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Abstract: A landslide susceptibility model based on a metaheuristic optimization algorithm (germinal
center optimization (GCO)) and support vector classification (SVC) is proposed and applied to
landslide susceptibility mapping in the Three Gorges Reservoir area in this paper. The proposed
GCO-SVC model was constructed via the following steps: First, data on 11 influencing factors and
292 landslide polygons were collected to establish the spatial database. Then, after the influencing
factors were subjected to multicollinearity analysis, the data were randomly divided into training
and testing sets at a ratio of 7:3. Next, the SVC model with 5-fold cross-validation was optimized
by hyperparameter space search using GCO to obtain the optimal hyperparameters, and then the
best model was constructed based on the optimal hyperparameters and training set. Finally, the
best model acquired by GCO-SVC was applied for landslide susceptibility mapping (LSM), and its
performance was compared with that of 6 popular models. The proposed GCO-SVC model achieved
better performance (0.9425) than the genetic algorithm support vector classification (GA-SVC; 0.9371),
grid search optimized support vector classification (GRID-SVC; 0.9198), random forest (RF; 0.9085),
artificial neural network (ANN; 0.9075), K-nearest neighbor (KNN; 0.8976), and decision tree (DT;
0.8914) models in terms of the area under the receiver operating characteristic curve (AUC), and the
trends of the other metrics were consistent with that of the AUC. Therefore, the proposed GCO-SVC
model has some advantages in LSM and may be worth promoting for wide use.

Keywords: landslide susceptibility mapping; Three Gorges Reservoir area; support vector classification;
GCO-SVC

1. Introduction

Landslides are the most common geological disaster, and they have wide distributions,
pose a high risk, and cause serious damage [1,2]. Many internal and external factors con-
tribute to landslide occurrence, including topographic, geological, hydrological, seismic,
and surface factors and factors associated with human engineering activity [3,4]. Thus,
landslide spatial prediction based on these influencing factors, which is also called land-
slide susceptibility mapping (LSM), is important for preventing and reducing landslide
damage [5].

In recent years, various machine learning methods have been applied for regional
LSM, including artificial neural network (ANN) [6–9], random forest (RF) [10,11], decision
tree (DT) [12,13], logistic regression (LR) [14], K-nearest neighbor (KNN) [15,16], extreme
learning machine (ELM) [17], and support vector machine (SVM) models [18,19]. Machine
learning models are popular, mature, and promising for LSM. For example, SVM models
are widely used in LSM due to their powerful generalization ability on small samples [7,13].
However, such deep learning models generally have many hyperparameters, which directly
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affect the model results [20,21]. Therefore, it is extremely important that these models
choose the appropriate combination of hyperparameters for LSM.

To solve this problem, many algorithms have been used to perform hyperparameter
optimization of deep learning models [22,23]. One of the most commonly used algorithms
is the violent grid search algorithm [12,24], which iterates through all combinations of the
listed hyperparameters and scores them to select the best hyperparameters. The process
may be effective for finite discrete space search, but exhaustive enumeration for continuous
hyperparameter space is almost impossible. Therefore, metaheuristic algorithms have
recently been applied and are increasingly used in model hyperparameter optimization,
with the most applied algorithms being genetic algorithms (GAs) [25,26] and particle swarm
optimization algorithms [27]. It has been demonstrated that the optimization of model
hyperparameters for LSM results is enhanced by the use of metaheuristic algorithms.

In this study, a new model named GCO-SVC was proposed and applied to LSM in the
Zigui to Badong basins of the Three Gorges Reservoir area (TGRA). This effort represents
the first application of the metaheuristic germinal center optimization (GCO) algorithm
to the hyperparameter optimization of the SVC model and its use for LSM. To validate
the proposed model, six popular models, artificial neural network (ANN), decision tree
(DT), K-nearest neighbor (KNN), random forest (RF), grid search optimized support vector
classification (GRID-SVC), and genetic algorithm optimized support vector classification
(GA-SVC), and four common metrics, namely accuracy, F1 score, Log loss, and area under
the receiver operating characteristic curve (AUC), were employed for comparative study.

