ReR50-ReFPN 82.99 85.73 61.16 79.98 77.82 85.90 88.94 90.89

Point RCNN ∗†

(Ours)
ReR50-ReFPN 86.21 86.44 60.30 80.12 76.45 86.17 88.58 90.84

Point RCNN ∗†

(Ours)
Swin-T-FPN 86.59 85.72 61.64 81.08 81.01 86.49 88.84 90.83

BC ST SBF RA HA SP HC mAP

RoI Trans. * [13] R101-FPN 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
O2-DNet * [63] H104 79.90 82.90 60.20 60.00 64.60 68.90 65.70 72.80

DRN * [64] H104 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23
Gliding Vertex

* [26] R101-FPN 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02

BBAVectors
* [27] R101 87.23 86.39 56.11 65.62 67.10 72.08 63.96 75.36

CenterMap
* [65] R101-FPN 84.89 85.27 56.46 69.23 74.13 71.56 66.06 76.03

CSL * [19] R152-FPN 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17
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Table 2. Cont.

Method Backbone PL BD BR GTF SV LV SH TC

SCRDet++ * [23] R152-FPN 87.04 86.02 67.90 60.86 74.52 70.76 72.66 76.56
CFA * [55] R-152 84.32 86.09 52.34 69.94 75.52 80.76 67.96 76.67

S2A-Net * [21] R50-FPN 84.87 87.81 70.30 68.25 78.30 77.01 69.58 79.42
ReDet * [15] ReR50-ReFPN 88.77 87.03 68.65 66.90 79.26 79.71 74.67 80.10

Oriented RCNN
* [16] R101-FPN 87.24 87.96 72.26 70.03 82.93 78.46 68.05 80.52

Point RCNN *
(Ours) ReR50-ReFPN 88.89 88.16 71.84 68.21 79.03 80.32 75.71 80.37

Point RCNN *†

(Ours)
ReR50-ReFPN 88.58 88.44 73.03 70.10 79.26 79.02 77.15 80.71

Point RCNN *†

(Ours)
Swin-T-FPN 87.22 88.23 68.85 71.48 82.09 83.60 76.08 81.32
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Table 3. Performance comparisons on DOTA-v1.5 test set (AP (%) for each category and overall
mAP (%)). * denotes multi-scale training and testing, *† denotes the results of using balanced dataset
strategy. Note that the results of Faster RCNN OBB (FR-O) [6], RetinaNet OBB (RetinaNet-O) [5],
Mask RCNN [2] and Hybrid Task Cascade (HTC) [67] are excerpted from ReDet [15]. The results
of Oriented RCNN* and ReDet* with Swin-T-FPN backbone are our re-implementations based on
their released official code. “R50” denotes ResNet-50, “R101” denotes ResNet-101, “ReR50” denotes
ReResNet-50, “Swin-T” denotes Swin Transformer Tiny.

Method Backbone PL BD BR GTF SV LV SH TC

RetinaNet-O [5] R50-FPN 71.43 77.64 42.12 64.65 44.53 56.79 73.31 90.84
FR-O [6] R50-FPN 71.89 74.47 44.45 59.87 51.28 68.98 79.37 90.78

Mask RCNN [2] R50-FPN 76.84 73.51 49.90 57.80 51.31 71.34 79.75 90.46
HTC [67] R50-FPN 77.80 73.67 51.40 63.99 51.54 73.31 80.31 90.48

OWSR * [68] R101-FPN - - - - - - - -
Oriented RCNN * [16] R101-FPN 87.20 84.67 60.13 80.79 67.51 81.63 89.74 90.88

ReDet * [15] ReR50-ReFPN 88.51 86.45 61.23 81.20 67.60 83.65 90.00 90.86
ReDet * [15] Swin-T-FPN 80.90 85.13 60.61 80.83 67.07 83.32 89.80 90.79

Point RCNN * (Ours) ReR50-ReFPN 83.40 86.59 60.76 80.25 79.92 83.37 90.04 90.86
Point RCNN *† (Ours) ReR50-ReFPN 83.12 86.55 60.84 82.43 80.60 83.39 90.01 90.88
Point RCNN * (Ours) Swin-T-FPN 83.88 85.22 60.76 79.40 81.64 83.48 89.98 90.75
Point RCNN *† (Ours) Swin-T-FPN 86.93 85.79 59.52 80.42 81.91 81.92 89.95 90.35

