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Abstract: Due to end-to-end optimization characteristics and fine generalization ability, convolutional
neural networks have been widely applied to hyperspectral image (HSI) classification, playing an
irreplaceable role. However, previous studies struggle with two major challenges: (1) HSI contains
complex topographic features, the number of labeled samples in different categories is unbalanced,
resulting in poor classification for categories with few labeled samples; (2) With the deepening of
neural network models, it is difficult to extract more discriminative spectral-spatial features. To
address the issues mentioned above, we propose a discriminative spectral-spatial-semantic feature
network based on shuffle and frequency attention mechanisms for HSI classification. There are
four main parts of our approach: spectral-spatial shuffle attention module (SSAM), context-aware
high-level spectral-spatial feature extraction module (CHSFEM), spectral-spatial frequency attention
module (SFAM), and cross-connected semantic feature extraction module (CSFEM). First, to fully
excavate the category attribute information, SSAM based on a “Deconstruction-Reconstruction”
structure is designed, solving the problem of poor classification performance caused by an unbalanced
number of label samples. Considering that deep spectral-spatial features are difficult to extract,
CHSFEM and SFAM are constructed. The former is based on the “Horizontal-Vertical” structure
to capture context-aware high-level multiscale features. The latter introduces multiple frequency
components to compress channels to obtain more multifarious features. Finally, towards suppressing
noisy boundaries efficiently and capturing abundant semantic information, CSFEM is devised.
Numerous experiments are implemented on four public datasets: the evaluation indexes of OA, AA
and Kappa on four datasets all exceed 99%, demonstrating that our method can achieve satisfactory
performance and is superior to other contrasting methods.

Keywords: spectral-spatial-semantic; shuffle attention; multiscale features; frequency attention;
cross-connected features; hyperspectral image classification

1. Introduction

A hyperspectral image (HSI) can be captured by hyperspectral remote sensing sen-
sors, which contain abundant spatial and spectral information, covering a wide range of
wavelengths. HSI classification aims to assign a pinpoint land-cover label to each hyper-
spectral pixel, which has been widely applied in environmental monitoring [1], mineral
exploitation [2], object detection [3], defense and security [4], etc.

Although remarkable progress has been achieved, HSI classification still struggles
with great challenges, which are described as follows: (1) Spectral variability. The spectral
information of HSI is influenced by many external factors, such as atmospheric effects,
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natural spectrum, and incident illumination [5–7], which result in difficulty in identifying
a given category due to the high intraclass spectral variability. (2) Spatial variability. The
spatial distributions of disparate objects in HSI are complicated, and the ground feature
regions contain mixed pixels [8]. There is a phenomenon where different ground targets
include the same spectral information and the same ground targets contain different spectral
information [9]. (3) The lack of labeled samples. Labeling HSI samples is very inconvenient
and time-consuming. Meanwhile, the amount of labeled data is too small, which brings
about the Hughes phenomenon [10], meaning that the classification accuracy severely
decreases with increasing dimensionality [11]. Therefore, scholars pay more attention to
settling the above problems [12–17].

In the initial phase, traditional machine learning methods have mainly been com-
posed of two steps: feature extraction and classifier training [18]. First, traditional feature
extraction methods, including linear discriminant analysis (LDA) [19], minimum noise
fraction (MNF) [20], spectral angle mapper (SAM) [21], and principal component analysis
(PCA) [22] are utilized to capture spectral features. Then, these obtained spectral features
are sent into the classifiers, which include support vector machine (SVM) [23], multinomial
logistic regression (MLR) [24], k-nearest neighbor (KNN) [25], random forest (RF) [26], etc.
However, these traditional classification methods based on spectral features do not take
full advantage of the spatial information of HSI. Therefore, traditional HSI classification
methods based on spectral-spatial features are proposed. Some successful statistical meth-
ods are used to extract spectral and spatial data from HSI, such as the Markov random field
(MRF) [27] and the conditional random field (CRF) [28]. Paul et al. proposed a particle
swarm optimization-based unsupervised dimensionality reduction method for HSI classifi-
cation, where spectral and spatial information is utilized to select informative bands [29].
Sparse representation-based classifiers (SRCs) [30], adaptive nonlocal spatial-spectral ker-
nels (ANSSKs) [31], and SVMs with composite kernels (SVMCKs) [32] introduced spatial
features into HSI classification to effectively explore the spatial information with spec-
tral features. Yu et al. developed a semisupervised band selection (BS) approach based
on dual-constrained low-rank representation BS for HSI classification [33]. Nevertheless,
traditional HSI classification methods, whether they are based on spectral information
or spectral-spatial information, all rely on handcrafted features with limited represented
ability, which results in poor generalization ability.

With the development of computer vision, numerous effective HSI classification
methods based on deep learning have been presented. Typical deep learning methods
include deep belief networks (DBNs), convolutional neural networks (CNNs), recurrent
neural networks (RNNs), and stacked auto-encoders (SAEs). CNNs have the power to
extract nonlinear and hierarchical features, which have prompted much attention for
remote sensing processing. For example, Hu et al. presented a deep CNN with five 1-D
convolutional layers that received pixel vectors as input data, classifying HSI data cubes
only in the spectral domain [34]. Mei et al. trained the model by considering the mean
and standard deviation per spectral band of the neighboring pixels, the spectrum of the
pixel, and the spectral mean of neighboring pixels, introducing several improvements into
the CNN1D architecture [35]. However, the input of these classification methods based
on 1-D CNN must be flattened into 1-D vectors, resulting in the underutilization of the
spatial information.

Recently, deep learning classification methods utilizing spectral and spatial informa-
tion have been gradually developed to effectively learn discriminative representations
and hierarchical features. For instance, Slavkovikj et al. integrated spectral and spatial
information into a 1-D kernel by reconstructing the spectral-spatial neighbourhood win-
dow [36]. He et al. used covariance matrices to train the 2-D CNN, which encoded the
spectral-spatial information of diverse size neighborhoods of 20 principal components and
obtained multiscale covariance maps [37]. Lee et al. introduced a context deep CNN to
explore local contextual interactions, where 2-D CNN was utilized to capture spectral and
spatial separate features [38]. Chen et al. introduced a supervised 2-D CNN and a 3-D
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CNN for classification; here, the 2-D CNN was composed of three 2-D convolutional layers
and the 3-D CNN consisted of three 3-D convolutional layers [39]. Although these HSI
classification methods can make use of the spatial context information, the spectral-spatial
joint features achieved are separated into two independent parts. Therefore, some spectral-
spatial classification methods are proposed to learn the joint spectral-spatial information.
To effectively investigate the spectral-spatial information, Xi et al. presented a deep proto-
typical network with hybrid residual attention [40]. To maximize the exploitation of the
global and multiscale information of HIS, Yu et al. presented a dual-channel convolutional
network for HSI classification [41]. Zhu et al. constructed a novel deformable CNN-based
HSI classification method, where the deformable convolutional sampling locations were
introduced to adaptively adjust the HSI spatial context [42]. Rao et al. designed a Siamese
CNN with a 3-D adaptive spatial spectrum pyramid pooling layer, whose input was 3D
sample pairs of different sizes, regardless of the number of spectral bands [43]. To fully
explore the discriminant features, Zhan et al. innovated a three-direction spectral-spatial
convolution neural network to improve the accuracy of change detection [44]. To eliminate
redundant information and interclass interference, Ge et al. designed an adaptive hash
attention and lower triangular network for HSI classification [45]. Although these classifica-
tion methods can extract deep joint spectral-spatial features, it is still inconvenient for them
to focus more on discriminated feature regions and restrain the unnecessary information
from plentiful spectral-spatial features.

Inspired by the attention mechanisms of human visual perception, many researchers
introduce the attention mechanism into HSI classification to focus on the most valuable
information parts. For example, Gao et al. explicitly modeled independencies between
channels to adaptively recalibrate channel feature responses by introducing the squeeze-
and-excitation network [46]. To solve the problem of large amounts of initial information
being lost in CNN pipelines, Lin et al. proposed an attention-aware pseudo-3-D (AP3D)
convolutional network for HSI classification [47]. Yang et al. designed an end-to-end
residual spectral-spatial attention network to accelerate the training process and avoid
overfitting [48]. Hang et al. constructed a spectral attention subnetwork and a spatial
attention subnetwork for spectral and spatial features classification [49]. To improve
feature processing for HSI classification, Paoletti et al. devised multiple attention-guided
capsule networks [50]. Although these classification methods based on the attention
mechanisms can achieve good classification accuracy, their attention modules are too
simple and only optimize in a spectral or spatial dimension. In addition, due to the simple
concatenate operation between spectral and spatial features, it may have lost a large amount
of important information and be difficult to capture high-level semantic features.

