
Citation: Lopez, F.P.A.; Zhou, G.;

Jing, G.; Zhang, K.; Tan, Y. XCO2 and

XCH4 Reconstruction Using GOSAT

Satellite Data Based on

EOF-Algorithm. Remote Sens. 2022,

14, 2622. https://doi.org/10.3390/

rs14112622

Academic Editor: Michael Obland

Received: 11 February 2022

Accepted: 21 May 2022

Published: 31 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

XCO2 and XCH4 Reconstruction Using GOSAT Satellite Data
Based on EOF-Algorithm
Franz Pablo Antezana Lopez 1 , Guanhua Zhou 1,* , Guifei Jing 2, Kai Zhang 3 and Yumin Tan 4

1 School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China;
antezana@buaa.edu.cn

2 Research Institute of Frontier Science, Beihang University, Beijing 100091, China; guifeijing@buaa.edu.cn
3 State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of

Environmental Sciences, Beijing 100012, China; zhangkai@craes.org.cn
4 School of Transportation Science and Engineering, Beihang University, Beijing 100191, China;

tanym@buaa.edu.cn
* Correspondence: zhouguanhua@buaa.edu.cn

Abstract: The Greenhouse Gases Observing Satellite (GOSAT) can help to ascertain the global
distribution of carbon dioxide (CO2) and methane (CH4), and how the sources and sinks of these
gases vary by season, year, and location. However, the data provided by the GOSAT level 2 and
3 products have certain limitations due to their lack of spatial and temporal information; even
with the application of the kriging geostatistical method on the level 2 products, the processing
algorithms still need further upgrades. In this study, we apply an empirical orthogonal function
(EOF)-based method on the GOSAT L3 products (137 images, from January 2010 to May 2021) to
estimate the column average of carbon dioxide and methane (XCO2–XCH4) within the entire Earth.
The reconstructed results are validated against the Total Carbon Column Observing Network (i.e.,
TCCON), with 31 in situ stations, and GOSAT L4B column-averaged data, using 107 layers. The
results show an excellent agreement with the TCCON data and exhibit an R-squared coefficient of
0.95 regarding the CO2 measurements and 0.86 regarding the CH4 measurements. Therefore, this
methodology can be incorporated into the processing steps used to map global greenhouse gases.

Keywords: empirical orthogonal functions; carbon dioxide; methane; GOSAT; TCCON; spatial
variation; greenhouse gases

1. Introduction

CO2 is the most important greenhouse gas associated with human activities and the
second most important gas in global warming after water vapor. Since the industrial
revolution, a notable increase in global CO2 concentrations has been observed, rising
from 280 ppm (parts per million) in the middle of the 19th century to over 400 ppm as
of 2015 [1,2]. Several atmospheric research centers noted this rise; based on preliminary
analysis, the global average atmospheric CO2 in 2020 was 412.5 ppm [3], and in 2021, it
was 415.7 ppm, based on monthly mean NOAA reports [4,5].

CH4 is a strong greenhouse gas and plays an important role in determining the
oxidation capacity of the troposphere, with a global warming potential on a 100-year time-
scale 28–34 times that of CO2 [6]. According to current observations, in 2015, the globally
averaged content of CH4 was already1845 ppb [7]. Scientific debate continues in the effort
to explain the atmospheric CH4 trend observed over the past couple of decades. Records
from surface sites reveal a plateau from 2000 to 2007 and a resumed increase after 2007 [8,9].
Amongst the varied surface sources of CH4, the largest are natural wetlands, agriculture,
livestock, biomass burning, waste, and fossil fuel production; whereas the primary sink is
the OH-radical content in the atmosphere [10,11]. Various hypotheses have been offered
that attempt to attribute the behavior in the global growth rate to a particular component
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or mechanism [12–15], but currently, there is no consensus within the scientific community.
Many of these studies have utilized satellite observations of atmospheric CH4 and have
shown the increasing ability of such measurements to characterize global and regional
surface CH4 fluxes [16].

Greenhouse gases cause environmental and health issues. They cause climate change
by trapping heat, which affects flora and fauna. The climate change caused by greenhouse
gas emissions also contributes to wildfires, weather, and droughts. In the last decade, CO2
and CH4 have increased constantly. Localizing the highest concentrations globally and
locally is important to alert particular areas in order to determine solutions through which
to reduce the emission of these gases. The pandemic situation caused by COVID-19 forced
the world to lock down, and this study and others [17] show that greenhouse gases did
not reduce significantly; therefore, the search for alternatives to these gases is the next step
for humanity. Building this scientific understanding to meet the extraordinary climate
mitigation challenge requires frequent, robust, transparent, and traceable data sets and
methods that can be scrutinized and replicated [18].

Ground stations, such as TCCON, have been established to accurately measure atmo-
spheric greenhouse gases, such as CO2, CO, N2O, and CH4 [2,19]. A significant amount
of effort has been expended and measurements of the greenhouse gases CO2 and CH4 by
TCCON have resulted in an accuracy of 0.25% under clear atmospheric conditions [20].
However, due to the limited spatial coverage and uneven distribution of TCCON sites, it is
not possible to accurately measure CO2 quantities at subcontinental and regional spatial
scales [21]. The reliability of the results from ground stations needs to be enhanced, while
reliable TCCON results are only available in North America and Europe due to a lack of
information in South America, Africa, and Antarctica. Studies suggest that satellite obser-
vations, with their lower accuracy than ground-based measurements but higher spatial
coverage, may help to improve CO2 measurements [22–24]. Current estimates of CO2 and
CH4 from existing satellite instruments have spatially consistent biases that hinder their
use for monitoring carbon–climate feedback [25]. This paucity of information has hindered
the modeling, prediction, and management of air-quality studies.

GOSAT is a Japan Aerospace Exploration Agency (JAXA) mission designed to monitor
the CO2 and CH4 on a subcontinental scale more accurately and to assist environmental
administrations in evaluating the carbon balance of the land ecosystem and performing
assessments of regional emissions and absorptions. By analyzing the GOSAT data, scientists
will accumulate new knowledge on the global distribution and temporal variation of
greenhouse gases, as well as the global carbon cycle and its influence on the climate. These
new findings will be utilized to predict future climate change and assess its impact.

