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Abstract: Cloud cover is an important factor limiting the earth observation efficiency of optical
imaging satellites. Existing solutions include avoiding cloudy observation time windows by onboard
cloud detectors and ground monitors, which are difficult to improve satellite observation efficiency
in time. In order to solve the problem, firstly, a Geostationary Earth Orbit (GEO) and Low Earth
Orbit (LEO) satellites cooperation scheme by using cloud cover information provided by GEO
meteorological satellite to guide the imaging of LEO optical satellites is proposed, and the operation
flow and key elements in this scheme are analyzed. Secondly, Fengyun-4 GEO meteorological
satellite and its cloud mask (CLM) products are analyzed. Thirdly, an autonomous mission planning
algorithm based on real-time cloud cover information is proposed. Computational results have
demonstrated the effectiveness of the proposed GEO–LEO satellites cooperation scheme by taking
the actual orbit and payload data of Fengyun-4 and Gaofen-1/2 satellites as examples.

Keywords: cloud cover; optical imaging satellite; meteorological satellite; GEO–LEO satellites
cooperation; autonomous mission planning

1. Introduction

Satellites with optical imaging sensors observe earth surface targets and the lower
atmosphere through onboard optical cameras to obtain image data. Common optical
imaging satellites include the U.S. KH-12 satellite, the French Pléiades satellite, and China
Gaofen-1/2 satellite. The optical remote sensing images have advantages including high
spatial resolution, conforming to the visual characteristics of the human eye and are easy
to interpret. Consequently, optical images are widely used in military reconnaissance,
land and resource survey, environmental monitoring, and other fields. However, optical
sensors are passive imaging and have weak penetration ability with clouds, so cloud
cover becomes an important factor limiting the earth observation efficiency of optical
imaging satellites. According to the International Satellite Cloud Climatology Project [1],
the global average cloud cover reaches about 65%, and many optical imaging satellites
are affected. For instance, due to cloud cover, about 80% of the observation tasks of the
French SPOT satellite fail [2], and over 60% of the optical satellite images in China cannot
be effectively captured [3]. When the ground targets are obscured by clouds, it is not
only difficult to obtain high-quality satellite images due to the lack of information, but
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also the corresponding observation time window, onboard storage and power are wasted.
Furthermore, satellite–ground data downlink resources are occupied when transmitting the
such cloud-covered images. Therefore, how to effectively avoid the impact of cloud cover,
acquire high-quality image data and improve the efficiency of satellite observation is a key
problem that needs to be solved in the practice of optical imaging satellite applications.

Many previous studies have concentrated on cloud cover problem in optical imaging
satellite applications. The solutions in early studies can be summarized into three categories.

Firstly, during the ground mission planning period of imaging, the weather informa-
tion provided by meteorological departments is considered to generate robust observation
schedule based on a priori information on cloud prediction [4]. Liao et al. [5] developed a
stochastic integer planning model considering cloud cover based on current meteorological
information, and solved by using a Lagrangian relaxation algorithm to obtain the basic
scheme, with a rolling adjustment strategy is used to adjust the basic scheme in real-time
according to the latest cloud cover conditions. He et al. [6] constructed a spatial geometric
model of cloud cover, in the model, the cloud cover time window is obtained by spatial
analytical calculations, and then a scheduling model considering cloud cover is established.
A heuristic algorithm based on maximizing the observation reward is used for the solution.
He et al. [7] established a cloud cover information description model, and designed a cloud
cover time window calculation method based on pre-judge and dichotomy, built an agile
satellite (i.e., with steerable imaging sensor) mission planning model considering cloud
cover information and solved the model with ant colony algorithm [8]. Wang et al. [9,10]
studied the optical imaging scheduling problem under cloud cover uncertainty. Based on
the a priori information of cloud prediction, stochastic expectation value model and branch
pricing algorithm, chance constrained planning model and branch cutting plane/column
generation heuristic algorithm, robust model, and exact/random sampling heuristic al-
gorithm were designed. However, the methods mentioned above do not consider the
real-time changes of cloud state.