To solve the aforementioned problems, we propose a discriminative spectral-spatial-
semantic feature network based on shuffle and frequency attention mechanisms for HSI
classification, where multiple functional modules are constructed based on CNNs. First,
we design a spectral-spatial shuffle attention module, which can not only capture local
and global spectral and spatial separate features, but also integrate the large short-range
correlation between spectral and spatial features, while modeling the large long-range
interdependency of spectral and spatial data. With these network units, the category
attribute information of HSI can be fully excavated. Second, a context-aware high-level
spectral-spatial feature extraction module is constructed to extract the multiscale high-level
context features of scale invariance, further enriching category semantic information, and
outputting more abstract and robust high-resolution representations. Then, to compress the
spectral channels and obtain more manifold spectral-spatial features, we utilize a spectral-
spatial frequency attention module, which introduces multiple frequency components and
enriches high-level semantic information for classification. Sequentially, we present a cross-
connected semantic feature extraction module, which not only extracts the global context
of high-level semantic features, but also suppresses noisy boundaries. Finally, dropout and
batch normalization (BN) optimization methods are introduced into the proposed method
to ameliorate the classification performance.
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The main contributions of this work can be summarized as follows:

(1) To fully excavate the category attribute information of HSI, we design a spectral-spatial
shuffle attention module (SSAM). First, SSAM extracts local and global spectral and
spatial independent features. Second, SSAM aggregates the large short-range close
relationship between spectral and spatial features and updates the large long-range
interdependency of spectral and spatial data.

(2) We construct a context-aware high-level spectral-spatial feature extraction module
(CHSFEM) to capture the multiscale high-level spectral-spatial features of scale in-
variance. The CHSFEM can not only enrich discriminative spectral-spatial multiscale
features for limited labeled data, but also maintain high-resolution representations
throughout the process and repeatedly fuse multiscale subnet features.

(3) We utilize a spectral-spatial frequency attention module (SFAM) to adaptively com-
press the spectral channels and introduce multiple frequency components, which
achieves manifold spectral-spatial features and enriches high-level semantic features
for classification.

(4) To obtain the global context semantic features, we develop a cross-connected semantic
feature extraction module (CSFEM) between the encoder part and the decoder part.
The CSFEM can effectually suppress noisy boundaries. Meanwhile, the spectral-
spatial shuffle attention features from the encoder phase can be weighted by the
diverse high-level frequency attention features and select shuffle attention features
that are more valuable to HSI classification, sequentially contributing to high-level fre-
quency attention features, restoring the boundaries of categories in the decoder phase.

The rest of this article is organized as follows: In Section 2, the proposed methods are
introduced in detail. In Section 3, the experiments and results are analyzed and discussed.
Finally, in Section 4, we conclude this article and describe our future work.

2. The Proposed Hyperspectral Image Classification Method

This paper proposes a discriminative spectral-spatial-semantic feature network based
on shuffle and frequency attention mechanisms for HSI classification (DSFNet). The detailed
structure of DSFNet is provided in Figure 1. The DSFNet consists of four main parts: the
initial module, the encoder phase, the decoder stage, and the classification module. In
proposed DSFNet, 3-D image cube of size 23× 23× 10 is chosen from the raw hyperspectral
dataset using PCA as a sample. First, we employ the initial module to capture the general
spectral-spatial features of the training samples. Next, the encoder phase is designed to
capture more abstract and discriminative joint spectral-spatial features, while learning the
large short-range and long-range interdependency of spectral and spatial data. Then, we
construct a decoder stage, which can not only obtain the high-level global cross-connected
semantic features for classification but also take full advantage of the spectral-spatial
shuffle and frequency attention features to suppress the noisy boundaries and restore the
boundaries of categories. Finally, to enhance the classification performance, we introduce
dropout and BN optimization methods into the DSFNet.

2.1. Encoder and Decoder
2.1.1. Encoder Part

As shown in Figure 1, in the encoder stage, we use different network units to acquire
more expressive and heterogeneous joint spectral-spatial features, adequately exploring
the category attribute information of HSI. The encoder stage involves three dominant
parts: the spectral-spatial shuffle attention module (SSAM), the context-aware high-level
spectral-spatial feature extraction module (CHSFEM), and the spectral-spatial frequency
attention module (SFAM). First, the general feature maps obtained from the initial module
are transmitted to two SSAMs. The SSAM is constructed based on a “Deconstruction-
Reconstruction” structure, which can not only extract local and global spectral and spatial
features separately but also aggregate the large short-range correlation between spectral
and spatial information, further modelling the large long-range interdependency of spectral
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and spatial data. SSAM can not only capture abundant topographic information but also
balance the poor classification problem caused by unbalanced samples. The spectral-spatial
shuffle attention features obtained from two SSAMs are considered low-level features.
Subsequently, the spectral-spatial shuffle attention features are fed into the CHSFEM. The
CHSFEM including three subnets, can extract more nonobjective multiscale spectral-spatial
features of scale invariance, where we consider the information achieved as high-level
features. Furthermore, the high-level spectral-spatial features are sent to three SAFMs.
The SAFM introduces multiple frequency components to compress the spectral channels
to acquire diversified spectral-spatial features, which complement the reaped high-level
features. CHSFEM and SFAM can solve the problem that it is difficult to extract more
discriminative spectral-spatial features the deepening of neural network models.
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Figure 1. The architecture of the proposed DSFNet.

2.1.2. Decoder Part

As expressed in Figure 1, in the decoder stage, several functional modules are em-
ployed to output high-level cross-connected spectral-spatial-semantic features for classifica-
tion. The decoder stage is composed of four CSFEMs. On the one hand, the CSFEM captures
global context cross-connected spectral-spatial-semantic features via global average pooling
and global max pooling operations for the classification task. On the other hand, the CSFEM
can take full advantage of the spectral-spatial shuffle attention features to guide high-level
spectral-spatial frequency attention features to suppress the noisy boundaries and restore
the boundaries of categories in the decoder phase.

2.2. Spectral-Spatial Shuffle Attention Module

In HSI classification, due to the insufficient receptive field of convolution, it is difficult
to extract spectral and spatial global independent information. In addition, different
convolution layers extract different level features from HSI. The shallow layers can only
capture low-level spectral-spatial features, and HSI lack the ability to learn large short-
range and long-range interdependency of spectral and spatial features. To solve the above
problems, we design the spectral-spatial shuffle attention module.

The network structure of SSAM is shown in Figure 2. The SSAM is performed based
on a “Deconstruction-Reconstruction” structure. First, the SSAM divides the input general
spectral-spatial features into multiple groups. Next, each group is split into two branches,
i.e., channel attention and spectral-spatial attention. Then, we employ a simple concatenate
operation and a shuffle unit [51] to integrate the two branches into one new group. Finally,
the spectral-spatial features of each new group are aggregated, and we utilize the channel
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shuffle operation similar to ShuffleNet V2 [51] to enable information representation between
any two new groups.
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2.2.1. Feature Grouping

The input general features of SSAM are denoted as XH×W×C, where H and W represent
the height and width of the spatial dimension, respectively, and C refers to the number
of channels. First, the SSAM splits X into g groups along the spectral dimension. While
X = [x1, x2, . . . , xm, . . . , xg], xm ∈ RH×W×(C/g), each xm can not only extract local spectral-
spatial joint features but also capture the large short-range interdependency of spectral and
spatial features. Then, each group xm is divided into channel attention and spectral-spatial
attention, which are represented by xm1 and xm2 ∈ RH×W×(C/2g), respectively. The former
can emphasize the important informative features and suppress the unnecessary ones by
controlling the weight of each channel. The latter can obtain the local spectral attention, the
local spatial attention, and the local attention distribution, meanwhile, can also learn the
close relationship of local spectral and spatial features by generating the attention mask.

2.2.2. Channel Attention

As shown in Figure 2, to enhance the discriminative spectral bands and restrain the
unimportant spectral bands, we introduce the squeeze-and-excitation (SE) block into the
SSAM [46]. The SE consists of a squeeze process and an excitation process. First, 2D global
average pooling (GAP) is used to realize the squeeze process, which averages the spatial
dimension of features with a size of H ×W × (C/2g) to form 1× 1× (C/2g) features
and obtains the important feature channels. Then, the extraction process includes two
fully connected layers (FCs). The first FC is used to compress C/2g channels into ( C

2g )/r
channels and the second FC restores the compressed channels to C/2g channels. Finally,
the original output features are multiplied by the weight coefficients which are limited to
the [0, 1] range by a sigmoid function, to guarantee that the input features of the next layer
are optimal.