However, GOSAT has experienced many events in past decade. For example, GOSAT
has experienced several incidents resulting in instrument anomalies [26], as follows. In
2014–2015, a solar paddle incident resulted in a temporary instrument shutdown, which
caused missing information in December 2014 and January 2015. In 2015 Cryocooler shut
down and restarted. In May 2018, there was an incident with and restart of the Command
and Data Management System (CDMS). There was a solar-paddle-rotation incident, and a
thermal and near-infrared sensor for carbon observation (TANSO) restart, which caused a
loss of information, in November 2018. Finally, in May 2020, there was an accelerated zero
path difference (ZPD) shift from May 31 until the recovery on June 18. This information
was recorded in the report on the GOSAT’s status.

On 23 January 2014, GOSAT/Ibuki had been in orbit for five years. The spacecraft
and its payload were operating nominally. With a nominal design life of 5 years and
the spacecraft in good health, the mission’s duration was extended (by JAXA, National
Institute of Education Sciences (NIES), and Ministry of the Environment (MOE)) for another
4 years [27,28]. In September 2013, the first estimates of the global distribution of CO2
surface fluxes were estimated and published using the total column CO2 measurements
retrieved by the SRON-KIT RemoTeC algorithm from GOSAT. The global source-sink
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estimates of CO2 were based on data from over eighteen months, from 1 June 2009 to
1 December 2010.

It is well known that GOSAT L3 products are generated by interpolating, extrapolating,
and smoothing the Fourier transform spectrometer (FTS) level 2 column-averaged CO2
and CH4 mixing ratios. The GOSAT L3 products still have missing data, even with the
processing of L2 products with the kriging interpolation method. This method is limited
due to the uncertainty generated by large areas of null information; these areas with a
high level of uncertainty are therefore ignored. Given the problem of the loss of relevant
information, it is necessary to search for alternative solutions. One potential solution is
to apply interpolation on a spatial–temporal matrix of the GOSAT data from 2010 until
2021, to retrieve data using information related to space and time. This methodology
can be implemented to obtain a reliable amount of interpolated information to study and
anticipate future environmental changes and study their effects in areas that have low levels
of information concerning GOSAT L3 product records. The space-based remote sensing
of the CO2 and CH4 column-averaged dry-air mole fractions XCO2 and XCH4 has the
potential to provide global observational constraints on CO2 and CH4 fluxes across the
surface–atmosphere boundary and to offer insights into the related biogeochemical cycles.
However, the measurement of XCO2 and XCH4 imposes challenging accuracy requirements.
The target accuracies for regionally and weekly averaged XCO2 and XCH4 are in the order
of a few tenths of a percent based on background concentrations of roughly 385 ppm and
1.8 ppm, respectively, and the requirement for XCH4 is less stringent than for XCO2 [29].

Previous studies applying the EOF algorithm to GOSAT products, such as [30], con-
clude that the implementation of the EOF-based algorithm for XCO2 retrievals from GOSAT
observations should be considered, and the development of very fast XCO2 retrieval algo-
rithms to process the huge amounts of current and future satellite observation data remains
of interest [26]. However, separating the relative importance of each factor is often compli-
cated, as some of the influencing factors are interdependent due to scale dependence and
other factors. It is important to note that this study should be conducted comprehensively,
as it is necessary to analyze more data related to the XCO2 and XCH4 values from the
satellite, ground stations, and even climate models, since the values obtained in this study
are the products of spatial–temporal interpolation, with a high confidence value, of only
the pixels covering the areas where the TCCON ground stations were installed. Several
methodologies can be applied to the GOSAT L3 dataset, such as the interpolation of data
based on a harmonic trend of each pixel in a time series, but it is important to emphasize
that not at all of these methodologies use spatial and temporal information to interpolate
data. Therefore, future studies related to this methodology will require the analysis of
several databases to improve the reliability of the results.

The objectives of this study are to: (1) evaluate the spatial–temporal patterns of
greenhouse gases based on the EOF-GOSAT L3 datasets; (2) analyze the feasibility of
the EOF-based algorithm applied to the dataset; and (3) provide a possible approach to
integrating an additional processing step into the GOSAT L3 products.

2. Materials and Methods

It is generally known that the Fourier-transform spectrometer–shortwave infrared
(FTS-SWIR) Level 3 data products are constructed monthly by interpolating, extrapolating,
and smoothing the FTS SWIR Level 2 column-averaged CO2 and CH4 mixing ratios.
Kriging, a geostatistical calculating approach, is used in L2 products to obtain L3 products.
The data are divided into 2.5-degree cells (GOSAT webpage). The standard error is stored
in L3 products and almost all missing information is located in the South and North
poles. Due to this problem, a series of stages are developed to obtain missing information.
(1) The EOF technique is used to fill in missing data from geophysical fields in image
reconstruction due to missing information in GOSAT L3 deliverables. (2) Following image
reconstruction, correlation analysis utilizing kernel plots is used to evaluate in situ stations
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with reconstructed images. Next, the temporal and spatial analysis of CO2 and CH4 is
assessed, with the most heavily affected places identified and their growth rates indicated.

2.1. Study Area

Due to the variety of climates, types of vegetation cover, and human activity intensity
around the world, it is difficult to derive CO2 concentrations using a single metric. To
increase the derived accuracy of the CO2 concentration, we divided the world into six
regions, according to the following continents: Africa, Asia, Australia, Europa, North
America, and South America. The Antarctic continent was removed from this analysis
due to the missing GOSAT information. Moreover, the TCCON project does not have in
situ stations in this region and the interpolated results are not sufficient to corroborate the
results. For each continent, we focus on two greenhouse gas concentrations (CO2 and CH4).

2.2. Data Collection

Two datasets were obtained. GOSAT satellite image data (which are freely available)
from January 2010 to May 2021 were downloaded from GOSAT Data Archive Service (GDAS)
website. These global data were collected under cloud-free conditions for estimating column-
averaged dry-air mole fractions of major greenhouse gases, such as CO2 and methane. TCCON
data were also collected. Both datasets are described in the following sections.