BC ST SBF RA HA SP HC CC mAP

RetinaNet-O [5] R50-FPN 76.02 59.96 46.95 69.24 59.65 64.52 48.06 0.83 59.16
FR-O [6] R50-FPN 77.38 67.50 47.75 69.72 61.22 65.28 60.47 1.54 62.00

Mask RCNN [2] R50-FPN 74.21 66.07 46.21 70.61 63.07 64.46 57.81 9.42 62.67
HTC [67] R50-FPN 75.12 67.34 48.51 70.63 64.84 64.48 55.87 5.15 63.40

OWSR * [68] R101-FPN - - - - - - - - 74.90
Oriented RCNN * [16] R101-FPN 82.21 78.51 70.98 78.63 79.46 75.40 75.71 39.69 76.45

ReDet * [15] ReR50-ReFPN 84.30 75.33 71.49 72.06 78.32 74.73 76.10 46.98 76.80
ReDet * [15] Swin-T-FPN 86.04 78.69 75.35 77.38 78.48 75.41 79.51 61.95 78.20

Point RCNN * (Ours) ReR50-ReFPN 87.45 84.50 72.79 77.32 78.29 77.48 78.92 47.97 78.74
Point RCNN *† (Ours) ReR50-ReFPN 87.25 84.60 73.49 78.51 78.75 78.41 76.12 54.12 79.31
Point RCNN * (Ours) Swin-T-FPN 87.00 84.65 70.70 77.87 78.32 79.50 74.35 63.80 79.46
Point RCNN *† (Ours) Swin-T-FPN 85.72 85.84 68.57 76.35 78.79 81.24 78.64 69.23 80.14

Results on HRSC2016: We also verified our Point RCNN method on the HRSC2016
dataset, which contains many ship objects with arbitrary orientations. In this exper-
iment, we compared our proposed Point RCNN method with some classic methods,
e.g., RRPN [17], RoI-Trans. ref. [13], R3Det [20], and S2A-Net [21], and the state-of-the-art
methods, Oriented RCNN [16] and ReDet [15]. Some methods were evaluated under the
VOC2007 metric, while others were compared under the VOC2012 metric. To make a
comprehensive comparison, we report the results for both metrics.

We report the experimental results in Table 4. We can observe that our Point RCNN
method attained a new state-of-the-art performance under both the VOC2007 and VOC2012
metrics. Specifically, under the VOC2007 metric, our Point RCNN achieved 90.53 mAP,
which exceeded the results for the comparison methods. It is worth noting that the Point
RCNN significantly improved the performance by 0.90 and 0.93 mAP against ReDet and
Oriented RCNN under the VOC2012 metric, respectively.
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Table 4. Performance comparisons for the HRSC2016 test set. mAP07 and mAP12 indicate that the
results were evaluated under VOC2007 and VOC2012 metrics (%), respectively. We report both
results for fair comparison. “R50” denotes ResNet-50, “R101” denotes ResNet-101, “R152” denotes
ResNet-152, “H34” denotes Hourglass-34, “ReR50” denotes ReResNet-50.

Method Backbone mAP07 (%) mAP12 (%)

RC2 [69] VGG16 75.70 -
RRPN [17] R101 79.08 85.64
R2PN [18] VGG16 79.60 -
RRD [70] VGG16 84.30 -

RoI-Trans. [13] R101-FPN 86.20 -
Gliding Vertex [26] R101-FPN 88.20 -

R3Det [20] R101-FPN 89.26 -
DRN [64] H34 - 92.7

CenterMap [65] R50-FPN - 92.8
CSL [19] R152-FPN 89.62 -

S2A-Net [21] R101-FPN 90.17 95.01
ReDet [15] ReR50-ReFPN 90.46 97.63

Orient RCNN [16] R101-FPN 90.50 97.60
Point RCNN (Ours) ReR50-ReFPN 90.53 98.53

Results on UCAS-AOD: The UCAS-AOD dataset consists of a large number of small
rotated objects, which are often overwhelmed by complex scenes in aerial images. We
evaluated our proposed Point RCNN method on UCAS-AOD and report the comparison
results in Table 5. For a fair comparison, we report the results under the VOC2007 metric.
As shown in Table 5, our proposed method achieved the best performance of 90.04 mAP07,
in which a value of 89.60 was obtained for the car detection, and a value of 90.48 was
obtained for the airplane detection.

Table 5. Performance comparisons for the UCAS-AOD test set (AP (%) for each category and overall
mAP (%)). All models were evaluated via the VOC2007 metric (%).