2. Methods

This study consists of four main steps, as shown in Figure 1: (1) data collection,
including the landslide inventory map and influencing factors; (2) dataset preparation and
landslide influencing factor analysis; (3) spatial prediction modeling of landslides using the
proposed GCO-SVC and six other models; and (4) model performance evaluation based on
multiple statistical tools.

2.1. Study Area
2.1.1. Description of the Study Area

The study area is located in Hubei Province, China. It belongs to the Zigui to Badong
basins of the TGRA, within longitudes 110◦15′~110◦50′ east and latitudes 30◦50′~1◦6′ north,
and the total area is approximately 900 km2 (Figure 2). In total, 4256 landslides and
rock avalanches with a total volume of roughly 4.24 billion m3 have been found in the
TGRA [1]; those in the study area account for 16% of the total. The average annual rainfall is
1100–1200 mm, and most of the precipitation is concentrated from April to September [28].
This study area is a Mesozoic tectonic basin that developed and was shaped in the Late
Triassic–Early Jurassic period, and it is mainly composed of Jurassic terrestrial and Middle–
Upper Triassic coastal-phase clastic rocks (Figure 3). The primary strata that crop out in this
area include the Triassic Jialingjiang (T1-2j) and Badong (T2b) formations and the Jurassic
Qianfoya (J2q), Shaximiao (J2s), and Suining (J3s) formations.

In recent years, the construction and impoundment of the Three Gorges Dam have led
to increased numbers of engineering activities along the Yangtze River in the area, such as
urban relocation and reconstruction and road and high-speed railway construction, which
have had significant impacts on the engineering geological environment and led to frequent
geological hazards in the area. Moreover, the periodic reservoir water level and seasonal
rainfall exacerbate the landslide geological hazards in this area [29].
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Figure 2. Location of the study area and landslide distribution. (a) Location of the TGRA in China.
The base map is sourced from http://bzdt.ch.mnr.gov.cn/ (accessed on 12 January 2022). (b) Location
of the study area and the landslide distribution in the TGRA. The DEM is sourced from https://search.
asf.alaska.edu/ (accessed on 15 January 2022). (c) Landslide distribution in and Sentinel-2B image of
the study area. The Sentinel-2B image was taken on 12 September 2021.
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(3) Triassic purplish-red mudstones, shales, and siltstones (T2b); (4) Triassic conglomerates, sand-
stones, slates, volcanic rocks, and limestones (T3j); (5) Jurassic yellow sandy shale, siltstone, and
feldspathic quartz sandstone (J1t); (6) Jurassic purplish-red mudstone, and purplish-red mudstone
sandstone interbedded (J2s1); (7) Jurassic gray-green sandstone with mudstone (J2s2); (8) Juras-
sic purplish-red mudstone with yellowish-gray siltstone, muddy siltstone, and feldspathic quartz
sandstone (J2q); (9) Jurassic brick-red mudstone (J3s); (10) powdery clay, clayey soil, gravel layer
(Qhal); (11) faults. The geologic map was obtained from the National Geological Archives of China
(http://ngac.org.cn, accessed on 12 February 2022) and rendered according to the international
chronostratigraphic chart (https://stratigraphy.org/chart, accessed on 12 February 2022).

2.1.2. Landslide Inventory

For LSM, the first important step is to acquire the exact locations of landslides that
have occurred [30]. The landslide distribution up to 2016 in the study area was obtained
by compiling data from field surveys, satellite images, and a literature review, as shown
in Figure 2c. The landslide distribution prior to 2007 was provided by the Three Gorges
Reservoir Area Geological Disaster Prevention and Control Work Command (TGWC),
while the landslides from 2007 to 2016 were determined by the authors based on open-
source data [31], Google Maps, and Sentinel-2B images. In 2016, a total of 292 landslides
were identified in the study area, with a total area of 32.43 km2, accounting for 8.11% of the
whole study area, and Quaternary deposit landslides and rock landslides were found to be
the main types [32]. For large-scale LSM, landslide inventories are usually compiled with
point data to improve mapping efficiency, avoid uncertainty in the description of landslide
boundaries, decrease spatial autocorrelation across landslides, and treat landslides of
different scales equally [33–35].