2.2.1. GOSAT

The main role of the GOSAT project is to estimate emissions and absorptions of the
greenhouse gases on a subcontinental scale and to help ecological organizations to assess the
carbon equilibrium of the land biological system and make appraisals of provincial outflows
and retentions. GOSAT orbits at an altitude of approximately 666 km, with a 10.5-km spatial
resolution and a three-day temporal resolution [29]. The observation instrument on GOSAT
is the thermal and near infrared sensor for carbon observation (TANSO), which is composed
of two subunits: the Fourier-transform spectrometer (FTS) and the Cloud and Aerosol
Imager (CAI). Thermal and near-infrared sensor for carbon observation–Fourier transform
Spectrometer (TANSO-FTS) operates with spectral resolution in three narrow bands in the
short-wavelength infrared (SWIR) region (0.76, 1.6, and 2.0 µm) and a wide thermal infrared
band (5.5–14.3 µm). Thermal and near-infrared sensor for carbon observation–Cloud and
Aerosol Imager (TANSO-CAI) operates with spectral resolution in four narrow bands in the
near-ultraviolet-to-near-infrared region (0.38, 0.674, 0.87, and 1.6 µm). TANSO can detect
optically thick clouds inside the TANSO-FTS instantaneous field of view (IFOV) and correct
the effect of aerosols in the TANSO-FTS spectrum data [24,28,31].

This study used the FTS SWIR Level 3 data products generated from 1 January 2010 to
31 May 2021, freely downloaded from the GOSAT Data Archive Service (GDAS), which
was collected under cloud-free conditions for estimating column-averaged dry-air-mole
fractions of major greenhouse gases, such as CO2 and methane. GOSAT Level 2 does not
have data for January 2015, and GOSAT Level 3 does not have data for June and December
2014 or January and September 2015.

2.2.2. TCCON

The TCCON is a worldwide observation system of ground-based Fourier transform
spectrometers (FTSs) that records direct solar spectra in near-infrared. It is associated
with the network for the GAW program and the Detection of Atmospheric Composition
Change Infrared Working Group (NDACC-IRWG) [2]. It is a ground-based network of
FTSs designed to retrieve precise and accurate column abundances of CO2, CH4, N2O, and
CO from near-infrared (NIR) solar absorption spectra. It provides accurate measurements
of studied greenhouses (CO2 and CH4) at more than a dozen operational sites worldwide.
The sites are generally located at low altitudes, where the biosphere/ocean exchange has
the most impact on the atmospheric concentrations [32]. The GGG2014 TCCON [33] data
used in this study can be obtained from the TCCON Data Archive (http://tccon.ornl.

http://tccon.ornl.gov/
http://tccon.ornl.gov/
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gov/ (accessed on 15 January 2022)) [34], and the data, provided by the Carbon Dioxide
Information Analysis Center (CDIAC), range from 2004 in some stations until 2020. The
precision of the latest version has been improved by comparing it with that of GGG2014
by correcting laser-sampling errors and adding more aircraft and AirCore profiles as bias
correction data [35].

TCCON observations are retrieved to provide a long-term, almost continuous time-series
to assist vertical verification as a transfer standard between in situ measurements and satellite
observations and to help better understand carbon-cycle processes [36]. The network shares
methodologies, technical issues, and membership with the NDACC FTIR Working Group. The
network aims to provide temporally dense, globally consistent data coverage network-wide
by using a common retrieval technique. The retrieved columns are tied to the ground-based
in situ networks by scaling to (in situ) balloon and aircraft profiles [37].

As shown in Figure 1, all of the TCCON stations are represented with blue points, and
almost all of the stations are located in the northern hemisphere, especially in developed
countries. On the other hand, the developing countries do not have sufficient information,
and the Antarctica region has many empty gaps in GOSAT L3 product information. There-
fore, the results from this region were excluded, since they are the results of interpolation
without corroboration.
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Figure 1. Location of TCCON stations and quantity of information collected in GGG2014 data.

The total error for a single measurement of XCO2 at the Lamont site is 0.2 percent or
less for SZAs less than 83◦ [37]. The largest errors are from instrument alignment errors,
assuming a linear spectral continuum across a large spectral band, and a priori profile
uncertainties.

In Figure 1, all the locations that are part of the in-situ stations of the TCCON network
are visible, and Table 1, presents all the coordinates and the names of their respective in situ
stations. Furthermore, we estimated the R-squared and b linear slope in order to analyze
the variability of results of each in situ station.

Table 1. Number of empty pixels in a stack of data from GOSAT L3 products (January 2010–May
2021).

Continent Time Range Number of Empty
Pixels

Number of
Layers

Africa January 2010–May 2021 93,916 137
Asia January 2010–May 2021 229,291 137

Australia January 2010–May 2021 31,871 137
Europe January 2010–May 2021 84,418 137

North America January 2010–May 2021 226,358 137
South America January 2010–May 2021 63,236 137

http://tccon.ornl.gov/
http://tccon.ornl.gov/
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2.3. Data Processing

The ideal TCCON–satellite data pair should consist of measurements at the same place
during the same time. However, to find a sufficient number of co-located measurements to
enable a robust statistical analysis, several spatial–temporal criteria were used in previous
validations. Therefore, the statistical analyses were based on the individual data pairs or daily
averaged data pairs, and all data pairs were assumed to be of equal weight in this study.

The EOF algorithm was applied to acquire missing greenhouse gas information in
GOSAT FTS SWIR Level 3 data. Next, a monthly global mapping of XCO2 and XCH4 was
generated based on the reconstructed images, which were validated with TCCON data, as
well as density scatter plots to compare the results.

The EOF technique was used to examine the trend of these greenhouse gases over the
previous ten years, since CO2 readings are more consistent than CH4 values. The temporal
and spatial means of the data were eliminated before the original data set was placed in an
n-dimensional spatial–temporal matrix. Next, the first EOF mode was calculated using the
singular value decomposition (SVD) technique, which was used to infer a new estimate
for the missing data. This procedure was repeated until convergence was obtained for the
values given to the missing data with the first EOF mode [27]. Finally, a few charts, such as
Hovmöller, power wavelet spectrum, time-series analysis, and decomposition, are shown
in Section 3 to represent temporal variation. The spatial analysis, on the other hand, was
organized by continent. Despite this, fewer coherence results for the continent analysis
were reported in Antarctica due to the limited information provided by GOSAT; they could
not be compared to those of any of the TCCON stations because the network of ground in
situ stations did not install a climate observatory in this region.

2.4. Data Interpolation

The geostatistical mapping method applied in this study is based on the EOF algorithm
used to fill empty gaps using temporal data, this algorithm has been developed at the
Geo-Hydrodynamics and Environmental Research (GHER) [38].

Concerning spatial resolution, the L3 product was generated for meshes with di-
mensions of 2.5◦ in both latitude and longitude. This grid size seems reasonable when
considering the GOSAT lattice observation distances and the present rate at which FTS
SWIR L2 data are retrieved [39].