2.2.3. Spectral-Spatial Attention

As exhibited in Figure 2, the spectral-spatial attention can be split into three streams,
namely the spatial attention stream, the spectral attention stream, and the attention distri-
bution stream. Compared with channel attention, spectral-spatial attention can focus on
“what” and “where”. Next, we introduce the three streams in detail.
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Spatial Attention Stream: The spatial attention stream is constructed to extract more
complex category attribute information in the spatial domain, whose input features of the
spatial attention stream are defined as X =

{
xs ∈ RC/2g

}
, where xs represents the spectral

vector of the mth spatial location. First, we employ two 1× 1 2D convolution layers to
transform the input features into f (X) ∈ RH×W×(C/2gh) and g(X) ∈ RH×W×(C/2gh), which
can reduce the number of input channels and relieve computational stress. The equation of
f (X) can be summarized as follows:

f (X) = σ(ω f ∗ X + b f ) (1)

where ω f and b f refer to the weight and bias of the 2D convolution layer. The equation of
g(X) is analogous to the f (X). Next, f (X) and g(X) are reshaped to HW/(C/2gh). Then,
we obtain the relationship R of different spatial pixels by calculating the product of f (X)

and g(X)T as follows:
R = f (X)g(X)T (2)

Finally, softmax is utilized to compute the similarity score sij of any two spatial pixels
via the equation as follows:

sij = eR(i,j)/
HW×HW

∑
i=1

eR(i,j) (3)

Spectral Attention Stream: The spectral attention stream is proposed to capture

the intimate interdependency of bands in the spectral domain. X =
{

xn ∈ RH×W}C/2g
n=1

represents the input features of spectral attention stream, where xn is the feature map of
the nth channel. First, to reduce the number of parameters and calculation cost in the
training process, two 3× 3 depth-wise convolution layers are used to transform the input
features into h(X) ∈ RH×W×(C/2gh) and k(X) ∈ RH×W×(C/2gh). The equation of h(X) can
be described as follows:

h(X) = σ(ωh ∗ X + bh) (4)

where ωh and bh refer to the weight and bias of the depth-wise convolution layer, re-
spectively. The equation of k(X) is analogous to the h(X). Second, h(X) and k(X) are
reshaped to HW/(C/2gh). Therefore, we obtain the relationship Q of different channels by
calculating the product of h(X)T and k(X) as follows:

Q = h(X)Tk(X) (5)

Finally, softmax is utilized to compute the similarity score qij of any two channels via
the equation as follows:

qij = eQ(i,j)/
(C/2gh)×(C/2gh)

∑
i=1

eQ(i,j) (6)

Attention Distribution Stream: To guarantee the flexibility of attention matrices, we
adaptively distribute the above two similarity matrices to all locations and bands. The input
features of attention distribution stream are referred to X ∈ RH×W×(C/2g). As illustrated
in Figure 2, a 3 × 3 2D convolution layer is used to transform the input features into
p(X) ∈ RH×W×(C/2gh). The equation of p(X) can be written as follows:

p(X) = σ(ωp ∗ X + bp) (7)

where ωp and bp refer to the weight and bias of the 2D convolution layer. Next, the attention
mask M is captured by matrix multiplication via the equation as follows:

M = R× P×Q (8)

Finally, we convert M to M′ ∈ RH×W×(C/2g) to obtain the final attention mask.
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2.2.4. Aggregation

All the sub-features from channel attention and spectral-spatial attention are inte-
grated, which not only obtains more expressive local spectral attention, local spatial at-
tention, and local attention distribution, but also captures the close relationship of local
spectral and spatial features. After that, we aggregate local spectral-spatial joint features
from all new groups, which can obtain more detailed and comprehensive spectral and
spatial global independent features, while merging the large short-range interdependency
of spatial and spectral features, further modelling the large long-range close correlation
of spectral and spatial data. Finally, the channel shuffle operator is utilized to enable
cross-group information flow along the channel dimension. The final output of SSAM is
the same size of X, making SSAM quite easy to integrate with the proposed DSFNet.

2.3. Context-Aware High-Level Spectral-Spatial Feature Extraction Module

As the number of convolutional layers increases, different convolutional layers can
capture features from fine to coarse. However, traditional CNNs simply pass the feature
maps from one convolutional layer to the next convolutional layer, resulting in CNNs not
making full use of the multiscale information to train networks. Therefore, we construct a
context-aware spectral-spatial feature extraction module to achieve the utmost multiscale
spectral-spatial features of scale invariance. The network structure of CHSFEM is displayed
in Figure 3.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 31 
 

 

 
Figure 3. The schematic diagram of CHSFEM. 

Here, the CHSFEM employs a “Horizontal-Vertical” sampling structure, which can 
capture the uniform scale spectral-spatial features from shallow to deep, as well as repeat-
edly fuse low, middle, and high three-scale features from different scale subnets to obtain 
multi-scale features. The CHSEFM realizes multiscale spectral-spatial feature of scale in-
variance in two dimensions. In the horizontal direction, the CHSFEM obtains the expres-
sive depth spectral-spatial features at the same scale with dense connections. The dense 
connections can reuse spectral-spatial features, effectively increase the information flow, 
and lessen the negative effects of overfitting. In the vertical direction, we use downsam-
pling and upsampling operations to generate low, middle, and high three-scale spectral-
spatial feature maps, which can make the feature maps change between detailed and ab-
stract. In addition, to ensure the integrity of spectral-spatial features, we design a commu-
nication mechanism between fine and coarse features, which complements the different 
information corresponding to low-scale, middle-scale, and high-scale parts. The CHSFEM 
is introduced in detail as follows. 

First, we adopt a pre-processing module consisting of several bottleneck blocks to 
reduce training parameters and be conducive to extract more representative spectral-spa-
tial features. Second, we start from a low-scale subnetwork as the first stage and gradually 
connect low-to-middle-to-high subnetworks in parallel one by one, forming new stages. 
Each subnetwork implements feature extraction in two dimensions. In the horizontal di-
rection, the spectral-spatial features are captured by repeated 3 3×  convolution with 
dense connections at the same scale. The horizontal connections can reserve high-resolu-
tion HSI information and acquire scale invariant features. In the vertical direction, we em-
ploy downsampling and upsampling operations to generate different scale features. Then, 
multiscale spectral-spatial features at diverse levels are fused using elementwise summa-
tion to ensure that each network can tautologically obtain the information from other par-
allel networks. The vertical connects facilitate the HSI classification by producing more 
abstract features. Subsequently, we obtain three different scale features with context-
aware information, and two of the smaller features are upsampled to the largest feature. 
Finally, we combine them by a concatenate operation to obtain the output of the CHSFEM. 

2.4. Spectral-Spatial Frequency Attention Module 
High-level spectral-spatial features usually contain more abundant and more ab-

stract information, which is helpful for HSI classification. To compress the spectral chan-
nels and further achieve more discriminant and more plentiful features, we present the 
spectral-spatial frequency attention module, which can commendably complement the 
spectral-spatial features obtained from CHSFEM by introducing multiple frequency 

Figure 3. The schematic diagram of CHSFEM.

Here, the CHSFEM employs a “Horizontal-Vertical” sampling structure, which can
capture the uniform scale spectral-spatial features from shallow to deep, as well as re-
peatedly fuse low, middle, and high three-scale features from different scale subnets to
obtain multi-scale features. The CHSEFM realizes multiscale spectral-spatial feature of
scale invariance in two dimensions. In the horizontal direction, the CHSFEM obtains
the expressive depth spectral-spatial features at the same scale with dense connections.
The dense connections can reuse spectral-spatial features, effectively increase the informa-
tion flow, and lessen the negative effects of overfitting. In the vertical direction, we use
downsampling and upsampling operations to generate low, middle, and high three-scale
spectral-spatial feature maps, which can make the feature maps change between detailed
and abstract. In addition, to ensure the integrity of spectral-spatial features, we design
a communication mechanism between fine and coarse features, which complements the
different information corresponding to low-scale, middle-scale, and high-scale parts. The
CHSFEM is introduced in detail as follows.

First, we adopt a pre-processing module consisting of several bottleneck blocks to
reduce training parameters and be conducive to extract more representative spectral-
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spatial features. Second, we start from a low-scale subnetwork as the first stage and
gradually connect low-to-middle-to-high subnetworks in parallel one by one, forming
new stages. Each subnetwork implements feature extraction in two dimensions. In the
horizontal direction, the spectral-spatial features are captured by repeated 3× 3 convolution
with dense connections at the same scale. The horizontal connections can reserve high-
resolution HSI information and acquire scale invariant features. In the vertical direction,
we employ downsampling and upsampling operations to generate different scale features.
Then, multiscale spectral-spatial features at diverse levels are fused using elementwise
summation to ensure that each network can tautologically obtain the information from
other parallel networks. The vertical connects facilitate the HSI classification by producing
more abstract features. Subsequently, we obtain three different scale features with context-
aware information, and two of the smaller features are upsampled to the largest feature.
Finally, we combine them by a concatenate operation to obtain the output of the CHSFEM.

2.4. Spectral-Spatial Frequency Attention Module

High-level spectral-spatial features usually contain more abundant and more abstract
information, which is helpful for HSI classification. To compress the spectral channels and
further achieve more discriminant and more plentiful features, we present the spectral-
spatial frequency attention module, which can commendably complement the spectral-
spatial features obtained from CHSFEM by introducing multiple frequency components.
The network structure of SFAM is shown in Figure 4. The SFAM is described in detail in
later sections.
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2.4.1. Discrete Cosine Transform (DCT)

Specifically, the equation of two-dimensional (2D) DCT is indicated as follows:

Bi,j
h,w = cos(

πh
H

(i +
1
2
)) cos(

πw
W

(j +
1
2
)) (9)

Next, the 2D DCT can be written as follows:

f 2d
h,w =

H−1

∑
i=0

W−1

∑
j=0

x2d
i,j Bi,j

h,w (10)

where h ∈ {0, 1, 2, . . . , H − 1} and w ∈ {0, 1, 2, . . . , W − 1}. The 2D DCT frequency spec-
trum is represented by f ∈ RH×W . x2d ∈ RH×W is the input, H refers to the height of the



Remote Sens. 2022, 14, 2678 10 of 30

input, and W denotes the width of the input. Then, the inverse 2D DCT can be expressed
as follows:

x2d
i,j =

H−1

∑
h=0

W−1

∑
w=0

f 2d
h,wBi,j

h,w (11)

where i ∈ {0, 1, 2, . . . , H − 1} and j ∈ {0, 1, 2, . . . , W − 1}.