2.1.3. Influencing Factors

Landslide hazards are usually triggered by a combination of internal geological con-
ditions and external environmental factors. Many previous studies [18,36] in the TGRA
have indicated that landslides in this area are primarily influenced by hydrological con-
ditions and human engineering activities, as well as by their own geological conditions.
Therefore, a digital elevation model (DEM), geologic map, road network, river network,
rainfall monitoring, and land use data were compiled from previous studies [11,32] and
field investigations, and their sources and descriptions are provided in Table 1.

Table 1. Multisource landslide influencing factors.

Data Type Date Influencing Factors Source

DEM (12.5 m) 2011

Elevation (EV)
Slope angle (SA)

Slope aspect (SAP)
Topographic wetness index (TWI)

Stream power index (SPI)

ALOS PALSAR

Geologic map (1:200,000) 2013 Engineering rock group (ERG)
Distance to faults (DF) National Geological Archives of China

Road network 2021 Distance to roads (DRD) OpenStreetMap

River network 2021 Distance to rivers (DRV) OpenStreetMap

Rainfall monitoring data 2015–2020 Average annual precipitation (AAP) Hubei Provincial Hydrology and Water
Resources Bureau

Land use (10 m) 2017 Land use (LU) FROM-GLC10 [37]

Per the above data sources, 11 influencing factors were extracted for LSM in the
study area: elevation (EV), slope angle (SA), slope aspect (SAP), topographic wetness
index (TWI), stream power index (SPI), engineering rock group (ERG), distance to faults

http://ngac.org.cn
https://stratigraphy.org/chart
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(DF), distance to roads (DR), distance to rivers (DRV), land use (LU), and average annual
precipitation (AAP). Topographic factors such as EV, SA, SAP, TWI, and SPI were acquired
from the DEM with a 12.5 m resolution. Regarding the geological factors, ERG was
generated by classifying lithologies into 3 classes, soft, soft–hard, and hard, based on
their engineering characteristics [32]. Then, DF was calculated using Euclidean distance.
Regarding the environmental and human activity factors, DRV and DRD were computed by
Euclidean distance; LU was adopted from the FROM-GLS10 dataset with 10 m resolution,
released by Tsinghua University; and AAP was determined from the precipitation data of
13 stations near the study area from 2015 to 2020, provided by the Hubei Provincial Bureau
of Hydrology (http://113.57.190.228:8001) (accessed on 16 April 2022), using the inverse
distance weighted (IDW) interpolation method.

2.2. Preparation of the Training and Test Datasets

According to previous studies, LSM was considered a binary classification task [38],
where the mapping units were classified into two categories, landslides (value 1) and
nonlandslides (value 0), and the probability distribution of landslide susceptibility ranged
from 0 to 1. The choice of mapping units affects LSM; for this study, the most widely used
grid cell with 12.5 m resolution was selected based on previous studies [39,40]. To evaluate
landslide susceptibility, all 11 influencing factors and the landslide inventory map were
converted into raster format with 12.5 m spatial resolution and aligned with the elevation
raster, and the influencing factors are shown in Figure 4.

After conversion, a total of 290 landslide grid cells were acquired as the positive
samples, and nonlandslide grid cells 50 m away from known landslides were randomly
selected as negative samples at a ratio of 1:1 [41,42]. The total dataset with 580 samples
was generated by merging the landslide grid cells (labeled as 1) and nonlandslide grid
cells (labeled as 0). Since k-fold spatial cross-validation was chosen for model validation,
the dataset was then divided randomly into training (70%, 204:202 landslide:nonlandslide
samples) and testing (30%, 86:88 landslide:nonlandslide samples) datasets, as shown in
Figure 5. Finally, the training and testing datasets were prepared with the corresponding
values of the 11 landslide influencing factors [43].