While all interpolation methods have a degree of unreliability, the EOF algorithm ex-
hibits some major advantages compared with many others [40], including the minimization
of errors from iterative processing, parameter-free processing, and speed.

A detailed description of the EOF processing is presented in [41], and the libraries and
repositories to use are available on GitHub and the Comprehensive R Archive Network
(CRAN). EOF algorithm is a process that fills gaps in data fields by repeatedly decomposing
them using SVD until the optimal answer when compared to a set of reference values (non-
gaps) is discovered. This is accomplished by gradually including more EOFs into the gappy
location reconstruction until the error minimization converges. We first show the approach
using a synthetic example (Figure 2), in which: (1) a data set is constructed, (2) noise
is introduced (based on a noise/signal setting), (3) gaps are made (based on a fraction
of gappiness setting), and, lastly, the gaps are interpolated using the DINEOF method.
Figure 3 depicts the iterations used to fill in the gaps as the number of EOFs increases.
Using the first six EOFs, an optimal solution was found, whereas adding a seventh EOF
did not enhance the root mean squared error (RMSE) [42].

Nine mixed signals were used in the synthetic example. The EOFs of the “true” field
(black points) and the optimum solution of the gappy data are shown in Figure 4 (red lines).
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The comparison of TCCON and GOSAT XCO2 data was based on the same spatially
resolved mean monthly data set. The monthly global distributions of TCCON XCO2
(2.5◦ × 2.5◦) were reproduced based on GOSAT Level 3 SWIR products. The reconstructed
monthly global distributions of TCCON XCO2 were generated by averaging all measure-
ments in each grid corresponding to the in-situ stations for each month. We mainly used the
GOSAT SWIR Level 3 products because the spatial coverage of the reconstructed GOSAT
Level 2 global monthly XCO2 distributions (using the same method as TCCON) was smaller
than that of the L3 products, as shown in Figure 2. Moreover, the spatial coverage of GOSAT
Level 3 XCO2 when applying the EOF algorithm increased in the number of pixels, as
can be seen in Figure 5, where each pixel has 2.5 × 2.5 grid degrees as a unit. As can be
seen, the number of pixels increased from 2500 to approximately 3500 approximately from
2015, which indicates that the number of pixels with missing information has increased
in GOSAT L3 products since 2015, and the months with a high amount of information
correspond to July to October in almost every year. It is important to note the total number
of pixels in each month layer that is equal to 10,368 pixels; in some cases, the number of
reconstructed pixels is approximately 4500, especially for the 2010–2014 layers.
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3. Results and Discussion

Three analyses are evaluated in this study. First of all, the GOSAT data validation is
presented and discussed in Section 3.1. Next, the data validation is evaluated, compar-
ing the GOSAT interpolated results and the TCCON data; this analysis is discussed in
Section 3.2. Finally, the temporal and spatial analysis is assessed in Sections 3.3 and 3.4.

3.1. Data Validation

We directly compared the monthly mean values of the TCCON in situ station mea-
surements with the L3 products of the GOSAT interpolated data using the EOF algorithm
of the XCO2 and XCH4 data in this study. To obtain the GOSAT data, we subtracted the
temporal variation in the pixel of each station from the stack raster reconstructed data, as
shown in Table 2.

TCCON and GOSAT have different a priori profiles and averaging kernels, which de-
scribe the sensitivity of a retrieval algorithm to the true state throughout the atmosphere [33,34].
Recent research has demonstrated that the effect of column averaging kernels on GOSAT
XCO2 is relatively negligible when compared with its measurement accuracy, and direct
comparison is applicable in the validation of satellite measurements [4,35].

To obtain the results of the validation with TCCON data with GOSAT data, we used
the in situ information from 31 stations within the data validation analysis. The time
range and geolocation are presented in Table 2, as are the results of the linear fit (linear
correlation coefficient k and R-squared coefficient) between the GOSAT L3 XCO2 and XCH4
measurements with the application of the EOF algorithm and the TCCON data in each
location. Figure 6 shows the same statistics on the GOSAT measurements as Figure 7, which
compares the data of the TCCON GGG2020, GOSAT L3, and GOSAT L4B column averages
of XCO2 and XCH4. Figure 6 shows the data correlation results. The RMSE value for the
GOSAT L3 and TCCON was 2.74, and the R-squared value was 0.95. The RMSE for the
GOSAT L4 and TCCON was 1.88, and the R-squared was 0.96. The RMSE for the GOSAT
L3 and GOSAT L4 was 3.02, and the R-squared was 0.94. This allows a comparison of the
results of the application of the EOF algorithm on the L3 products with the TCCON station
records. On the other hand, Figure 7 shows the same comparison, of the results of the
application of the EOF algorithm with the TCCON records. The RMSE value for the GOSAT
L3 and TCCON was 1.56 × 10−4, and the R-squared was 0.86. The RMSE for the GOSAT L4
and TCCON was 1.10 × 10−3, and the R-squared was 0.62. The RMSE for the GOSAT L3
and GOSAT L4 was 9.38 × 10−4, and the R-squared was 0.86. Other secondary comparison
parameters between the average column results of the GOSAT L4B and TCCON products
are visible in Figures 6 and 7.
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Table 2. TCCON stations coordinate locations, linear b slope coefficient, and R-squared coefficient
based on EOF–GOSAT L3 data and mean values per month of TCCON data.

N◦ Station Date Lat. Long. XCO2 r2 XCH4 r2 XCO2 b XCH4 b

1 Ascension Island 2012-05-22 to 2018-10-31 −14.33 −7.92 0.92 0.53 0.95 0.62
2 Anmeyondo 2015-02-02 to 2018-04-18 126.33 36.54 0.97 0.90 1.06 1.09
3 Bialystok 2009-03-01 to 2018-10-01 23.02 53.23 0.84 0.82 0.94 1.15
4 Bremen 2010-01-22 to 2019-08-23 8.85 53.10 0.92 0.47 0.88 0.55
5 Burgos 2017-03-03 to 2020-02-28 120.65 18.53 0.90 0.52 0.87 0.62
6 Caltech 2012-09-20 to 2020-10-31 −118.13 34.14 0.98 0.93 1.08 1.05
7 Darwin 2005-08-28 to 2020-02-26 130.89 −12.43 0.98 0.93 1.03 1.03
8 Edwards 2013-07-20 to 2020-10-30 −117.88 34.96 0.84 0.81 0.97 1.12
9 East trout lake 2016-10-07 to 2020-09-07 −104.99 54.36 0.94 0.88 1.05 0.92