Secondly, during the in-flight imaging period, the cloud cover information is obtained
via the onboard cloud detector and the observation schedule is adjusted dynamically.
Beaumet et al. [2] studied the autonomous decision making problem of Pléiades satellite
which has an onboard cloud detector. In the proposed scheme, cloud cover information in
front of the satellite is obtained with the forward-looking cloud detector, and then a reac-
tive/deliberative framework can be achieved through an onboard autonomous decision. He
et al. [11] considered an agile satellite with flexible attitude can avoid clouds during imag-
ing using a synchronous cloud detector, and proposed a hierarchical scheduling method for
the real-time scheduling problem. The method divided the scheduling process into three
steps: pre-assignment, rough scheduling, and fine scheduling, which can compose a hierar-
chical scheduling algorithm based on ant colony algorithm. Wang, et al. [12] considered
high resolution satellites operating on the same orbit, which had wide-swath images and
providing the cloud cover information close in time. Then, the model of avoiding clouds
under satellite orbital space coordinate system were established to guide the online mission
planning of the high spatial resolution satellite. Wagstaff et al. [13] studied a machine
learning method for onboard cloud detection and used real-time cloud cover information
to guide the autonomous planning of the satellite. However, the limitation of the methods
described above are that the optical satellites require incorporating a synchronous payload
to obtain cloud cover information, which lacks universality in practical applications.

Thirdly, during the ground data processing period of LEO satellite, cloud detection [14]
provides the cloud mask firstly, and then images with much cloud would be discarded. Also,
enhancement of optically thin cloud scenes [15], and restoration of thick cloud scenes [16]
can be used to recover image information from cloud cover scenes. The main methods
of cloud detection include threshold segmentation, texture analysis, change detection,
and integrated detection. The threshold segmentation method is based on the difference
between cloud and surface brightness values, and cloud area extraction is achieved by
threshold segmentation. The selection of the threshold value is very critical, and the fixed
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threshold value is only applicable to specific image scenes, from which the threshold seg-
mentation method has been gradually developed into dynamic threshold segmentation [17],
and multi-band combined threshold segmentation [18], etc. The threshold segmentation
method has the advantages of simplicity and ease of implementation, but it is prone to
misjudgment for high brightness cloud-like surface targets (e.g., ice, snow, etc.). The tex-
ture analysis method identifies clouds based on the similarity within similar features and
the discontinuity of boundaries between different features, such as the fractal dimension
method [19] and the gray level co-occurrence matrix method [20]. The detection accuracy
using only texture features is limited due to the large variation of cloud features. The
change detection method uses clouds as a change target in the image and uses two or more
images with similar temporal phases of the same area [21], which has the advantage of high
detection accuracy and the disadvantage of requiring images in the same regions, short
temporal phases, and strict geometric consistency. Integrated detection methods combine
radiometric, geometric, and temporal features for cloud detection, such as support vector
machines [22], neural networks [23], and object-oriented image analysis [24]. With the
development of deep learning and its successful application in the field of computer vision,
cloud detection based on deep learning has attracted wide attention. The main methods
include full convolutional networks [25], multi-scale convolutional feature fusion [26],
super-pixel segmentation combined with convolutional neural networks [27]. Ground
data processing methods can improve the utilization of cloud cover images to a certain
degree, but they essentially belong to the data processing after mission planning, which is
also wasting resources of imaging and data downlink. If the cloud cover rate of images is
high, it is difficult to produce effective image products. In addition, the area obscured by
clouds is usually resubmitted as a new observation requirement. So the whole imaging task
would incur additional costs, such as one day or as long as several weeks, which greatly
reduces the timeliness of image data due to the constraints of satellite tracking, telemetry
and control, data downlink, and other factors.

Geostationary (GEO) meteorological satellites orbit the Earth above a particular lo-
cation on the Equator at an altitude of about 36,000 km and provide “full-disk” (about
1/3 of the Earth’s surface area) multi-spectral remote sensing images every 15 min or
shorter. In recent decades, the spatial resolution of GEO meteorological satellite images
has increased to better than 0.5 km level, and the spectral bands have extended from a
few panchromatic and thermal infrared bands to cover many visible, near-infrared, mid-
infrared and far-infrared bands, e.g., Chinese Fengyun-4 and Japanese Himawari-8 satellites
have as many as 14 spectral bands, for example. The GEO meteorological satellite CLM
products have ultra-high temporal resolution, middle spatial resolution, and high cloud
identification accuracy.