2.3. Analysis of the Factors Influencing Landslides

Past studies have shown that multicollinearity, i.e., the nonindependence of influenc-
ing factors that may occur in a dataset, can lead to erroneous LSM [44]. Several methods
have been proposed to quantify multicollinearity, such as Pearson’s correlation coefficient
analysis [10,45,46], conditional analysis [47], and variance inflation factor (VIF) and tol-
erance (TOL) methods [5,48,49]. In this study, the most widely used methods, the VIF
and TOL methods, were employed to identify multicollinearity among the influencing
factors. VIF refers to the ratio of the variance between influencing factors in the presence
of multicollinearity and in the absence of multicollinearity, and TOL is the inverse of VIF,
which reflects the degree of increase in variance induced by multicollinearity. Generally,
a VIF value greater than 5 or a TOL value less than 0.2 is considered to indicate strong
multicollinearity between the influencing factors, which is regarded as unacceptable for
analysis [18,24]. For Pearson’s correlation coefficient, values larger than 0.7 indicate high
collinearity between influencing factors [50].

2.4. Landslide Susceptibility Models

In this study, a new LSM model named GCO-SVC was proposed, and six other
popular models were selected for comparison: ANN, DT, KNN, RF, GRID-SVC, and GA-
SVC models. All analyses were carried out using Python 3.6.9, scikit-learn 1.1.1, and ArcGIS
Pro 2.9 in Windows 10 Pro 21H1 with an AMD Ryzen 7 5800H processor running at 3.2 GHz
and 64 G RAM.

http://113.57.190.228:8001
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2.4.1. GCO-SVC

(1) SVC

SVC is a popular classification algorithm based on Vapnik’s statistical learning theory,
which minimizes a bound on a generalized risk based on the structural risk minimization
principle [51–53]. SVC has been extensively applied to landslide susceptibility modeling,
and its predictive ability has been demonstrated in numerous studies to be higher than that
of other traditional methods [38,54]. However, the performance of an SVC model is heavily
influenced by various hyperparameters, such as the penalty term (C), the kernel function,
and its parameters.

min
1
2
||w||2 + C

n

∑
i=1

ζi (1)

subject to yi[(wxi) + b] ≥ 1− ζi, i = 1, . . . , n (2)

where ||w|| is the normal constant of the hyperplane and b is a scalar basis.
For the penalty term (C), the larger the value is, the more severe is the penalty of the

model for misclassification, but the model tends to be overfitted; the smaller the value
is, the lighter is the penalty of the model for misclassification, but the model tends to be
underfitted. Thus, a suitable penalty term (C) is crucial for an SVC model. The SVC kernels
include linear, polynomial (poly), Gaussian (RBF), and sigmoid types; their formulas and
kernel parameters are shown in Table 2. γ is the gamma term for all kernel types except
linear, d is the polynomial degree term for the poly kernel, and r is the bias term in the
poly and sigmoid kernels, which is usually ignored and set to the default value of 0 [55,56].
Among these four kernel functions, RBF usually provides better predictive performance
in nonlinear classification for LSM than the other kernel functions [57,58]. Thus, in this
study, the RBF kernel was employed for the SVC model to produce the LSM, and the
hyperparameters for the RBF-SVC were the penalty term (C) and the gamma term (γ).

Table 2. Kernels of the SVC model and their parameters.