10 Eureka 2010-07-24 to 2020-07-07 −86.42 80.05 0.90 0.50 0.96 0.57
11 Four corners 2013-03-16 to 2013-10-04 −108.48 36.80 0.92 0.76 0.90 0.96
12 Garmisch 2007-07-16 to 2019-10-18 11.06 47.48 0.97 0.90 1.01 1.03
13 Hefei 2015-09-18 to 2016-12-31 117.17 31.90 0.98 0.96 1.05 0.99
14 Indianapolis 2012-08-23 to 2012-12-01 −86.00 39.86 0.97 0.77 0.99 0.74
15 Izana 2007-05-18 to 2020-11-25 −16.48 28.30 - - 0.62 0.66
16 Jet propulsion lab 2007-07-31 to 2018-05-14 −118.18 34.20 0.97 0.93 1.01 0.95
17 Saga 2011-07-28 to 2020-09-01 130.29 33.24 0.87 0.47 0.79 1.28
18 Karlsruhe 2010-04-19 to 2020-11-30 8.44 49.10 0.98 0.96 1.00 1.05
19 Lauder 2004-06-28 to 2020-08-31 169.68 −45.05 0.97 0.94 1.09 1.02
20 Nicosia 2019-08-31 to 2020-02-28 33.38 35.14 0.98 0.94 1.02 1.06
21 Lamont 2008-07-06 to 2020-10-30 −97.49 36.60 0.87 0.67 1.20 0.74
22 Orleans 2009-08-29 to 2019-09-18 2.11 47.97 0.93 0.88 1.09 0.94
23 Park falls 2004-06-02 to 2020-10-31 −90.27 45.94 0.98 0.97 1.04 1.07
24 Paris 2014-09-23 to 2020-02-26 2.36 48.85 0.96 0.94 1.05 1.04
25 Reunion island 2011-09-16 to 2020-07-18 55.49 −20.90 0.97 0.96 1.08 1.04
26 Rikubetsu 2013-11-16 to 2019-09-30 143.77 43.46 0.72 0.77 0.75 1.04
27 Sodankyla 2009-05-16 to 2020-10-20 26.63 67.37 0.98 0.96 0.99 1.08
28 Ålesund 2014-04-06 to 2019-09-15 11.92 78.92 0.50 0.24 0.32 0.26
29 Tsukuba 2011-08-04 to 2019-09-30 140.12 36.05 0.96 0.83 1.02 0.96
30 Wollongong 2008-06-26 to 2020-02-28 150.88 −34.41 0.91 0.86 1.07 1.04
31 Zugspitze 2015-04-24 to 2019-10-17 10.98 47.42 0.99 0.95 1.02 1.10
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Figure 6. 3-D kernel scatter plot comparing XCO2 GOSAT L3 applying the EOF algorithm, L4B
column average, and monthly mean TCCON.
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column average, and monthly mean TCCON.

The TCCON network comprises ground-based high-resolution Fourier-transform
spectrometers that perform direct measurements of solar spectra in near-infrared. There are
currently 27 operational sites located across North America, Europe, Asia, and Australia.
Only one station in South America is registered, and it only contains information from 2015.
Some other stations are in the same situation, including “Alesund”, “Izana”, “Manaus”,
“Indianapolis”, “Saga”, “Rikubetsu”, “Lauder”, “Orleans”, which only contain a low
quantity of data that can be used to compare ground station measurements with satellite
data. In this study, the data from 31 stations were compared with the GOSAT data; the
total number of training points was 2602, to assess the density scatter plots. We reduced
the TCCON information, obtaining the average value of each month, to compare with
the monthly information from the GOSAT. The TCCON stations have many time ranges
without values because the stations are not currently operating. On the other hand, all the
GOSAT pixels of 2.5-degree resolution that contain the geolocation of each station were
extracted from a stack of information by using a bilinear method.

3.1.1. Comparison of XCO2 GOSAT and TCCON Data

To validate the CO2 data used in the generation of the final global mapping, we evaluated
the daily mean of the TCCON greenhouse gas readings and faced the data with a series of
information extracted from pixels that were near 2.5◦ of the greenhouse GOSAT information.

We plotted 35 charts of TCCON information and overlays with GOSAT information,
as shown in Figure 8, where the blue dotted line represents the TCCON readings and the
red dotted line represents the GOSAT readings. In certain cases, in situ stations did not
record for a period of time, which caused the blank spaces in the plotting of the results.
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3.1.2. Comparison of XCH4 GOSAT and TCCON Data

There are signs of a potential hemispheric or latitudinal bias against TCCON in the
data, although this is not apparent at all sites. For example, Karlsruhe, Lamont, Tsukuba,
and Lauder all have negligible biases but span a large latitude range. It should also be
noted that the uncertainty on the TCCON CH4 is approximately 4 (ppb), and for most
sites, the GOSAT–TCCON difference is within this range of uncertainty; it is therefore is
important to not over-interpret any signals at this scale [43].

As with the XCO2 data obtained by the in situ stations, there were some missing XCH4
readings due to some stations not operating. In the XCH4 readings, only three stations
(Zugspitze, Garmisch, and Izana) registered an appreciable difference in line trends, of
approximately 0.03 ppm as can be appreciated in Figure 9.
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3.1.3. XCO2 and XCH4 Difference between GOSAT L3 and TCCON Data

Along with the mission extension, the reprocessing of the L1B products was completed
with the v161161 algorithm for all of the GOSAT data to retrieve the XCO2 and XCH4 data
with high accuracy and precision [44]. Accuracy can be defined as the degree of closeness
between the information on a map and the values in the real world. On the other hand,
precision refers to the level of exactness of the description of data, The expected relative
accuracies were 1% for the XCO2 (4 ppm, 3-month average) and 2% for the XCH4 (34 ppb,
3-month average). The inverse algorithms were continuously optimized [45]. A validation
study showed that the greenhouse gas observation sensor on the GOSAT/Ibuki, “TANSO-
FTS”, observes column-averaged CO2 concentrations (hereafter, “CO2 concentrations”)
with a precision (random error) of 0.5% (approximately 2 ppm) in comparison to the data
acquired from ground-based observations. This study investigated the detectability of
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enhanced CO2 concentrations due to anthropogenic emissions by using satellite obser-
vations [46]. Therefore, when we analyzed the accuracy of the XCO2 by comparing the
TCCON data with the GOSAT L3 by applying the EOF algorithm products, we found
that the Bremen, Lamont, Wollongong, and Lamont in situ stations had a difference in
values of up to 3 ppm. The difference expressed in Figure 10a, ∆XCO2 = XCO2_TCCON −
XCO2_GOSAT_L3, helps to evaluate the precision and accuracy across both data. Moreover,
regarding the difference in the XCH4, it is visible that the stations of Bremen and Ålesund
had a difference in values up to 0.07 ppm. This analysis and the differences across other
stations can be observed in Figure 10b.
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3.2. Carbon Dioxide and Methane Growth (Global and Local Analysis)