To address the cloud cover problem, a solution that uses cloud cover information
provided by GEO meteorological satellites to guide the mission planning of LEO optical
imaging satellites is proposed in this paper. The basic ideas of the solution include two
parts. One is that the GEO meteorological satellite acquires multispectral ‘full-disk’ remote
sensing images, and generates CLM products with real-time cloud detection algorithms by
using a special fast processing chip on board. And the other is that the GEO meteorological
satellite can judge the cloud over situation of the target area in real-time based on the CLM
products, interact with the LEO optical imaging satellites through the inter-satellite com-
munication link, complete the autonomous cooperative mission planning, and dynamically
adjust the observation tasks of the LEO optical imaging satellites. The solution aims to
effectively solve the cloud cover problem and improve the imaging efficiency of the optical
imaging satellites.

In this paper, a GEO–LEO satellites cooperation scheme is proposed and the operation
flow and key elements in this scheme are analyzed. By using the Fengyun-4 CLM products,
an autonomous mission planning algorithm based on real-time cloud cover information
is developed. Then satellites data of Fengyun-4 and Gaofen-1/2 satellites are used as
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examples to perform an experimental application of the proposed GEO–LEO satellites
cooperation scheme. Concluding remarks are summarized in the final section.

2. Materials and Methods
2.1. Fengyun-4 Meteorological Satellite and Its CLM Products

Fengyun-4A (FY-4A for short) is the latest generation of GEO meteorological satellite in
China. It was successfully launched from Xichang Satellite Launch Center on 11 December
2016. FY-4A realizes the combination of GEO observation and infrared hyperspectral
atmospheric vertical detection. It takes only 1 min to perform special area scanning, which
greatly improves the temporal as well as spatial resolution of earth observation. The sensors
loaded on FY-4A satellite mainly include Advanced Geosynchronous Radiation Imager
(AGRI), Geosynchronous Interferometric Infrared Sounder (GIIRS), Lightning Mapping
Imager (LMI), etc. [28]. With high temporal and spectral resolution, FY-4A satellite can
realize all day long multi-dimensional remote sensing monitoring [29]. FY-4A satellite
provides a large amount of level 2 product data, mainly including atmospheric vertical
detection, real-time cloud detection, cloud types, and other various types of product, which
can provide fast and effective data support for agriculture, forestry, industry, transportation,
and other fields [30].

The FY-4A satellite ARGI has a wide range of meteorological products, and CLM
products are one of the important products. The FY-4A CLM are produced mainly using 6
spectral bands of the ARGI, including 0.65 µm, 3.75 µm, 7.1 µm, 10.8 µm, and 12.0 µm bands.
At the same time, a variety of supplementary data sources are combined to distinguish
between clouds and clear sky by using the different features exhibited in each spectral
bands [28,31]. The CLM product, with a 4 km spatial resolution, contains the value of the
full-disk with a grid size of 2748 × 2748 pixels, and the digital number ‘0’ for cloud, ‘1’ for
possible cloud, ‘2’ for possible clear sky, ‘3’for clear sky, ‘126’ for blank, and ‘127’ for invalid
fill. A binary image of CLM is shown as Figure 1.
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Figure 1. A binary image of FY-4A CLM.

The satellite data used in this study are obtained from the official data website of the
National Meteorological Satellite Center. The selected data used is the L2 CLM product
data from the FY-4A with 4km resolution. The time range is from ‘00:00:00 1 March 2021’
to ‘00:00:00 2 March 2021’. It is worth noting that we assume that cloud detection is done
onboard with mature machine learning based algorithms and special processing chips.
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2.2. Methods
2.2.1. GEO–LEO Satellites Cooperation Scheme

The overall scheme of using the cloud cover information provided by the GEO me-
teorological satellites to guide the mission planning of the LEO optical imaging satellites
consists of an operational workflow and a GEO–LEO satellites cooperation scheme frame-
work, as shown in Figures 2 and 3, respectively.
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In this strategy, the ground control center develops a 24-h satellite observation schedule
based on the imaging requirements and transforms it into payload commands, and then the
ground stations upload the commands to the GEO meteorological and LEO optical imaging
satellites. During the execution of the observation schedule by the LEO optical imaging
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satellites, the GEO meteorological satellite performs autonomous mission planning for the
LEO satellites based on the acquired cloud cover information dynamically.