2.4.2. Multispectral Frequency Attention

First, we divide the input X into many parts along the spectral dimension and use
[X0, X1, . . . , Xn−1] to represent them, where X ∈ RH×W×C′ , i ∈ {0, 1, 2, . . . , n− 1}, C′ = C

n
and C should be divisible by n. Second, each part is assigned a corresponding 2D DCT
frequency component, and the output of 2D DCT can be used as the compressed results of
SFAM as follows:

Freqi = 2DDCTui ,vi (Xi)

=
H−1
∑

h−0

W−1
∑

w=0
Xi

hi ,wi
Bui ,vi

h,w
(12)

where [ui, vi] are the 2D DCT frequency component indices corresponding to Xi. The
compressed vector is denoted by Freq ∈ RC′ . Then, we use the concatenate operation to
obtain the whole compressed vector as follows:

Freq = compress(X)
= ([Freq0, Freq1, . . . , Freqn−1])

(13)

where Freq ∈ RC is the obtained multispectral vector. Additionally, the output of SFAM
can be defined as follows:

output = sigmoid(FC(Freq)) (14)

2.4.3. Criteria for Choosing Frequency Components

It is vital to choose suitable frequency component indices [ui, vi] for each Xi. To fulfil
the SFAM, we adopt a two-step selection scheme to select frequency components. First, the
importance of each frequency component is determined, and then we capture the effects
of employing diverse numbers of frequency components. Sequentially, the results of each
frequency component are evaluated. Finally, we choose the Top-k highest performance
frequency components based on the evaluation results [52].

2.5. Cross-Connected Semantic Feature Extraction Module

During the process of HSI classification, if the boundary of each category is not clearly
defined, it may damage the classification accuracy. In addition, category information of
HSI has a texture similar to that of its surrounding adjacent regions, which may aggravate
the difficulty of HSI classification. To solve the above issues, we build the cross-connected
semantic feature extraction module. The CSFEM can obtain high-level context cross-
connected semantic features and fully exploit spectral-spatial shuffle attention features
from the encoder phase to better guide more the diversified spectral-spatial frequency
attention features, suppress noisy boundaries and restore category boundaries, while
further strengthening the classification performance. Figure 5 exhibits the schematic
diagram of the CSFEM.
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First, we employ global average pooling and global max pooling to generate two
different spectral-spatial descriptors, which are denoted by Fgap and Fgmp. Second, two
descriptors are aggregated using elementwise summation, which can learn the global
context features and help to obtain more refined features. The gating module composed of
two fully connected layers (FCs) and one ReLU activation function is adopted to reduce the
complexity of the proposed DSFNet and aid generalization. After the sigmoid operation,
we obtain the global context attention features p ∈ R1×1×C. The equation of C can be
provided as follows:

p = σ(W1(δ(W0(Fgap + Fgmp)))) (15)

where W0 ∈ R1×1×(C/4) and W1 ∈ R1×1×C represent convolutional kernels of FCs. σ
refers to the sigmoid function. δ denotes the ReLU activation function. Subsequently,
3× 3 convolution is performed on the low-level feature to obtain T ∈ RH×W×C. Next,
matrix multiplication is performed between P and T to acquire L ∈ RH×W×C. Finally,
an elementwise summation is used between the high-level feature and L to achieve the
final output.

3. Experiments and Results

To qualitatively and quantitatively analyze the classification performance of the pro-
posed method, we compare it with some state-of-the-art HSI classification methods on four
public HSI datasets. We discuss several main factors influencing the classification perfor-
mance of the proposed method, e.g., the number of training samples and the spatial size of
input cube. In addition, to verify the effectiveness of the proposed method framework, we
perform three ablation experiments on the four HSI datasets.

3.1. Experimental Datasets Description

To demonstrate the superiority of the proposed DSFNet, four benchmark datasets are
used for the experiments.

The Salinas-A Scene (SAC) dataset [53] is a small subscene of Salinas scene, gathered
by an airborne visible infrared imaging spectrometer (AVIRIS) sensor over the Salinas
Valley of California. It consists of 6 ground-truth categories and a spatial resolution of
3.7 m per pixel. The original SAC dataset is 83× 86× 224, and its wavelength ranges from
0.4 to 2.5 µm. Since 20 bands with high moisture absorption are removed, the remaining
204 spectral bands can be used for HSI experiments.

The University of Pavia (UP) [10] is acquired by a reflective optics system imaging
spectrometer (ROSIS-03) sensor over the campus of the University of Pavia, Italy. It is
composed of 9 ground-truth categories and a spatial resolution of 1.3 m per pixel. The
original UP dataset is 610× 340× 105, and its wavelength ranges from 0.43 to 0.86 µm. Due
to the existence of a high amount of noise, the corrected UP dataset includes 103 bands.

The India Pines (IP) dataset [10] is acquired by an airborne visible infrared imaging
spectrometer (AVIRIS) sensor over the India Pine Forest pilot area of north-western Indiana.
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It consists of 16 ground-truth categories and a spatial resolution of 20 m per pixel. The
original IP dataset is 145 × 145 × 224, and its wavelength ranges from 0.2 to 2.4 µm.
Because some spectral bands cannot be reflected by water, the corrected IP dataset includes
200 bands.

The Salinas (SA) dataset [54] is acquired by AVIRIS sensor over the Salinas Valley of
California. It has 16 ground-truth categories and a spatial resolution of 3.7 m per pixel.
The original SA dataset is 512× 217× 224, and its wavelength ranges from 0.4 to 2.5 µm.
After removing some spectral bands cannot be reflected by water, the corrected SA dataset
includes 204 bands.

Tables 1–4 show the total number of samples of each category for each HSI dataset,
and Figures 6–9 list false-color images and ground-truths of the four datasets.

Table 1. Land cover class information for the SAC dataset.

No. Class Train Test

1 Broccoli-green-weeds-1 40 351
2 Corn-senseced-green-weeds 135 1208
3 Lettuce-romaine-4wk 62 554
4 Lettuce-romaine-5wk 153 1372
5 Lettuce-romaine-6wk 68 606
6 Lettuce-romaine-7wk 80 719

Total 538 4810

Table 2. Land cover class information for the UP dataset.

No. Class Train Test

1 Asphalt 664 5967
2 Meadows 1865 16,784
3 Gravel 210 1889
4 Trees 307 2757
5 Metal sheets 135 1210
6 Bare Soil 503 4526
7 Bitumen 133 1197
8 Bricks 369 3313
9 Shadows 95 852

Total 4281 38,495

Table 3. Land cover class information for the IP dataset.

No. Class Train Test

1 Alfalfa 10 36
2 Corn-notill 286 1142
3 Corn-mintill 166 664
4 Corn 48 189
5 Grass-pasture 97 386
6 Grass-trees 146 584
7 Grass-pasture-mowed 6 22
8 Hay-windrowed 96 382
9 Oats 4 16
10 Soybean-notill 195 777
11 Soybean-mintill 491 1964
12 Soybean-clean 119 474
13 Wheat 41 164
14 Woods 253 1012
15 Buildings-Grass-Tree 78 308
16 Stone-Steel-Towers 19 74

Total 2055 8194
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Table 4. Land cover class information for the SA dataset.

No. Class Train Test

1 Broccoli-green-weeds-1 201 2825
2 Broccoli-green-weeds-2 373 3353
3 Fallow 198 1178
4 Fallow-rough-plow 140 154
5 Fallow-smooth 268 2410
6 Stubble-trees 396 3563
7 Celery 358 3221
8 Grapes-untrained 1128 10,143
9 Soil-vinyard-develop 621 5582
10 Corn-senseced-green-weeds 328 2950
11 Lettuce-romaine-4wk 107 961
12 Lettuce-romaine-5wk 193 1734
13 Lettuce-romaine-6wk 92 824
14 Lettuce-romaine-7wk 107 963
15 Vinyard-untrained 727 6541
16 Vinyard-vertical-trellis 181 1626

Total 5418 48,711
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3.2. Experimental Evaluation Indications

We employ the OA, AA and Kappa coefficient as the evaluation indexes to evaluate
the classification performance of the proposed DSFNet.