Figure 11 shows low peaks in June–July of each year. These start to increase and
reach a high peak in October–November–December, after which the values remain constant
until March–April–May. The growth of XCO2, based on the global average values of the
GOSAT L3 products with the application of the EOF algorithm, is determined by the
difference of every two consecutive months. The increase in annual averages from 2019
to 2020 (2.5 ppm) was slightly lower than the increase observed between 2018 and 2019,
but slightly higher than the average rate of increase over the previous decade (2.40 ppm
per year) [47]. Therefore, the variation in the temporal distribution for each month was
minimal; however, it presented a constant increase, especially from January to April and
from September to December. In 2019, the lowest growth values of CO2 were recorded at
the beginning of the year and its end. This information shows, once again, that one of the
main greenhouse gases, CO2, continues to increase despite the measures taken worldwide
in order to reduce it. This constant increase could cause the effects of global warming
and the climatic changes that it entails to become more serious, placing in danger the
future of humanity, as well as that of wildlife and flora. Therefore, more measures must be
strengthened and implemented to prevent these levels from continuing to rise.
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Figure 11. Global mean of XCO2 monthly growth analysis from January 2010 to May 2021.

In this case, Figure 12 shows the growth of the XCH4, based on the global mean values
of the GOSAT L3 products with the application of the EOF algorithm. The monthly growth
was calculated by subtracting the current monthly value from the previous monthly value.
The global mean XCH4, calculated from in situ observations, reached a new maximum of
1.889 ± 2 ppm in 2020, an increase of 11 ppm over the value for 2019 [47]. The low CH4
growth peak usually occurred in October–November–December and began to increase to a
high peak in April–May–June.
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On the other hand, in other studies, it is claimed that the most important factors
influencing the temporal variability in CH4 emissions are the presence of mice, the building
of burrows, and the connection of reduced-soil regions to aerated regions. Thus, to reduce
the CH4 release from landfill cover soils, it is necessary to avoid any direct connection
between the refuse body and the aerated soil sections of the atmosphere, which can be
caused not only by animal activities, but also by specific soil-structure-forming processes.
Moreover, under the given refuse and climatic conditions, a well-aerated soil cover layer of
at least 70 cm is recommended [48].

From 2010 to 2021, CO2 and CH4 significantly increased each year, at rates of approxi-
mately 2.50 ppm/year and 0.012 ppm/year respectively. These rate estimations are based
on linear arrangements in time-series analyses of median values. Significant changes were
found in the Northern and Southern Hemispheres. The CO2 and CH4 growth were similar
to the value of the global means of 2.4 ppm/year and 8 ppb/year, respectively (for the last
decade, 2011–2021), as reported in [47].
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3.3. Global Temporal Analysis

Real-time satellite observations can objectively determine changes in atmospheric
CO2 concentrations caused by regional emissions. However, the satellite observation
mode, cloud cover, atmospheric aerosols, and surface albedo, cam affect the satellite
signal. Therefore, monthly data are discontinuous in time and space. The GOSAT satellite
acquisition retrieval data does not have global terrestrial coverage, and it only has a small
amount of data in some areas. Overall, the data cover only about half of the high latitudes
in the southern hemisphere, and Antarctica lacks observational data. Therefore, we gridded
the annual GOSAT satellite CO2 data to obtain global coverage.

Figures 13 and 14 show the variation in CO2 and CH4 from January 2010 to May
2020. The plots are arranged by year and meteorological season, based in the Northern
Hemisphere, it can be concluded that the highest concentration of CO2 is in the Northern
Hemisphere. The highest concentration of CH4 is also in the Northern Hemisphere. The
Southern Hemisphere presents lower values in almost all the months.
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Figure 14. Spatial and temporal behavior of monthly mean XCH4 L3, with EOF algorithm, around
the world.

An important point to highlight is the behavior of greenhouse gases throughout the
entire year. Regarding CO2, higher concentrations are common in spring and winter, while
the lowest concentrations occur in autumn. Regarding methane, the highest concentrations
occur in winter and the lowest occur in summer; the highest concentrations around the
world are in India, the south of China, and the middle part of Africa. Additionally, Table 3
presents the CO2 and CH4 growth rates per year, based on the GOSAT and NOAA reports;
the NOAA reports in this table are available from Ed Dlugokencky, at NOAA/GML
(gml.noaa.gov/ccgg/trends_ch4/ (accessed on 20 January 2022)), and the GOSAT monthly
reports are available from www.gosat.nies.go.jp (accessed on 20 January 2022).

gml.noaa.gov/ccgg/trends_ch4/
www.gosat.nies.go.jp
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Table 3. CO2 and CH4 growth per year, based on GOSAT and NOAA reports.

CO2 ppm/Year CH4 ppb/Year

Year NOAA GOSAT NOAA GOSAT

2010 2.4 2.2 5.0 3.3
2011 1.7 2.0 5.1 12.2
2012 2.4 1.9 4.8 2.7
2013 2.4 2.3 5.6 5.2
2014 2.1 2.2 12.9 10.7
2015 3.0 2.1 10.1 5.3
2016 2.8 3.3 7.3 11.2
2017 2.2 2.5 6.6 8.0
2018 2.4 2.3 8.6 10.2
2019 2.5 2.6 9.9 9.4
2020 2.4 2.5 14.8 9.0