Kernel Name Kernel Function Kernel Parameters

linear 〈x, x′〉 None
poly (γ〈x, x′〉+ r)d d, γ, r
RBF exp

(
−γ||x− x′||2

)
γ

sigmoid tan h(γ〈x, x′〉+ r) γ, r
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(2) GCO

GCO is a new metaheuristic optimization algorithm proposed by Villaseñor; it is a
novel multivariate continuous optimization algorithm inspired by the germinal center (GC)
reaction [59]. The GCs, where B lymphocytes (B cells) and other immune cells are bounded
by inactive B cells that form in the presence of an infection, can be divided into two zones:
a dark zone, where clonal expansion occurs and somatic cells are located, and a light zone,
where competition for Ag internalization and helper T-cell binding occurs [60]. In this
study, GCO was employed to search for the optimal hyperparameters (C and gamma)
for the RBF-SVC model, which comprised 4 steps, initialization, dark-zone processing,
light-zone processing, and postprocessing, as shown in the flowchart in Figure 6.
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Step 1: Initialization. A population of B cells with a total number N is initialized, and
every B cell Bi stores a candidate solution that is randomly initialized in the hyperparameter
space. Additionally, each B cell has a cell counter Bic with an initial value of 0 and a life
signal Biε with an initial value of 70, which means that the cell has a 70% chance of
duplication and a 30% chance of death. Importantly, BiC and Biε will change and influence
the evolution throughout the life of GCO.

Step 2: Dark-zone processing. The dark-zone process is the first part of each iteration,
which is responsible for the life management and mutation of B cells. First, for each B cell
Bi, a random number with a uniform range from 0 to 100 is generated and compared with
the life signal Biε to decide the destiny of the B cell: duplication or death. Duplication
means adding one to Bic, while death is the reverse. Then, a mutated B cell is generated
by mutation, which is performed using modified differential evolution (DE)-like mutation
process. The key parameters of the mutation are cr and w f ; the first parameter controls the
difficulty of mutation and ranges from 0 to 1, and the second parameter is the coefficient of
mutation. The global best solution of each iteration is recorded during the mutation.

Step 3: Light-zone processing. The light-zone process is the second part of each
iteration after the mutation of each B cell, which manages the fitness calculation, aging,
and reward of each B cell. First, each B cell is aged by resetting its life signal to 10. Second,
for each B cell Bi, the parameters C and gamma inside it are used for the construction of
the RBF-SVC model, and the fitness of Bi is calculated using 5-fold cross-validation on the
training set. Then, the f iti of each B cell is obtained based on Equation (3). Third, each B
cell is rewarded by adding 10 ∗ f iti to its life signal Biε.

f iti =


f (Bi)−max f (Bk)

min f (Bk)−max f (Bk)
for minimum

min f (Bk)− f (Bi)
min f (Bk)−max f (Bk)

for maximum
(3)

Step 4: Postprocessing. Steps 2 and 3 are looped until the end of all iterations to obtain
the optimum hyperparameters (C and γ) of the RBF-SVC model by decoding the global
best solution.

(3) Implementation of the GCO-SVC model

The hyperparameter space of RBF-SVC includes C and γ, both of which range from
10−3 to 104. The optimum hyperparameters were obtained using the above GCO algorithm,
and then the SVC model for LSM was constructed with the best C and γ and trained using
the training set acquired in Section 2.2. Thus, the whole process described above was
named GCO-SVC to complete the LSM of the study area, and the hyperparameter search
space of the GCO-SVC model is listed in Table 3.

Table 3. Hyperparameter search spaces of the models.

Model Parameters Search Space

ANN
Neurons in hidden layer Linspace (10, 200, 10)
L2 penalty parameter (α ) Logspace (−10,−1, 10)

DT
Max depth Linspace (1, 10, 10)

Min sample leaf Linspace (1, 10)

KNN
N neighbors Linspace (3, 50)

Weight [uni f orm, distance]
Distance [Manhattan, Euclidean]

RF
Number of estimators Linspace (10, 200, 20)

Criterion [gini, entropy]
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Table 3. Cont.