The confusion matrix (CM) can reflect the classification results, which is the basis
for people to understand other classification evaluation indexes of HSI. Assuming that
there are n kinds of ground objects, and the equation of the CM with the size of n× n is
as follows:

C =


c11 c12 . . . c1n
c21 c22 . . . c21
. . . . . . . . . . . .
cn1 cn2 . . . cnn

 (16)

where element cij represents that the number of samples in category i has been classified

as class j.
n
∑
i

cij and
n
∑
j

cij denote the number of samples in category i and the number of

samples in category j respectively.
The overall accuracy (OA) is the proportion of correctly classified samples in the total

samples. The OA is defined as follows:

OA =

n
∑

i=1
cii

n
∑

j=1

n
∑

i=1
cij

(17)
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The average accuracy (AA) represents the ratio between the total sample numbers of
each category and the correctly classified sample numbers. The AA is defined as follows:

AA =
1
n
×

n

∑
i=1

cii
cij

(18)

The Kappa coefficient measures the consistency between the ground-truth and the
classification results. The Kappa is defined as follows:

Kappa =

N
n
∑

i=1
cii −

n
∑

i=1
(

n
∑

j=1
cij ×

n
∑

i=1
cij)

N2 −
n
∑

i=1
(

n
∑

j=1
cij ×

n
∑

i=1
cij)

(19)

3.3. Experimental Settings

For the IP dataset, we randomly choose 20% of the samples as the training set, and
the remaining 80% of the samples are utilized as the test set. For other three experimental
datasets, we randomly choose 10% of the samples as the training set, and the remaining
90% of the samples are utilized as the test set. Due to the sample numbers in the different
datasets are diverse, different batch sizes are set for the four datasets. The batch sizes
of the SAC dataset, the UP dataset, the IP dataset, and the SA dataset are 16, 64, 16, and
128, respectively. In addition, the training epochs of the SAC dataset, the UP dataset, the
IP dataset, and the SA dataset are 100, 25, 200, and 50, respectively. Adopting Adam as
the optimizer to make the model converge rapidly, the learning rates of the SAC dataset,
the UP dataset, the IP dataset, and the SA dataset are 0.0005, 0.0005, 0.0001, and 0.0005,
respectively.

The hardware environment of the experiments is a server with an NVIDIA GeForce
RTX 2060 SUPER GPU and Intel i-7 9700F CPU. In addition, the software platform is based
on TensorFlow 2.3.0, Keras 2.4.3, CUDA 10.1 and Python 3.6.

3.4. Framework Parameter Settings

In the proposed DSFNet, five vital parameters affect the performance of HSI classi-
fication, i.e., the number of training samples, the spatial size of image cube, the number
of principal components, the number of groups for SSAM, and the number of frequency
components for SFAM. In this part, we discuss the influences of these five parameters on
HSI classification when setting different values.

3.4.1. Sensitivity to the Number of Training Samples

To explore the sensitivity of the proposed DSFNet to different numbers of training
samples, we randomly select 1%, 3%, 5%, 7%, 10%, 15%, 20%, 25% and 30% of the samples
as the training set, and the corresponding remaining samples as the test set. Figure 10
shows the corresponding classification results of diverse training sample numbers on the
SAC, UP, IP and SA datasets. In general, as the proportion of training samples increases, the
OA, AA and Kappa of the DSFNet also gradually increase on the four datasets. Specifically,
for SAC, UP and IP datasets, when the proportion of training samples is 1%, 3%, 5% or 7%,
for SA dataset, when the proportion of training samples is 1%, we can clearly see that the
classification performance is not good, because random selection of samples results in some
sample categories not being selected. When the proportion of training samples is 10%, 15%
or 20%, the OA, AA and Kappa of the DSFNet on the four datasets are almost all more than
96%. When the proportion of training samples is 25% or 30%, the OA, AA and Kappa of
the DSFNet on the four datasets are all over 99%. Because the SAC and IP datasets have
relatively few labeled samples, the proportion of training samples greatly influences the
classification performance of the two datasets. In contrast, the UP and SA datasets have a
mass of labeled samples, which can obtain fine classification performance for small labeled
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samples. Therefore, to obtain the unexceptionable classification results of the DSFNet, we
randomly choose 20% of the samples as the training set, and the remaining 80% of the
samples as the test set for the IP dataset. For the other three experimental datasets, we
randomly choose 10% of the samples as the training set, and the remaining 90% of the
samples are utilized as the test set.
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3.4.2. Sensitivity to the Spatial Size of Input Cube

The classification performance of the proposed DSFNet is sensitive to the spatial size
of image cube. Although the larger spatial size of input cube contains richer contextual
information, the information proportion of the center pixel among pixels in the input cube
is lower. The smaller spatial size of input cube can reduce computational complexity and
include less noise, but an inadequate receptive field leads to the loss of information and
damage to the classification ability. Therefore, we utilize eight different spatial sizes of
image cube to find the optimal cube, which are set 15× 15, 17× 17, 19× 19, 21× 21, 23× 23
25× 25, 27× 27 and 29× 29. Figure 11 shows the influences of diverse patch spatial sizes on
the four HSI datasets. We can clearly see that when the spatial size of image cube is 23× 23,
the evaluation indexes reach the optimal values on the IP and UP datasets. Therefore, the
spatial size of 23× 23 is regarded as the most suitable spatial size of the DSFNet’s input
cube for the IP and UP datasets. When the spatial size of image cube is 21× 21 or 23× 23,
the SAC dataset achieves much better classification performance. Because the OA, AA and
Kappa of latter all reach to 100%, which are superior to the former, hence the spatial size of
23× 23 is decided as the most suitable spatial size of the DSFNet’s input cube for the SAC
dataset. For the SA dataset, when the spatial size of image cube is 21× 21, we can find
that compared with other conditions, the evaluation indexes of OA, AA and Kappa of our
proposed DSFNet are very low. The situation may be the spatial size of 21× 21 contains too
much background information and less contextual information. As shown in Figure 11d, it
is evident that when the spatial size of input cube is 23× 23, the OA, AA and Kappa of the
DSFNet are superior to the others, which are all over 99.98%, we choose the spatial size of
23× 23 as the most suitable spatial size of the DSFNet’s input cube on the SA dataset.
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3.4.3. Sensitivity to the Number of Principal Components

We set the different numbers of principal components to analyze its effect on the
three HSI datasets, i.e., {3, 5, 10, 15, 20, 25, 30, 35, 40}. From Figure 12b,c, we can clearly
see that, when the number of principal components is 30, the UP dataset possesses the
best evaluation indexes, when the number of principal components is 10, the IP dataset
obtain the optimal classification performance. Therefore, we set the number of principal
components to 30 for the UP dataset and 10 for the IP dataset. As shown in Figure 12a, it
is obvious that 20 or 30 principal components show the best classification performance,
of which all the evaluation indications reach 100%. Considering the training time and
parameters, the number of principal components set to 20 is utilized for the SAC dataset.
As shown in Figure 12d, when the number of principal components is 15, we can find
that compared with other conditions, the evaluation indexes of OA, AA and Kappa on SA
dataset are very low. This may be because although the 15 bands retained by PCA contain
a large amount of important information of HSI, there is a strong correlation between these
bands, so there is redundancy among them, which reduces the classification performance
of our proposed method. From Figure 12d, it is obvious that the SA dataset achieves good
evaluation indications in many cases. when the number of principal components is 30, the
OA, AA and Kappa of the DSFNet are superior to the others, which are all over 99.98%, the
number of principal components to 30 is chosen for the SA dataset.

3.4.4. Sensitivity to the Number of Groups for SSAM

The SSAM can not only extract local and global spectral and spatial features separately
but can aggregate the large short-range correlation between spectral and spatial information,
as well as further modeling the large long-range interdependency of spectral and spatial
data. The number of groups for SSAM has a large impact on the classification accuracy of
the three HSI datasets. If the number of groups is too small, the spectral-spatial extraction
is not sufficient and results in the loss of important information. If the number of groups is
too large, the model needs more training parameters and longer training time, resulting in
the aggravated computational burden and the degradation of the model. Therefore, the
classification performance is analyzed to find the optimal number of groups for SSAM.
Figure 13 shows the results when the number of groups is 1, 2, 4, 8, 16 and 32 on the
four HSI datasets. As shown in Figure 13b,c, we can clearly see that when the number of
groups is 4, the UP and IP datasets achieve much better classification accuracy. As shown
in Figure 13a, it is evident that when the number of groups is 1, the OA, AA and kappa
all reach 100. Therefore, the most appropriate number of groups is 1, 4 and 4 for the SAC,
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UP and IP datasets, respectively. As shown in Figure 13d, we can obviously find that all
evaluation indexes of other conditions exceed 99.5%, except for the case where the number
of groups is 32. Considering the cost and training time, we set the number of groups to 1
for the SA dataset.
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3.4.5. Sensitivity to the Number of Frequency Components for SFAM