Hovmöller plots (latitudinal mean versus time) clarify the zonal propagation of
synoptic-scale waves in a latitude band. Thus, the time–latitude cross-sections are the
Hovmöller plot of the climate anomalies. The plots various parameters at the Earth’s
surface [49]. In Figures 15 and 16 the “y” axis represents time, covering the period from
January 2010 to May 2021, and the “x” axis is the latitude. The study developed in [20]
shows the global average distribution of atmospheric CO2 with harmonic variation in
latitude and highlights that the minimum values of CO2 concentration are in the Southern
Hemisphere, as demonstrated by the Hovmöller plots in Figure 15a,b.
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(b) latitudinal XCH4 mean vs. time (GOSAT L4B), (c) latitudinal RMSE mean vs. time (GOSAT
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Figure 15 shows Hovmöller plots of the EOF GOSAT L3–GOSAT L4B XCO2 total col-
umn amount. The GOSAT distribution behaved as expected, showing an increase over time
between 2010 and 2019 superimposed over a north–south gradient and a regular seasonal
cycle. The simulated results of the L4B products exhibited very similar characteristics
and were in very good agreement with the GOSAT data. The difference between the two
datasets (lower panel) shows that although there was a small offset between the two, there
was very good consistency over time. The GOSAT L3 and L4B data seemed to agree slightly
better during the peak of the seasonal cycle, particularly in the tropics; unreliable data were
obtained near the 80–90◦N latitudinal area, reaching RMSE values of 6 ppm.

On the other hand, Figure 16 shows the Hovmöller plots (latitude mean versus time,
respectively) for the GOSAT CH4. The GOSAT distribution behaved as expected, showing
an increase over time between 2010 and 2021, increasing at the North and South Poles. At
very high northern latitudes, the CH4 concentration was slightly lower at the co-ordinates
corresponding to the section 40◦S to 90◦S; in sections 90◦N to 40◦S, the higher methane
values were concentrated.

The specific area corresponding to Antarctica cannot be analyzed in this section due to
missing information in the GOSAT SWIR L3 data, and the EOF temporal interpolation was
unable to complete the information from this area because the number of pixels collected
from January 2010 to May 2021 was zero. Figure 16a,b shows the temporal analysis of the
mean XCH4 values of the EOF–GOSAT SWIR L3 and GOSAT L4B data. On the other hand,
Figure 16c shows that the highly reliable data corresponding to the area from the 60◦S to
50◦N can be used, because the RMSE values are from 0 to 0.02 ppm.

Figures 17 and 18 depict the time-frequency decomposition of the data using Morlet
wavelet transform, highlighting the frequency of the events and presenting a harmonic and
linear fit of XCO2 and XCH4 to analyze the trend of these greenhouse gases. To construct the
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harmonic curve fit of a periodic signal, ordinary least squares regressions using sinusoidal
and cosine linked curves on the time series data were used. The underlying algorithm is
based on [50]. Formula (1) shows the harmonic fit used in Figures 17d and 18d. The linear
fit is based on ordinary least squares (OLS), which is a method that is used to quantify the
evaluation of the different regression lines.

xt = β0 + β1 · 2πt + ∑n
i=1[β2i · cos

(
i2πt

T

)
+ β3i · sin

(
i2πt

T

)
] (1)

where:

t = Time difference in fractal years.
T = Length of the time period.
n = Total number of harmonics.
i = Current harmonic.
βx = Independent coefficients derived from OLS regression.

The global mean of the XCO2 during the studied period continuously rose. A seasonal
fluctuation in this parameter, visible in Figure 18a, was extracted from the time series XCO2
GOSAT data Figure 18d (black dotted line) to analyze the frequency of these events, which
showed a fluctuation between 1.47 to 1.62 ppm. This was evaluated in the Morlet wavelet
power spectrum and the global wavelet spectrum Figure 18b,c. In Figure 18b, the Morlet
wavelet power spectrum shows a decrease and increment in this gas every six months.
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Figure 17. Wavelet analysis of the XCO2 based on GOSAT data. (a) Time series (solid black line) and
inverse wavelet transform (solid gray line). (b) Normalized wavelet power spectrum of the global
mean of XCO2 using the Morlet wavelet (ω0 = 6) as a function of time and Fourier equivalent wave
period (in years). The black solid contour lines enclose regions of more than 95% confidence relative
to a red-noise random process (α = 0.77). The cross-hatched and shaded area indicates the influence
of the cone of influence of the mother wavelet. (c) Global wavelet power spectrum (solid black line)
and Fourier power spectrum (solid gray line). The dotted line indicates the 95% confidence level.
(d) The global mean of XCO2 in time-series harmonic (red line) and linear (blue line) trends.
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Many meteorological organizations, such as the World Meteorological Organization
(WMO), have reported that the global monthly mean CO2 concentration based on data
obtained at surface-level monitoring sites has exceeded 400 ppm. However, this was the
first time that the whole-atmospheric CO2 mean exceeded 400 ppm, as monitored by the
GOSAT, which can observe CO2 concentrations from the Earth’s surface to the top of the
atmosphere (about 70 km). This means that CO2 concentrations are increasing not only at
the global surface but also in the global atmosphere [51].

Figure 18a shows the seasonal variation extracted from the global mean XCH4 GOSAT
data measured from January 2010 to May 2021. During the period analyzed, the global
mean XCH4 rose continuously, as shown by the harmonic and linear trends in Figure 18d. In
Figure 18b, the frequency, increment every six months, and decreased XCH4 values are visible.
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Figure 18. Wavelet analysis of the XCH4 based on GOSAT data. (a) Time series (solid black line) and
inverse wavelet transform (solid gray line). (b) Normalized wavelet power spectrum of the global
mean of XCH4 using the Morlet wavelet (ω0 = 6) as a function of time and Fourier equivalent wave
period (in years). The black solid contour lines enclose regions of more than 95% confidence relative
to a red-noise random process (α = 0.77). The cross-hatched and shaded area indicates the influence
of the cone of influence of the mother wavelet. (c) Global wavelet power spectrum (solid black line)
and Fourier power spectrum (solid gray line). The dotted line indicates the 95% confidence level, the
wavelet power spectrum of global average seasonal atmospheric methane. (d) Global mean of XCH4

in time-series harmonic (red line) and linear (blue line) trends.

3.4. Greenhouse Gas Growth Analysis by Continent

The temporal variation by continent is visibly divided by columns and rows that
represent the years (January 2010 to May 2021) and the seasons (spring, summer, autumn,
and winter), based on those of the Northern Hemisphere, and the regions analyzed are
South America, Africa, Australia, Europe, Asia, and North America. This local analysis
highlights the areas with a high concentration of CO2 and methane.
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South America presented a range of CO2 of 30 ppm between January 2010 and May
2021. It showed low levels of CO2 in spring, and its maximum values occurred in summer;
the lowest value recorded was 385 ppm, registered in 2010. Over time, this gas increased,
reaching values of approximately 415 ppm. The most affected country was Brazil, along
with its surrounding countries, such as Bolivia, Uruguay, and Paraguay, as well as the north
of Argentina. The epicenter of the heat CO2 concentration was at (10◦W, 55◦S).