In the above framework, satellites should have different levels of intelligent and
autonomous capabilities. The concept of satellite intelligence was considered initially by
Schetter et al. (2003) [32]. They performed comparisons on different levels of satellite
intelligence. Four levels of satellite intelligence have been identified.

(1) I1 represents the most “intelligent” agent. Here the “agent” means one intelligent
satellite in the satellite system composed by single satellite or multiple satellites. The
primary difference between I1 and the other satellite agents is that it is capable of
monitoring all satellite agents in the system and planning for the system as a whole;

(2) I2 can interact with other satellite agents in the system. This usually requires the agent
to have at least partial knowledge of the full agent-based system;

(3) I3 has local planning functionalities onboard. “Local” means the agent is capable of
generating and executing only plans related to its own tasks; and

(4) I4 represents the most “unintelligent” agent. It can only receive commands and tasks
from other satellite agents in the system, or from the ground, and execute them.

Based on the identification of the satellite intelligence levels, we define a GEO meteo-
rological satellite as I1 level, and LEO optical imaging satellites as I3 level in the GEO–LEO
satellites cooperation scheme. The GEO meteorological satellite has a strong computing
and autonomous capability, and the onboard data contains orbital data of LEO satellites,
as well as a multi-satellite cooperation mission planning capability. The LEO satellites are
defined as a partially autonomous capability satellite, which can report their own status
data to the GEO meteorological satellite, and also receive mission commands from the GEO
meteorological satellite and execute action sequences autonomously.

The ways of coordination architectures for multiple satellites include top–down coor-
dination, centralized coordination, distributed coordination, and fully distributed coordina-
tion. The top–down coordination architecture includes only one single (highly intelligent) I1
level agent, and the other satellite are (unintelligent) I4 agents. The centralized coordination
architecture requires at least local planning and, possibly, interaction capabilities between
satellite, requiring I3 or I2 agents. The distributed coordination architecture consists of
several parallel hierarchical decision-making structures, each of which is commanded by
an I1 intelligent agent. In the case of a fully distributed coordination architecture, each
satellite in the system represents an I1 level agent, resulting in a totally flat system [33].
In the GEO–LEO satellites cooperation scheme, we define the coordination way between
satellites as centralized coordination.

2.2.2. Mathematical Model

In the cooperation scheme of GEO–LEO satellites, autonomous planning is performed
on the basis of an initial observation schedule generated by ground control center. The GEO
meteorological satellite dynamically adjusts the observation tasks of multiple LEO optical
imaging satellites based on real-time cloud cover information to obtain a new observation
scheme. Due to the complex temporal constraints and high coupling between observation
tasks, local adjustments may have influence on subsequent tasks, resulting in a chain
reaction. How to design autonomous planning algorithms with small perturbations and
high efficiency is one of the key issues.

Based on the above analysis, we establish the mathematical model of the autonomous
planning problem. A summary of notations is presented as Table 1.
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Table 1. Definitions of the problem’s notations.

Notations Definitions

T Observation tasks set, T = {t1, t2, . . . , tNT}, NT represents the number of tasks
S EOS resources set, S =

{
s1, s2, . . . , sNS

}
, NS represents the number of EOSs

Cn Orbits set of sn, Cn =
{

c1, c2, . . . , cNn
C

}
, Nn

C represents the number of orbits
bn

ki Observation start time of task ti at the kth orbit of satellite sn
qn

ki Observation end time of task ti at the kth orbit of satellite sn
on

ki Observation time of task ti at the kth orbit of satellite sn
di Observation duration of task ti
pi Priority of task ti

unk
ij Attitude maneuver duration from task ti to tj at the kth orbit of satellite sn

eu Energy consumption of satellite attitude maneuver per unit time
tst Satellite attitude stabilization time
est Energy consumption of satellite attitude stabilization
mo Memory consumption of observation per unit time
eo Energy consumption of observation per unit time

Mn Memory capacity per orbit
En Energy capacity per orbit

We developed two decision variables in the model, which are as follows:

xn
ki =

{
1, if task ti is assigned at the kth orbit of satellite sn
0, otherwise

(1)

ynk
ij =


1, if task tj is the immediate successor of task ti

at the kth orbit of satellite sn
0, otherwise

(2)

The objective of optimization is maximizing the schedule profits of all selected tasks.