To investigate the effects of different numbers of frequency components for SFAM,
eight various numbers of frequency components are adopted to find the optimal one, i.e.,
{1, 2, 4, 8, 16, 32, 64, 128}. Figure 14 shows the influences of different frequency components
on the four HSI datasets. From Figure 14b,c, it is obvious that when the number of frequency
components is 16, the UP dataset and IP dataset have a notable classification performance
gain compared with the others. As shown in Figure 14a, when the number of frequency
components is 16, the OA, AA and Kappa are the beat, all attaining 100%. From Figure 14d,
it is obviously seen that all evaluation indexes of other conditions exceed 99%, except for
the case where the number of frequency components is 64. In terms of the training time
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and computational expense, the frequency components of 2 is more proper choice for SA
dataset. The experimental results demonstrate that it is necessary to adopt the appropriate
number of frequency components to refine the captured high-level spectral-spatial features.
Therefore, we set the number of frequency components to 16, 16, 16, and 2 for the SAC
dataset, UP dataset, IP dataset, and SA dataset, respectively.
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3.5. Comparisons with the State-of-the-Art Method

To evaluate the effectiveness of the proposed DSFNet, several classical and advanced
classification methods are selected, including: support vector machine (SVM), random
forest (RF), multinomial logistic regression (MLR), deep convolutional neural networks
(1DCNN) [34], semi-supervised convolutional neural network (2DCNN) [55], image classi-
fication and band selection (3DCNN) [56], context deep CNN (2D_3D_CNN) [57], resid-
ual spectral-spatial attention network (RSSAN) [48], spectral-spatial attention network
(SSAN) [58], multiattention fusion network (MAFN) [59], dual-channel residual network
(DCRN) [60], dimension reduction on hybrid CNN (DRCNN) [61], 3-D–2-D CNN feature
hierarchy (HybridSN) [62], and two-stream convolutional neural network (TSCNN) [63].
To achieve fair comparison results, our proposed DSFNet and compared methods adopt
the same number of training samples: 10%, 10%, 20%, and 10% for the SAC dataset, the UP
dataset, the IP dataset, and the SA dataset. The classification results of the DSFNet and the
compared methods on the four experimental datasets are shown in Tables 5–8, respectively.
In addition, by comparing the proposed DSFNet with the diverse classification methods,
we can obtain the following conclusions from four different perspectives.

Table 5. Classification results on the SAC dataset.

No. SVM RF MLR 1D_CNN 2D_CNN 3D_CNN 2D_3D_CNN RSSAN SSAN MAFN DCRN DRCNN HybridSN TSCNN DSFNet

1 100.00 100.00 100.00 61.78 23.60 99.15 100.00 100.00 96.16 100.00 100.00 100.00 100.00 100.00 100.00
2 69.02 73.75 99.75 84.52 100.00 97.66 98.45 97.26 100.00 100.00 99.65 99.18 100.00 99.83 100.00
3 100.00 0.00 99.80 97.52 95.92 100.00 99.82 100.00 100.00 99.45 91.18 100.00 100.00 100.00 100.00
4 99.62 92.44 69.51 97.93 100.00 99.93 99.56 98.99 99.27 99.02 79.95 96.67 96.42 95.21 100.00
5 100.00 96.18 100.00 99.37 100.00 97.85 100.00 100.00 99.33 61.66 76.88 100.00 100.00 100.00 100.00
6 100.00 98.74 99.72 100.00 99.86 100.00 100.00 96.51 97.82 89.99 100.00 100.00 100.00 100.00 100.00

OA (%) 88.70 87.95 87.45 90.19 75.90 99.04 99.46 98.46 99.09 90.96 88.52 98.84 98.94 98.52 100.00
AA (%) 82.63 82.39 83.29 90.40 77.14 98.99 99.38 96.50 99.03 93.67 82.55 97.82 98.60 98.05 100.00

Kappa (%) 85.61 84.56 83.89 87.76 70.99 98.80 99.32 98.09 98.86 88.84 85.43 98.54 99.67 98.15 100.00

The red font highlights which mechanic works best. The blue font does contrast test, our proposed method
achieves the highest classification accuracy.
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Table 6. Classification results on the UP dataset.

No. SVM RF MLR 1D_CNN 2D_CNN 3D_CNN 2D_3D_CNN RSSAN SSAN MAFN DCRN DRCNN HybridSN TSCNN DSFNet

1 82.51 61.02 51.83 91.15 99.92 94.53 98.55 95.36 99.00 99.98 98.46 99.24 98.54 99.67 99.75
2 6.09 70.21 69.97 97.54 99.80 99.57 98.20 97.17 99.58 97.95 99.15 100.00 99.99 98.23 99.96
3 53.39 0.00 0.00 93.11 99.39 96.39 94.10 90.81 98.22 72.75 99.14 98.43 94.26 99.95 99.95
4 84.41 95.21 98.59 95.29 99.23 98.69 98.20 95.87 99.12 100.00 89.04 98.70 99.32 99.81 99.96
5 100.00 0.00 100.00 98.85 100.00 99.51 99.82 97.82 100.00 70.64 85.88 98.37 96.26 99.90 99.92
6 46.01 67.55 68.8 97.21 100.00 99.58 100.00 98.82 99.93 96.09 100.00 99.96 99.56 99.93 99.96
7 59.87 0.00 0.00 99.24 99.83 97.95 90.82 85.20 94.55 99.45 96.30 98.68 99.44 99.67 99.42
8 65.22 55.57 45.55 88.64 86.50 95.69 97.01 88.16 97.98 77.47 98.85 94.30 88.25 97.93 99.73
9 100.00 0.00 0.00 91.43 97.60 99.33 96.70 96.02 99.61 99.40 93.09 99.75 98.08 100.00 100.00

OA (%) 62.96 67.50 66.41 95.36 98.42 98.16 97.92 95.67 99.14 93.63 98.46 99.10 98.09 98.94 99.89
AA (%) 41.33 34.26 39.88 91.64 96.46 96.28 97.19 94.03 98.25 92.43 94.30 97.97 95.10 96.84 99.77

Kappa (%) 45.12 52.43 50.45 93.81 97.91 97.55 97.23 96.78 98.63 91.58 96.94 98.81 97.47 98.59 99.85

The red font highlights which mechanic works best. The blue font does contrast test, our proposed method
achieves the highest classification accuracy.

Table 7. Classification results on the IP dataset.

No. SVM RF MLR 1D_CNN 2D_CNN 3D_CNN 2D_3D_CNN RSSAN SSAN MAFN DCRN DRCNN HybridSN TSCNN DSFNet

1 92.31 100.00 57.14 92.86 100.00 97.06 90.00 89.74 87.80 100.00 100.00 97.22 100.00 100.00 100.00
2 64.25 63.13 61.06 73.51 72.96 93.36 95.95 97.94 98.33 81.75 86.99 98.59 98.69 95.72 99.48
3 67.11 68.09 65.84 95.19 100.00 97.63 95.94 97.92 99.53 87.14 58.16 98.04 99.85 98.66 99.25
4 52.50 55.00 45.70 98.94 100.00 91.46 90.72 99.47 100.00 88.24 97.06 95.29 99.47 97.47 98.95
5 84.63 86.67 67.27 93.70 98.42 97.70 98.71 99.48 99.47 98.21 89.57 96.98 98.46 93.67 98.72
6 90.58 89.44 87.30 97.93 99.62 99.14 97.82 97.64 99.83 98.63 95.69 99.13 100.00 98.48 100.00
7 85.71 90.00 89.47 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 100.00 100.00 0.00 100.00
8 95.14 88.22 91.39 100.00 100.00 99.74 98.71 100.00 100.00 91.83 100.00 100.00 98.71 100.00 100.00
9 28.57 0.00 0.00 100.00 100.00 100.00 100.00 100.00 77.78 0.00 0.00 100.00 100.00 0.00 100.00

10 71.99 71.21 65.93 96.11 100.00 98.57 99.46 99.87 99.87 95.19 68.45 98.44 99.74 100.00 100.00
11 69.86 72.01 63.44 95.39 94.18 97.50 99.37 98.57 98.00 89.22 93.56 98.93 99.04 99.90 99.85
12 67.05 54.93 47.94 92.96 97.50 98.29 94.51 93.71 98.30 88.32 77.42 96.13 97.23 92.40 98.96
13 90.45 91.41 92.86 100.00 100.00 100.00 100.00 100.00 95.91 96.47 65.60 99.39 100.00 100.00 100.00
14 86.16 84.26 86.82 99.00 100.00 99.50 98.81 99.90 100.00 94.49 97.56 99.12 99.80 99.90 100.00
15 71.36 66.53 68.80 87.18 100.00 98.98 91.59 89.02 98.40 94.97 89.23 99.34 99.68 100.00 100.00
16 100.00 100.00 95.53 95.52 93.42 92.21 91.36 95.65 86.50 93.42 0.00 97.33 91.30 100.00 100.00

OA (%) 74.67 73.92 70.04 91.92 93.10 97.46 97.45 98.05 98.69 92.87 84.28 98.51 99.13 98.28 99.68
AA (%) 69.18 61.06 62.13 82.84 87.24 93.24 95.57 98.11 97.77 77.65 63.34 97.58 98.12 84.09 99.44

Kappa (%) 70.86 70.16 65.41 90.75 92.09 97.10 97.10 97.78 98.51 91.83 82.10 98.30 99.01 98.04 99.64

The red font highlights which mechanic works best. The blue font does contrast test, our proposed method
achieves the highest classification accuracy.