Africa had a variation of 40 ppm over the last decade. The highest concentrations of
CO2 occurred in winter, and the lowest in autumn. The lowest value recorded was 380 ppm,
registered in 2010. Over time, this gas increased to 420 ppm. An area with remarkably high
concentrations of CO2 was (20◦E, 20◦S), near Congo, Gabon, and Cameron. The second
most affected area was located near (0◦E, 20◦N); the nearest countries to this area are Mali,
Algeria, Mauritania, and Morocco, as well as the Western Sahara.

Australia presented a range of CO2 of 35 ppm between January 2010 and May 2021,
and showed low levels of CO2 in spring. Its maximum values occurred in winter. The
lowest value recorded was 380 ppm, registered in 2010. Over the time, this gas increased,
reaching values of 415 ppm. The most affected country was Australia, especially its central
region, at coordinates of (140◦E, 25◦S).

Regarding Europe, typically, the highest concentrations of CO2 were the central re-
gion. The highest value of CO2 in parts per million recorded in the last 10 years was
approximately 420 ppm. The lowest concentrations occurred in autumn, and the maximum
concentrations were observed in winter.

Five representative locations in Asia displayed a high CO2 rate: India, Indonesia,
Japan, Beijing and the south-western area of China. The coordinates of the representative
increments of CO2 are (75◦E, 15◦N), (45◦E, 80◦N), (100◦E, 25◦N), (125◦E, 18◦N), and (130◦E,
45◦N). The north-west area of Russia (near Moscow) also presented a high increment of
CO2. This region had a variation of 45 ppm over the last decade, and it is one of the most
polluted regions on Earth. The highest concentrations of CO2 occurred in winter, and the
lowest in autumn; the lowest value recorded was 380 ppm, registered in 2010. Over the
time, this gas increased, reaching values of 425 ppm.

North America presented a range of CO2 of 45 ppm between January 2010 and May
2021. The region showed low levels of CO2 in the autumn, and its maximum values
occurred in winter. The lowest value recorded was 380 ppm, registered in 2010. Over time,
this gas increased, reaching values of approximately 425 ppm. The most affected countries
were United States (the central region of the United States was less affected than the east
and west) and Canada.

Previous studies were examined to compare the differences between the source
data (e.g., land use) of the carbon inventories and the real atmospheric carbon obser-
vations [52,53]. The authors of [54] reported that the Orbiting Carbon Observatory-2
(OCO-2) satellite-based XCO2 shows a positive correlation with the Open-Source Data
Inventory for Anthropogenic CO2 (ODIAC) for the main pollution regions: the eastern
USA, central Europe, and East Asia. There is also literature that features comparisons
between ground-based atmospheric observations (eddy flux tower measurements) and the
publicly available inventory for urban atmospheric CO2 on the city scale [55,56].

Figure 19 shows the spatial mean tendency of the total columns of CO2 and CH4
in the world, as well as for Asia, Australia, Africa, South America, North America, and
Europe. Regarding the XCO2 tendency, Australia shows low variations and an almost linear
tendency; Europe, Asia, and North America show variations of approximately 10 ppm
per year. However, XCH4 shows low concentrations in South America and, especially, in
Australia; higher concentrations of CH4 can be observed in North America, Asia, Europe,
and Africa.
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Figure 19. (a) Time series of global and continental mean XCO2. (b) Time series of global and
continental mean XCH4.

4. Conclusions

The main objective of this study was to reconstruct the GOSAT L3 product based on the
EOF algorithm and validate it through TCCON measurements. The global spatial–temporal
pattern of CO2 and CH4 is illustrated better with the application of this algorithm, as can
be seen through the results presented in this paper. The southern part of the Earth, about
which there is a low amount of information for spring–summer, is illustrated better, and
the exact point in the Southern Hemisphere where the levels of these gases have reduced
considerably can be observed. Furthermore, the northern part of the Earth, about which
there is little information from the GOSAT L3 product for autumn–winter, is represented
better, especially in the ocean areas. However, in the Antarctic area, the information could
not be reconstructed, since there were no values recorded in the last 10 years.

The monthly time series shows similitude between the in-situ stations TCCON and
GOSAT and CO2 in terms of sufficiency. This assertion is difficult to corroborate in the
Southern Hemisphere due to the lack of TCCON stations around the world. Moreover, the
TCCON manifested higher CO2 concentrations compared with the CO2 recovered from the
GOSAT. The kernel density plots presented in the section on the data validation seem to
show higher similitude regarding CO2. The CH4 gas data are more unreliable, especially
between 2010 and 2012, due to the lack of information from within those years.

The GOSAT CH4 dataset currently contains over a decade of worldwide CH4 behavior.
The ability to assess worldwide and territorial CH4 outflows is imperative to develop our
understanding of the worldwide level of methane. We started this work by highlighting the
wide assortment of aspects of the past forms of this dataset that have contributed towards
this understanding, illustrating the utility of this dataset for analyzing and understanding
the worldwide behavior of CH4, which is still rising.

Summarizing the results, it can be concluded that the area most affected by greenhouse
gases is the Northern Hemisphere. Moreover, both gases have a harmonic variation over
time. In the case of CO2, at the beginning and the end of each year, the gas starts to increase
rapidly, and in the middle of the year, its levels reduce slightly (less than the increment). On
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the other hand, the seasonal variation in CH4 is different because the gas starts to increase
in the middle of each year and decreases at the end and the beginning of each year. Both
have a similar frequency of events, repeating the same event at approximately the same
rate over a given year, which suggests that the seasonal behavior of both gases resembles a
sinusoidal wave.

In this study, some shortcomings are evident in the data interpolation, especially for the
information obtained from the South America, Africa, and Antarctica regions. The results
for these regions were unreliable due to the low quantity or absence of TCCON data in these
regions; therefore, GOSAT and TCCON data validation analyses could not be performed. To
increase the reliability of the results, in a future study, it will be necessary to compare the
interpolated results with simulated results using the atmospheric transport model available
in the GOSAT L4 products, or compare them with other models or other satellite data.
Furthermore, the empirical nature of the data and their relatively high level of uncertainty
indicate the need for future satellite sensors to increase data availability and accuracy.
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