Method Backbone Car Airplane mAP07 (%)

R-Yolov3 [71] Darknet53 74.63 89.52 82.08
R-RetinaNet [5] ResNet50 84.64 90.51 87.57
RoI-Trans. [13] ResNet50 88.02 90.02 89.02

DAL [72] ResNet50 89.25 90.49 89.87
S2A-Net [21] ResNet50 89.56 90.42 89.99
Point RCNN

(Ours) ReR50-ReFPN 89.60 90.48 90.04

3.4. Ablation Study

In this section, we report an ablation study of our proposed Point RCNN framework.
If not specified, all the models were trained only on the training and validation set with
a scale of 1.0 for simplicity, and were tested using multi-scale testing. The metric mAP
was evaluated on the DOTA-v1.5 test set and obtained by submitting prediction results
to DOTA-v1.5’s evaluation server. In the following sections, we mainly elaborate the
effectiveness of our angle-free Point RCNN framework, including PointRPN, PoingReg,
and the balanced dataset strategy.

3.4.1. Analysis of PointRPN

To analysis the efficiency of the proposed PointRPN, which serves as an RPN network,
we evaluated the detection recall of PointRPN on the validation set of DOTA-v1.5. For
simplicity, we trained the models on the training set with scale 1.0 and evaluated the
detection recall on the validation set with scale 1.0 as well. The positive intersection
over union (IoU) threshold was set to 0.5. We selected the top-300, top-1000, and top-
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2000 proposals to calculate their recall values, respectively. The experimental results
are reported in Table 6. We found that when the number of proposals reached 2000,
as for the settings of many state-of-the-art methods [15,16], our PointRPN was able to
attain 90.00% detection recall. When the number of proposals changed from top-2000
to top-1000, the detection recall value only dropped by 0.17%. Even if there were only
top-300 proposals, our PointRPN was still able to achieve 85.93% detection recall. The high
detection recall observed demonstrates that our angle-free PointRPN can alleviate the
boundary discontinuity problem caused by angle prediction and effectively detect more
oriented objects with arbitrary orientations in aerial images.

Table 6. Comparison of the detection recall results by varying the number of proposals of
each image patch. The metric recall is evaluated on the DOTA-v1.5 validation set. Recall300,
Recall1000, and Recall2000 represent the detection recall of the top-300, top-1000, and top-2000
proposals, respectively.

Method Recall300 (%) Recall1000 (%) Recall2000 (%)

PointRPN 85.93 89.83 90.00

We also performed visualization analysis of PointRPN. As shown in Figure 8, we
visualized some examples of the learned representative points of our PointRPN on the
DOTA-v1.0 test set. The visualization results demonstrated that the proposed PointRPN
was able to automatically learn the extreme points and the semantic key points of the
rotated objects with arbitrary orientations, the large scale and aspect ratio variations,
and the extreme non-uniform object densities.

Figure 8. Visualization results of some examples of the learned representative points (red points) of
PointRPN on the DOTA-v1.0 test set. The green oriented bounding boxes (OBBs) are the converted
pseudo-OBBs via the MinAreaRect function of OpenCV. The score threshold was set to 0.001 without
using NMS.
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3.4.2. Effectiveness of PointReg

In this section, we provide an analysis of the effectiveness of the proposed PointReg
module. We evaluated different OBB regression types of our PointReg and the results are
reported in Table 7; compared to the five-parameter (x, y, w, h, θ) representation, the eight-
parameter (also called corner points) (x1, y1, x2, y2, x3, y3, x4, y4) regression type achieved
higher detection performance (77.60 vs. 77.25) for oriented objects. In other words, our
angle-free PointReg was shown to be capable of alleviating the boundary discontinuity
problem caused by angle prediction and to achieve higher performance.

Table 7. Analysis of the effectiveness of OBB regression type of PointReg. The metric mAP was
evaluated for the DOTA-v1.5 test set.

Regression Type of PointReg mAP (%)

(x, y, w, h, θ) 77.25
(x1, y1, x2, y2, x3, y3, x4, y4) 77.60

3.4.3. Analysis of Balanced Dataset Strategy

In this section, an analysis of the impact of the oversampling threshold βthr of the
proposed balanced dataset strategy is provided. As shown in Table 8, we achieved the
best detection accuracy of 77.60 mAP at βthr = 0.3. Therefore, we set βthr = 0.3 in all other
experiments, unless otherwise stated.