Table 8. Classification results on the SA dataset.

No. SVM RF MLR 1D_CNN 2D_CNN 3D_CNN 2D_3D_CNN RSSAN SSAN MAFN DCRN DRCNN HybridSN TSCNN DSFNet

1 100.00 92.48 0.00 100.00 100.00 100.00 100.00 99.94 100.00 99.83 100.00 99.94 100.00 100.00 100.00
2 99.73 98.01 64.66 96.54 100.00 100.00 100.00 98.76 100.00 100.00 100.00 100.00 100.00 100.00 100.00
3 78.28 56.51 83.35 98.73 100.00 100.00 99.94 98.12 100.00 100.00 99.94 99.83 100.00 100.00 100.00
4 99.78 97.86 100.00 98.46 99.20 98.43 99.76 98.92 78.77 99.21 97.88 99.84 95.58 71.05 100.00
5 96.43 60.66 51.92 83.33 100.00 99.42 99.75 99.48 99.38 99.89 9946 99.71 100.00 100.00 100.00
6 100.00 100.00 99.97 99.72 99.92 100.00 99.55 99.64 100.00 86.44 99.89 100.00 99.89 100.00 100.00
7 100.00 99.65 64.53 100.00 100.00 100.00 100.00 99.05 100.00 99.75 100.00 100.00 100.00 100.00 100.00
8 30.39 41.40 59.21 88.71 78.81 86.03 100.00 99.99 99.99 99.22 100.00 99.96 99.97 99.15 99.99
9 99.40 90.16 54.31 100.00 100.00 99.96 100.00 99.66 99.96 100.00 100.00 98.95 100.00 90.18 100.00

10 92.85 0.00 54.87 99.97 100.00 96.75 99.86 99.53 100.00 100.00 99.93 99.86 97.97 100.00 99.97
11 99.25 0.00 0.00 100.00 100.00 99.90 100.00 99.90 100.00 99.79 100.00 98.26 100.00 100.0 100.00
12 98.82 0.00 0.00 92.70 99.88 100.00 100.00 98.34 100.00 100.00 98.30 100.00 66.74 100.00 100.00
13 100.00 0.00 0.00 96.68 100.00 98.68 100.00 98.05 99.76 94.50 98.68 99.40 0.00 100.00 99.52
14 100.00 0.00 0.00 81.53 100.00 100.00 100.00 99.90 99.07 100.00 100.00 98.06 88.60 94.46 100.00
15 50.72 0.00 0.01 90.95 99.61 100.00 91.89 81.15 99.35 100.00 90.50 99.94 99.47 99.68 100.00
16 100.00 0.00 0.00 100.00 100.00 99.88 99.63 99.08 100.00 96.67 100.00 100.00 100.00 100.00 100.00

OA (%) 58.64 64.34 61.20 94.29 94.34 96.32 98.74 96.38 99.18 98.43 98.41 99.74 97.64 97.37 99.99
AA (%) 4782 49.53 42.15 93.78 96.54 97.87 99.55 98.78 98.94 97.93 98.97 99.56 92.05 93.08 99.98

Kappa (%) 51.51 58.50 55.64 93.64 93.66 95.89 98.60 95.98 99.08 98.25 98.23 99.71 97.37 97.07 99.99

The red font highlights which mechanic works best. The blue font does contrast test, our proposed method
achieves the highest classification accuracy.

(1) SVM, RF and MLR are the traditional classification methods, whereas 1D_CNN,
2D_CNN, 3D_CNN, 2D_3D_CNN, RSSAN, SSAN, MAFN, DCRN, DRCNN, Hy-
bridSN, TSCNN and our proposed DSFNet are based on deep learning. From
Tables 5–8, we can find that compared with the traditional classification methods, the
classification methods utilizing deep learning obtain better performances, except the
classification results of the 2D_CNN on the SAC dataset. This is because traditional
classification methods rely on manual feature extraction with limited represent ability.
Nevertheless, deep learning methods can automatically capture high-level hierarchi-
cal spectral-spatial features from HSI. In addition, our proposed DSFNet achieves
admirable classification accuracy compared with the traditional classification methods
and the other deep learning classification methods. For instance, the proposed method
obtains 100% OA, 100% AA, and 100% Kappa on the SAC dataset, which are 11.30%,
17.37% and 14.39% higher than SVM.
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(2) The TSCNN classification method incorporates the SE concept into the model to
improve the spectral-spatial feature extraction ability by emphasizing automatically
informative features and suppressing the less useful ones. However, the method only
considers the mutual attention dependence between different channels and does not
consider the spatial attention relation between any two pixels. The MAFN employs
a spatial attention module and band attention module to reduce the influence of
interfering pixels and redundant bands. The RSSAN designs a spectral attention
module for spectral band selection and a spatial module to select spatial information.
The SSAN builds a spectral–spatial attention network to obtain discriminative spec-
tral and spectral information. Although the MAFN extracts multiattention spectral
and spatial features, and the RSSAN achieve meaningful spectral-spatial informa-
tion and the SSAN can suppress the effects of interfering pixels, the large long-term
interdependence relationship between spatial and spectral features dose is not cap-
tured. Compared with the TSCNN, MAFN, RSSAN and SSAN, our proposed method
extracts local and global spectral and spatial independent features, while also aggre-
gating the large short-range interdependency of spectral and spatial features, further
modelling the large long-range correlation between spectral and spatial data. For ex-
ample, our proposed DSFNet achieves 99.99% OA, 99.98% AA, and 99.99% Kappa on
the SA dataset, which are 2.62%, 6.90% and 2.92% higher than TSCNN, 4.56%, 2.05%
and 1.74% higher than MAFN, 3.61%, 1.20% and 4.01% higher than RSSAN, 3.61%,
0.81% and 0.91% higher than SSAN. Compared with other deep learning classification
methods without the attention module, our proposed method shows superiority for
HSI classification. These results also demonstrate that our proposed spectral-spatial
shuffle attention module and spectral-spatial frequency attention module are very
helpful and extremely effective for HSI classification.

(3) The TSCNN, MAFN and DCRN deep learning classification methods use a two-
stream CNN architecture for HSI analysis, i.e., the spectral feature extraction stream
and spatial feature extraction stream. The former captures spectral information, and
the latter extracts spatial information. The final joint spectral-spatial features are
obtained by a fusion scheme. Although these methods achieve good classification
performance, they only employ simple concatenation operations or elementwise
summation to fuse independent spectral and spatial features, neglecting the close
correlations between spectral and spatial information. Our proposed method is highly
competitive with the above methods, which utilizes two SSAMs, one CHSFEM, three
SFAMs and four CSFEMs to directly capture high-level spectral-spatial-semantic joint
features and model the large long-range interdependency of spectral and spatial
joint information. In addition, the results show that our proposed method has better
performance than deep learning methods using a simple fusion scheme because the
DSFNet contains more expressive joint spectral-spatial features and further updates
the interdependency of spectral and spatial data.

(4) The DSFNet has a strong ability to execute HSI classification with limited labeled
samples. As shown in Tables 5–8, the OA, AA and Kappa of the proposed method
exhibit much better classification accuracy compared with other classification methods.
In addition, on the UP dataset IP dataset and SA dataset, the evaluation indexes
exceed 99%; on the SAC dataset, the evaluation indexes reach 100%. With insufficient
labeled samples, our proposed method can still fully extract the joint spectral-spatial
features and improve the classification performance. Moreover, Figures 15–18 show
the classification maps of the various methods on the four datasets. Compared with
other classification methods, the classification maps of the DSFNet not only have
clearer edges, but also contain fewer noisy points. Our proposed method has smoother
classification maps and higher classification accuracy. Because of the idiosyncratic
structure of the proposed method, it can fully extract the spectral-spatial joint features
of HIS, further suppress the noisy boundaries of categories, and simultaneously take
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advantage of the shuffle attention features from the encoder and high-level cross-
connected semantic features to restore the category boundaries in the decoder phase.
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(l) DCRN. (m) DRCNN. (n) HybridSN. (o) TSCNN. (p) DSFNet.
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3.6. Generalization Performance

To further demonstrate the generalization performance and robustness of our proposed
DSFNet under different numbers of training samples, we perform a great number of
experiments among 1D_CNN, 2D_CNN, 3D_CNN, 2D_3D_CNN, RSSAN, SSAN, MAFN,
DCRN, DRCNN, HybridSN, TSCNN and our DSFNet on different numbers of training
samples, i.e., [1%, 3%, 5%, 7%, 10%]. Figure 19 shows the classification indication
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OAs of different methods with various numbers of training samples on the SAC,
UP, IP and SA datasets. As shown in Figure 19, we can clearly see that the classification
performance of each method improves substantially with the increase of the number of
training samples. Compared with other deep learning methods, our proposed DSFNet
achieves superior classification accuracy on the four experimental datasets. For example,
from Figure 19a, when the number of training samples is 1%, our method obtains 94.95%
OA on the SAC dataset, which is 57.19% higher than 1D_CNN, 20.06% higher than RSSAN,
and 39.05% higher than HybridSN. From Figure 19c, when the number of training samples
is 10%, our method obtains 97.66% OA on the IP dataset, which is 5.54% higher than
2D_CNN, 26.53% higher than MAFN, and 7.41% higher than TSCNN. These experimental
results demonstrate that our proposed DSFNet has stronger robustness and generalizability
than other deep learning methods.