Model Parameters Search Space

GRID-SVC
Kernel [linear, polynomial, RBF, sigmoid]

C
[
10−3, 104)

γ
[
10−3, 104)

GA-SVC
Kernel [linear, polynomial, RBF, sigmoid]

C
[
10−3, 104)

γ
[
10−3, 104)

GCO-SVC
Kernel [linear, polynomial, RBF, sigmoid]

C
[
10−3, 104)

γ
[
10−3, 104)

2.4.2. Models for Comparison

For a comparison study, six popular models for LSM, ANN [6,7], DT [12,13], KNN [15,16],
RF [10,11], GRID-SVC [10,58], and GA-SVC [25], were selected in this study. The base
versions of the above models require hyperparameter optimization, where ANN, DT, KNN,
RF, and GRID-SVC use grid search coupled with 5-fold cross-validation, and GA-SVC
uses a GA combined with 5-fold cross-validation. Since these models are very mature and
widely validated, their principles are described only briefly here, and the hyperparametric
optimization space of each model is shown in Table 3.

(1) ANN

The ANN model is a widely used model for LSM and has great nonlinear mapping
capability and strong generalization ability [61]. An ANN generally consists of an input
layer, an output layer, and one or more hidden layers, and each layer contains several
neurons, which are the basic units of the model. The nodes of the input layer correspond to
the landslide influencing factors in turn, and the nodes in the output layer respond to the
probability of landslide susceptibility. The hidden layers are the bridge between the input
and output layers and typically contain one or multiple layers. Based on previous studies,
an ANN containing an input layer, an output layer, and a hidden layer was constructed for
comparison in this study, and its hyperparameter space focused on the number of hidden
layers and the L2 penalty parameter α. The other parameters were set as the default values:
“relu” as the activation function, stochastic gradient-based optimizer as the solver, 500 as
maximum iterations, and 10−4 as the tolerance of the optimization.

(2) DT

The DT model is a nonparametric supervised deep learning model and has been
applied successfully for LSM [12,62,63]. It is built to find a set of decision rules to predict
landslide susceptibility according to landslide influencing factors. Various DT algorithms
have been developed, such as ID3 [64], C4.5 [65], C5.0 [66], and CART [67,68]. CART builds
binary trees with features and thresholds that yield maximum information gain at each
node; CART was selected for the comparison study. The main hyperparameters for the DT
model are the maximum depth of the decision tree and the minimum number of samples,
and the search space is listed in Table 3.

(3) KNN

The KNN algorithm is a traditional nonparametric supervised statistics method that
was proposed in the 1960s [69]. The principle of KNN is simplicity: a sample belongs
to the category if the majority of the K most similar or most neighboring samples in the
feature space fall into that category as well. Due to the simplicity and intuitiveness of the
principle and its good performance, it has been widely used in various classification studies,
including LSM [10,15,70]. Regarding the hyperparameters of KNN, “N neighbors” is the
number of neighbors to use by default for k-neighbor queries; weight functions are used
in prediction, including “uniform”, in which all neighborhoods are weighed equally, and
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“distance”, in which weight points are given by the inverse of their distance; the “distance
function” includes two types: Manhattan and Euclidean distance.

(4) RF

RF is a meta-estimator that resumes multiple independent decision trees at different
sample sizes by random sampling and uses averaging to combine multiple decision trees
for classification to improve prediction accuracy and control overfitting [11,71]. The RF
model is simple to implement and is faster to train and less prone to overfitting than other
models, and it can date the impact between each feature [10,72]. For the construction of the
RF model, “Number of estimators” is the total number of decision trees, and “Criterion” is
the function used to measure the quality of a split.

(5) GRID-SVC

To perform a comprehensive analysis, a grid search with the 5-fold cross-validation
method is applied to the SVC hyperparameter search, and the model is labeled GRID-
SVC. This model uses the same core SVC model and hyperparametric search space as the
GCO-SVC model, differing only in the search method.