F = max
NS

∑
n=1

Nn
O

∑
k=1

NT

∑
i=1

xn
ki · pi (3)

where F means maximizing the schedule profits of all selected tasks.
The operations of EOSs should satisfy following constraints:

(1) Each task can be observed at most once.

∀ti ∈ T :
NS

∑
n=1

Nn
C

∑
k=1

NT

∑
i=1

xn
ki ≤ 1 (4)

∀ti, tj ∈ T, i 6= j :
NS

∑
n=1

Nn
C

∑
k=1

NT

∑
i=1

xn
ki =

NS

∑
n=1

Nn
C

∑
k=1

NT

∑
i=1,j=2

ynk
ij (5)

(2) Each task must be observed within its available time windows.

∀ti ∈ T, xn
ki = 1 : bn

ki ≤ on
ki ≤ qn

ki (6)

(3) Setup time between contiguous tasks must be sufficient for transition.

∀ti, tj ∈ T, i 6= j, xn
ki = ynk

ij = 1 : on
kj ≥ on

ki + di + unk
ij + tst (7)

(4) The memory consumption cannot exceed maximum memory capacity for each orbit.
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∀sn ∈ S, ∀ck ∈ Cn :
NT

∑
i=1

mob · di · xn
ki ≤ Mn (8)

(5) The energy consumption cannot exceed maximum energy capacity for each orbit.

∀sn ∈ S, ∀ck ∈ Cn, ∀ti, tj ∈ T, i 6= j :
NT
∑

i=1
eob · di · xn

ki +
NT
∑

i=1

NT
∑

j=2

(
eu · unk

ij + est

)
· ynk

ij ≤ En
(9)

The attitude transition activities in agile imaging satellite are a temporal constraint
problem. During imaging acquisition activity, after a ground target is selected, the starting
time will be a continuous variable within a visible time window, and different starting
time corresponds to different attitude angles, furthermore, different attitude angles mean
different imaging quality. During attitude transition activity, for contiguous targets, the
satellite needs to complete attitude transition, and the transition duration depends on the
ending and starting time of previous and next targets, different transition duration means
different energy consumption. Consequently, attitude angle, imaging quality, attitude
transition duration, energy consumption are closely related to time. In previous work, we
have studied the temporal constraint model and designed calculation methods [34]. And
we used the model and methods in this paper.

This mathematical model includes the optimization objective of maximizing the plan-
ning rewards of all selected tasks and takes operational constraints into consideration, such
as the time window, the attitude transition, and onboard memory and energy constraints,
meanwhile, it is characterized by high complexity.

2.2.3. Planning Cycle

Task-driven strategy means how to determine the start-up time of autonomous plan-
ning. Currently, three types of strategies are commonly used: cycle-driven, event-driven,
and hybrid-driven. Cycle-driven makes planning decisions according to a predefined time
interval T. Event-driven makes planning decisions based on events, meaning decisions
are started up as soon as an event occurs. Hybrid drive considers both cycle-driven and
event-driven, meaning decisions are started up according to a certain time interval, also
when a major event occurs.

GEO meteorological satellite usually acquire ‘full-disk’ cloud cover images at fixed in-
tervals (e.g., every 15 min for FY-4A). Based on this ability, we use cycle-driven autonomous
planning, where the planning period is the time interval at which the meteorological satel-
lite acquires cloud cover images. It should be noted that this interval is not fixed as 15 min,
but it depends on the actual time of the acquisition by the meteorological satellite.