3.7. Ablation Experiments
3.7.1. Effectiveness Analysis of the SSAM

To fully validate the effectiveness of SSAM, ablation experiments are performed on the
four HSI datasets, i.e., our proposed SSAM, eliminating channel attention (spectral-spatial),
and eliminating spectral-spatial attention (channel). Table 9 provide the classification results
of different schemes on the four datasets, respectively. Compared with the spectral-spatial,
the OA, AA and Kappa of channel are almost higher. This is because the network structure
of spectral-spatial is relatively complex, and it needs more training parameters and labeled
samples. From Table 9, we can explicitly see that our proposed SSAM obtains much
better classification performance compared with the channel and spectral-spatial, whose
evaluation indexes almost exceed 99%. Although the network structure of our proposed
SSAM is more complicated, the SSAM can fully capture local and global spectral-spatial
features separately and learn the interdependency of spectral and spatial information. These
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experimental results further prove that our proposed SSAM is beneficial for improving HSI
classification performance.

Table 9. Effectiveness analysis of SSAM on the four experimental datasets.

Datasets
Schemes

Channel Spectral-Spatial SSAMIndexes

SAC
OA (%) 99.92 92.98 100
AA (%) 99.93 86.09 100

Kappa (%) 99.90 91.19 100

UP
OA (%) 92.97 91.62 99.89
AA (%) 84.97 78.21 99.77

Kappa (%) 90.65 88.87 99.85

IP
OA (%) 97.42 90.14 99.68
AA (%) 91.81 75.22 99.44

Kappa (%) 97.06 88.78 99.64

SA
OA (%) 96.86 94.19 99.99
AA (%) 95.52 86.98 99.98

Kappa (%) 96.51 93.53 99.99
The red font highlights which mechanic works best.

3.7.2. Effectiveness Analysis of the CSFEM

The CSFEM can adequately extract global information of high-level cross-connected
spectral-spatial features utilizing global average pooling and global max pooling. Different
ablation structures are adopted for comparison to prove the effectiveness of the CSFEM, i.e.,
our proposed CSFEM, using the global average pooling (GAPM) and using the global max
pooling (GMPM), as given in Table 10. We find that the global average pooling spectral-
spatial features are as noteworthy as the global max pooling spectral-spatial features in
terms of HSI classification. Although the GAPM and the GMPM achieve good classification
performance, they only consider global average pooling or global max pooling spectral-
spatial features and ignore the complementary relationship between them. In contrast, our
proposed CSFEM employs both global average pooling and max pooling and integrates
them by elementwise summation. From Table 10, it is evident that our proposed CSFEM
obtains much better classification accuracy than the GAPM and GMPM. For instance, our
method achieves 99.89% OA, 99.77% AA, and 99.85% Kappa on the UP dataset, which
are 4.75%, 9.65% and 6.3% higher than GAPM and 1.82%, 2.32% and 2.41% higher than
GMPM. This is because the average-pooled features that encode global statistics and the
max-pooled features encoding the most important part can compensate for each other to
capture more comprehensive and specific spectral-spatial features.

Table 10. Effectiveness analysis of CSFEM on the four experimental datasets.

Datasets
Schemes

GAPM GMPM CSFEMIndexes

SAC
OA (%) 99.67 97.57 100
AA (%) 99.55 98.23 100

Kappa (%) 99.61 96.97 100

UP
OA (%) 95.14 98.07 99.89
AA (%) 90.12 97.45 99.77

Kappa (%) 93.55 97.44 99.85

IP
OA (%) 98.58 98.41 99.68
AA (%) 98.19 95.85 99.44

Kappa (%) 98.39 98.19 99.64

SA
OA (%) 97.63 99.02 99.99
AA (%) 96.05 98.79 99.98

Kappa (%) 97.36 98.91 99.99
The red font highlights which mechanic works best.
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3.7.3. Effectiveness Analysis of the Proposed DSFNet

To validate the effectiveness of the SSAM, SFAM, CHSFEM and CSFEM of our pro-
posed method, we compare the DSFNet with three other methods: using SSAM (case1),
the combination of SSAM and CSFEM (case2) and the combination of SSAM, CHSFEM
and SFAM (case3). The classification results of the DSFNet on the SAC dataset, UP dataset,
IP dataset and SA dataset are compared with different ablation methods, as explained in
Table 11, respectively.

Table 11. Effectiveness analysis of the proposed DSFNet on the four experimental datasets.

Datasets
Indexes

SSAM CHSFEM SFAM CSFEM OA (%) AA (%) Kappa (%)
Schemes

SAC

case1
√

94.62 94.05 93.28

case2
√ √

98.98 99.36 98.73

case3
√ √ √

99.75 99.68 99.69

DSFNet
√ √ √ √

100 100 100

UP

case1
√

77.66 54.96 69.71

case2
√ √

85.92 76.69 81.59

case3
√ √ √

95.12 87.75 93.53

DSFNet
√ √ √ √

99.89 99.77 99.85

IP

case1
√

84.51 60.74 82.28

case2
√ √

87.64 70.36 85.98

case3
√ √ √

98.44 94.01 98.22

DSFNet
√ √ √ √

99.68 99.44 99.64

SA

case1
√

77.84 67.63 75.39

case2
√ √

92.46 86.48 91.62

case3
√ √ √

97.80 97.50 97.55

DSFNet
√ √ √ √

99.99 99.98 99.99

The red font highlights which mechanic works best.

We introduce the CHSFEM to case2 to capture high-level spectral-spatial features.
According to the Table 11, compared with case1, case2 achieves better classification accuracy.
For instance, case2 obtains 77.66% OA, 54.96% AA, and 69.71% Kappa on the UP dataset,
which are 22.33%, 44.81% and 30.14% higher than case1. This is because the introduced
CHSFEM can not only enrich discriminative spectral-spatial multiscale features for limited
labeled data but also maintain high-resolution representations throughout the process and
repeatedly fuse multiscale subnet features.

We also introduce the SFAM to case3 to adaptively compress the spectral channels
and introduce multiple frequency components. From Table 11, we can clearly see that
case3 obtains superior classification accuracy, which demonstrate the SFAM is effective.
For instance, case3 achieves 98.44% OA, 94.01% AA, and 98.22% Kappa on the IP dataset,
which are 10.8%, 23.65% and 12.24% higher than case2.

The CSFEM is introduced to our proposed DSFNet to obtain the global context se-
mantic features and restore the boundaries of categories. According to the classification
results on the four hyperspectral datasets, we confirmed the effectiveness of CSFEM. For
instance, our proposed DSFNet opposes 99.99% OA, 99.98% AA, and 99.99% Kappa on the
SA dataset, which are 2.19%, 2.48% and 2.44% higher than case3. Our proposed method has
preferable classification accuracy. This finding is owing to the unique structure of DSFNet,
which makes the spectral-spatial features of HSI be fully captured.
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4. Discussion and Conclusions

In this paper, we propose a discriminative spectral-spatial-semantic feature network
based on shuffle and frequency attention mechanisms for HSI classification, which consists
of an encoder and a decoder. In the encoder and decoder stages, the SSAMs and SFAMs can
capture richer and more multifarious joint spectral-spatial features, and further improve
the expression of features. The high-level context-aware multiscale spectral-spatial features
are extracted by the CHSFEM, which are scale-invariant and solve the problem that deep
networks cannot extract features of small-sized samples. The CSFEMs can suppress noisy
boundaries with similar topographic structures and utilize the utmost out of the spectral-
spatial shuffle attention features from the encoder to better guide the high-level spectral-
spatial attention features to restore category boundaries in the decoder part. Finally, we
also introduce dropout and BN optimization methods to boost the classification accuracy.

The classification performance of our proposed DSFNet is affected by five vital pa-
rameters. To obtain the best classification results, we discuss the influences of these five
framework parameters on HSI classification when setting different values. Moreover, to
prove the superiority of our proposed DSFNet, lots of comparison experiments including
three traditional classification methods and eleven classification methods based on deep
learning are conducted on four common datasets. The evaluation indexes of OA, AA and
Kappa on four datasets all exceed 99%. Meanwhile, by comparing with the diverse classifi-
cation methods, we analyze the advantages of our proposed method from four different
perspectives. In addition, the above ablation experiments also adequately demonstrate the
effectiveness of SSAM, CHSFEM, SFAM and CSFEM.

HSI classification methods have achieved satisfactory results, but they often need
numerous training parameters, longer training time and enormous computational cost.
Therefore, our feature research direction will focus on how to reduce the computational. In
addition, HSI classification has been widely used in many computer fields. In the future,
we will also try to apply the proposed method to some computer vision tasks, such as
tumor recognition.
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