Table 8. Comparison of detection accuracy by varying the oversampling threshold βthr. The metric
mAP was evaluated on the DOTA-v1.5 test set.

Oversampling Threshold (βthr) mAP (%)

0 73.52
0.1 76.49
0.2 77.44
0.3 77.60
0.4 77.48

3.4.4. Factor-by-Factor Experiment

To explore the effectiveness of each module of our proposed Point RCNN framework,
we conducted a factor-by-factor experiment on the proposed PointRPN, PointReg and
balanced dataset strategy. The results are depicted in Table 9. Each component had a
positive effect, and all components were combined to obtain the best performance.

Table 9. Factor-by-factor ablation experiments. The detection performance was evaluated on the test
set of DOTA-v1.5 dataset.

Method PointRPN
Balanced
Dataset
Strategy

PointReg mAP (%)

Baseline 71.36

Point RCNN

X 74.17
X 74.22

X X 77.25
X X X 77.60

3.4.5. Visualization Analysis

We visualized some detection results for rotated objects for the DOTA-v1.0 test set.
Figure 8 depicts some examples of the learned representative points of our PointRPN, which
indicates that PointRPN was capable of learning the representative points of the rotated



Remote Sens. 2022, 14, 2605 19 of 23

object. Specifically, PointRPN was able to automatically learn the extreme points, e.g., the
corner points of the rotated objects, and the semantic key points, e.g., the meaningful area
of the rotated object.

Based on the reasonable prediction of high detection recall for the target rotated objects
of PointRPN, our PointReg was able to continuously optimize and refine the corner points
of the rotated objects. Some quantitative results for the DOTA-v1.0 test set are shown in
Figure 9; the red points represent the corner points of the rotated objects learned by
PointReg and the colored OBBs converted by the MinAreaRect function of OpenCV denote
the final detection results. We also provide a visualization of the detection results for the
UCAS-AOD and HRSC2016 datasets in Figures 10 and 11, respectively. The visualization
results demonstrate the remarkable efficiency of our proposed angle-free Point RCNN
framework for rotated object detection.

PL BD BR GTF SV
LV SH TC BC ST
SBF RA HA SP HC

Figure 9. Visualization of the detection results of Point RCNN for the DOTA-v1.0 test set. The score
threshold was set to 0.01. Each color represents a category. The red points and colored OBBs are the
predicted corner points and the converted OBBs of PointReg.



Remote Sens. 2022, 14, 2605 20 of 23

car airplane

UCAS-AOD

Figure 10. Visualization of the detection results of Point RCNN for the UCAS-AOD test set. The score
threshold was set to 0.01. The red points and colored OBBs are the predicted corner points and the
converted OBBs of PointReg.

HRSC2016

Figure 11. Visualization of the detection results of Point RCNN for the HRSC2016 test set. The score
threshold was set to 0.01. The red points and colored OBBs are the predicted corner points and the
converted OBBs of PointReg.

4. Discussion

Although the experiments undertaken substantiate the superiority of our proposed
Point RCNN framework over state-of-the-art methods, our method did not perform well
enough in some categories, e.g., PL (Plane) in the DOTA dataset, which requires further
exploration. In addition, as with existing oriented object detectors, our Point RCNN
also needs to use rotate non-maximum suppression (NMS) to remove duplicate results,
which may mistakenly remove the true positive (TP) predictions and thus limit the final
performance. Transformer-based methods [45] may provide potential solutions, which will
be pursued in future work.

5. Conclusions

In this study, we revisited rotated object detection and proposed a purely angle-free
framework for rotated object detection, named Point RCNN, which mainly consists of
a PointRPN for generating accurate RRoIs, and a PointReg for refining corner points
based on the generated RRoIs. In addition, we proposed a balanced dataset strategy to
overcome the long-tailed distribution of different object classes in aerial images. Compared
to existing rotated object detection methods, which mainly rely on angle prediction and
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suffer from the boundary discontinuity problem, our proposed Point RCNN framework
is purely angle-free and can alleviate the boundary problem without introducing angle
prediction. Extensive experiments on multiple large-scale benchmarks demonstrated the
significant superiority of our proposed Point RCNN framework against state-of-the-art
methods. Specifically, Point RCNN achieved new state-of-the-art performances of 80.71,
79.31, 98.53, and 90.04 mAPs on DOTA-v1.0, DOTA-v1.5, HRSC2016, and UCAS-AOD
datasets, respectively.
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