2.2.4. Onboard Autonomous Planning Algorithm

Onboard autonomous planning is a process of response to new tasks dynamically,
which requires high timeliness and optimality of a planning algorithm. Heuristic algorithm
is intuitive, easy to understand and efficient in solving [35]. It can give feasible solutions
with high rewards in a short time and low computing consumption, which meets the
requirements of onboard autonomous planning. Therefore, we propose a heuristic algo-
rithm for onboard autonomous planning. The proposed algorithm consists of matching the
longitude and latitude of the target regions (observation tasks) with the pixel of the CLM,
computing cloud cover rate and screening out tasks requiring adjustment, selection of the
tasks and observation windows, and local neighborhood search.

(1) Matching the longitude and latitude of the targets with the pixel of the CLM. Each
ground target has a latitude and longitude. In order to determine the cloud over the
target region, the latitude and longitude of the target are matched with the pixels in
the CLM products to obtain accurate cloud cover rate in pixel units. The resolution of
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the CLM products is 4 km, and supplementary data ‘FullMask_Grid_4000.raw’ has a
size of 2748 × 2748. The process of matching the longitude and latitude of the targets
with the pixel region of the CLM is as following: Firstly, finding the corresponding
pixel point in the ‘FullMask_Grid_4000.raw’ data based on the central latitude and
longitude of targets. Secondly, matching the pixel point with the CLM pixel area.
Thirdly, according to the size of the target, calculating the corresponding pixel area.
For example, the actual ground size of the target is 60 km × 60 km, which is 15 × 15
pixel area in the CLM image;

(2) Computing cloud cover rate and screening out tasks requiring adjustment. The
International Satellite Cloud Climatology Project gives the cloud level according to
the cloud cover of remote sensing images: cloud cover below 35% is set as low cloud
level; cloud cover between 35% and 65% is set as medium cloud level; cloud cover
above 65% is set as high cloud level. Referring to this cloud level, we set the cloud
cover threshold to 65%, and after each acquisition of CLM images, we judge the cloud
cover over all observed targets in this planning cycle. If the cloud cover is larger than
65%, the observation plan of this task in the current planning cycle is cancelled and
the task is added to the set of pending tasks;

(3) Selection of tasks and observation windows. The set of pending tasks consists of
multiple new tasks, the tasks and observation windows need to be selected according
to certain rules. Here the selection of new tasks is based on the task demand degree,
which indicates the urgency of the task planning, and it is calculated using the
following equation.

ρi =
pi

TWi
(10)

where pi is the priority of task i, TWi is the number of available time windows of task i.
The available time windows at this point are the time windows after the current

planning. Tasks with higher priority and fewer observation windows have a higher task
planning urgency. That is, the higher value ρj, the higher the task demand should be.

For the selection of observation windows, it is considered that a task often has multiple
observation windows. Here, the selection is based on the temporal order of the observation
windows, i.e., the observation window with an earlier start time should be selected first; and

(4) Local neighborhood search. Given that the neighborhood of the current solution often
contains better neighborhood solutions, a local neighborhood search can be performed
on the current solution. Local neighborhood search is a kind of heuristic algorithm
which has the advantages of timeliness, high efficiency and succinctness. In this
paper, insertion neighborhood search is used to arrange the current tasks. Insertion
neighborhood means inserting the pending tasks that satisfy operational constraints
into the current task sequence, and the basic steps are as follows:

Step 1: Sort the pending tasks in descending order of priority. Select the first one, and
calculate of the position of the observation window of the pending task in current task
sequence of the satellite;

Step 2: Build a task tabu list to conserve the planned tasks, which means the planned
task will not be considered again;

Step 3: Judge whether the operational constraints are satisfied between the pending
task and the adjacent tasks before and after, and, if so, insert the task into the current task
sequence and write it down in the tabu list. In addition, if the observation window of the
task is located before the first task or after the last task, only the constraint satisfaction
relationship with the first and last task needs to be judged;

Step 4: Update the planning rewards and consumed storage and power; and
Step 5: Judge whether there are tasks in pending task set, and if so, repeat Steps 1–4.

Otherwise, exit the algorithm.
Based on the above design, the flowchart of the onboard autonomous planning algo-

rithm is shown in Figure 4.
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2.3. Experimental Study

In order to verify the effectiveness of the GEO–LEO cooperation scheme proposed
in this paper, we construct a scenario conforming to the actual application based on the
actual orbit and payload parameters of FY-4A and GF-1/2 satellites in Tables 2 and 3.
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The CLM/FY-4A data, which has low spatial resolution (4 km) but very high temporal
resolution (15 min), provide cloud information covering the same spatial area for the
whole swath of GF-1 or GF-2. For example, the swath of GF-1 is 60 km × 60 km, which
is corresponding 15 × 15 pixels in the CLM image. Among them, GF-1 series satellites
include GF-1-01/02/03/04, a total of 4 satellites, and GF-2 is 1 satellite, thus constructing a
scenario of 1 GEO meteorological satellite and 5 LEO optical imaging satellites. The time
period of the scenario is (1 March 2021 00:00:00, 2 March 2021 00:00:00).

Table 2. Main parameters of FY-4A satellite.

Parameters FY-4A

Orbit type GEO
Orbit attitude 36,000 km

Longitude of sub-satellite point 104.7◦E
Spatial resolution under full-disk 4 km

Time resolution 15 min

Table 3. Main parameters of and GF-1/2 satellite.

Parameters GF-1 GF-2

Orbit type Sun-synchronous Orbit Sun-synchronous Orbit
Orbit attitude 645 km 631 km

Orbit inclination 98.0506◦ 97.9080◦

Swath 60 km 45 km
Maximum rolling angle ±35◦ ±35◦

Spatial resolution (PAN, MSS) 2 m, 16 m 1 m, 4 m

In terms of observation tasks, the point targets are selected as observation tasks, which
randomly distribute on the earth surface with latitude among (50◦E, 150◦E) and longitude
among (50◦S, 50◦N), the number of point targets is 600. All point targets are distributed
within the coverage of FY-4A satellite. Each target is associated with a priority uniformly
distributed among [1,10] and an observation duration among [5,15].

The data processing and algorithm implementation are performed via MATLAB 2017b
on a PC with Intel core i7 CPU @2.0 GHz, and 16 GB RAM under Windows 10 OS.

3. Results and Discussion

To address the problem of cloud cover, we propose a solution that uses cloud cover
information provided by GEO meteorological satellites to guide mission planning for LEO
optical imaging satellites. In the traditional mission planning, a 24-h observation schedule
is developed by the ground control center and uploaded to the GEO–LEO satellites. Thus,
the GEO–LEO satellites cooperation is based on an initial schedule. During the execution
of the observation schedule by the LEO optical imaging satellites, the GEO meteorological
satellite performs autonomous mission planning for the LEO optical imaging satellites
based on the acquired cloud cover information. In the scenario, we set the cloud threshold
to 65% and extract the time period of CLM from 0:00 to 9:00 (UTC time). The observation
time of the GEO meteorological satellite under this time period is from 08:00 to 17:00 at
local time, which meets the basic requirement for optical imaging. The number of CLM
data during this time period is 15, which means there are 15 planning cycles. The number of
tasks adjusted by onboard autonomous planning, the number of tasks successfully adjusted
to the cloud-free window, and the number of tasks fail to adjust to the cloud-free window
in the 15 planning cycles are shown in the Table 4.
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Table 4. Adjustments of the initial schedule by onboard autonomous planning.

Type Number of Tasks Adjustment Ratio

Initial schedule 325 /
Onboard autonomous
planning adjustment 229 70.46%

Adjust to cloud-free window 98 30.15%
Fail to adjust to cloud-free

window 131 40.31%

As can be seen from the table, there are 325 tasks in initial schedule, the onboard au-
tonomous planning adjustment means that if the GEO–LEO satellites cooperation scheme
is not used and the LEO optical imaging satellites perform observation according to the
initial schedule, 70.46% of the images will contain over 65% cloud cover. By using the
GEO–LEO satellites cooperation and autonomous onboard planning, 30.15% (98/325) tasks
are successfully adjusted to cloud-free windows, it means the 98 tasks meet the operational
constraints of mathematical model and are adjusted under onboard autonomous planning
algorithm, which has improved the effectiveness of data acquisition. Meanwhile, 40.31%
(131/325) tasks fail to adjust to the cloud-free window, it means the weather conditions of
the 131 tasks are highly cloudy (over 65%), meanwhile the 131 tasks cannot meet the opera-
tional constraints of mathematical model. The 131 tasks will still be executed according to
the initial schedule under high probability of acquiring cloudy images, consider that the
images with over 65% may contain the region of interest. In addition, the task adjustments
during each autonomous planning cycle are shown in Figure 5.
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Figure 5. Task adjustments during each autonomous planning cycle.

In the above experiment, we set the cloud cover threshold as 65%. In order to test the
influence of different cloud cover thresholds on onboard autonomous planning. We used
10 cloud thresholds from 5–95% with a value taken at 10% intervals, and the test results are
shown in the Table 5.



Remote Sens. 2022, 14, 2635 13 of 15

Table 5. Influence of cloud cover thresholds on onboard autonomous planning.

Cloud Cover
Threshold

Number of Tasks
in Initial
Schedule

Onboard
Autonomous

Planning Adjustment

Adjust to
Cloud-Free

Window

Fail to Adjust
to Cloud-Free

Window

Adjustment
Ratio

5% 325 296 131 165 91.08%
15% 325 277 121 156 85.23%
25% 325 266 112 154 81.85%
35% 325 260 111 149 80.00%
45% 325 251 106 145 77.23%
55% 325 244 101 143 75.08%
65% 325 229 98 131 70.46%
75% 325 218 94 124 67.08%
85% 325 202 87 115 62.15%
95% 325 172 72 100 52.92%

As can be seen from Table 5, with increases in the cloud cover thresholds, the number
of tasks that are adjusted by onboard autonomous planning, the number of tasks adjusted
to the cloud-free window, the number of tasks that fail to adjust to the cloud-free window,
and adjustment ratio gradually increase. This is because when the cloud cover threshold is
larger, fewer observation tasks in the initial schedule reach cloud cover threshold. While
the cloud cover threshold becomes smaller, more and more observation tasks reach that
threshold. At a 5% cloud cover threshold, 91.08% of the tasks need to be adjusted. From
the above data and analysis, we know that the setting the cloud cover thresholds influence
the adjustments of the initial schedule while performing onboard autonomous planning,
and it can be determined according to the actual demand.

In a nutshell, the GEO–LEO satellites cooperation scheme can improve the effective-
ness of data acquisition and reduce the amount of redundant observation data downlink
of LEO optical imaging satellites, which provide a new solution for solving cloud cover
problem in the application of optical imaging satellites.

4. Conclusions

In this paper, a GEO–LEO satellites cooperation scheme was proposed that uses
the cloud cover information provided by GEO meteorological satellites to guide the au-
tonomous mission planning of LEO optical imaging satellites to address the cloud cover
problem. At the same time, the intelligence degree of different satellites in the scheme
and the ways of coordination between GEO–LEO satellites were analyzed. Under the
scheme, the characteristics of the FY-4A satellite and the application of CLM data were
analyzed. Furthermore, a mathematical model of onboard autonomous planning was
established, and the period of autonomous planning was determined according to the
observation characteristics of GEO meteorological satellites. A heuristic algorithm for
onboard autonomous planning, which takes into account the timeliness of real-time cloud
cover information and the demand for task adjustment was proposed. An experimental
scenario with FY-4A and GF-1/2 as satellite resources and 600 ground targets as observa-
tion tasks was constructed, and the effectiveness of the proposed GEO–LEO cooperation
scheme was verified. The future works of our study are: (1) This study assumes that CLM
products from meteorological satellites can be processed onboard. Consequently, onboard
real-time cloud detection algorithms which aims to provide fast CLM products needs to
be developed; (2) In the GEO–LEO satellites cooperation scheme, we defined a centralized
coordination way between satellites. In the future, the highly autonomous satellite system
can be performed in a fully distributed coordination, and autonomous mission planning
algorithms; and (3) At high latitude area, the GEO–LEO cooperation scheme has application
limitation caused by the parallax of the two satellites observations. Such problems are
expected to be solved in further detailed studies.
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