(6) GA-SVC

The GA is a computational model of biological evolution that simulates the natural
selection and genetic mechanism of Darwinian evolution and is used to search for the
optimal solution by simulating a natural evolutionary process [25,73]. GA has been heavily
applied to hyperparameter optimization for SVC in past studies, and it is a metaheuristic
algorithm like GCO. Thus, the GA is employed to optimize the hyperparameters of the SVC
model in the same search space as the GCO-SVC model, and the model is named GA-SVC.

2.5. Model Evaluation Criteria

The LSM problem is generally considered a binary classification problem that is
positive for landslide units and negative for nonlandslide units, and the probability that the
unit is positive is considered its susceptibility, which ranges from 0 to 1. Four metrics were
utilized for model evaluation: accuracy, F1 score, Log loss, and AUC. Accuracy represents
the classification accuracy of a model and is given by:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

where TP is the true-positive prediction, TN is the true-negative prediction, FP is the
false-positive prediction, and FN is the false-negative prediction.

The F1 score is another widely used accuracy metric; it is considered a harmonic mean
of model accuracy and recall and is given by:

F1 score =
2TP

2TP + FP + FN
(5)

Logarithmic loss (Log loss) represents the closeness of the predicted probability to the
corresponding true value. The larger the deviation of the predicted probability from the
true value, the higher the Log loss. The Log loss can be calculated using:

Log loss = − 1
N

N

∑
i=1

yi log(p(yi = 1)) + (1− yi)p(yi = 0) (6)

where N is the total number of samples, yi is the true label of the ith sample, p(yi = 0) is the
probability of the predicted label of the ith sample being 0, and p(yi = 1) is the probability
of the predicted label of the ith sample being 1.

The receiver operating characteristic (ROC) curve is a graph showing the perfor-
mance of a classification model at all classification thresholds. It is plotted by the true-
positive rate (TPR, given by TP/(TP + FN)) against the false-positive rate (FPR, given by
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FP/(TN + FP)) at different thresholds. Then, the area under the ROC curve (AUC) can be
calculated, which provides a comprehensive evaluation of performance for all probability
classification thresholds.

To assess the statistical significance of systematic pairwise differences among the seven
landslide models, the Wilcoxon signed-rank test was employed. Its results contain two
values, p and z, that describe the difference between the models. For a pair of models, if p
is below the 0.05 significance level and z exceeds the critical range (−1.96 to +1.96), their
performance can be considered different [38,43].

Finally, to evaluate the contributions of different landslide influencing factors to the
models, permutation feature importance (PFI) was calculated, which is defined as the
reduction of the model score when a single feature value is randomly shuffled [74]. The
importance of the influencing factor is obtained by averaging the reduction of the model
output scores that are calculated by shuffling the influencing factor N times. In this study,
Log loss was selected as the score function of the models for calculating the PFI, and the
number of times a feature is randomly shuffled was set at 30.

3. Results
3.1. Influencing Factor Analysis

VIF analysis was employed for the multicollinearity analysis of the landslide influenc-
ing factors, and the results are shown in Table 4. The influencing factor with the largest
VIF value, 2.976, was DRV, and that with the smallest value, 1.104, was DF. None of the
influencing factors had a VIF value greater than 5 or a TOL smaller than 0.2, indicating a
lack of significant multicollinearity [18,75]. Thus, all the landslide influencing factors were
taken into account for LSM.

Table 4. Multicollinearity analysis of the landslide influencing factors.

EV SA SAP TWI SPI ERG DF DRD DRV AAP LU

VIF 2.884 1.942 1.123 2.16 2.066 1.393 1.104 1.781 2.976 1.123 1.247
TOL 0.347 0.515 0.89 0.463 0.484 0.718 0.906 0.561 0.336 0.891 0.802

3.2. Optimal Hyperparameters

In this study, all seven models were optimized using grid search or metaheuristic
algorithms with hyperparameter search spaces (listed in Table 3), as described in Section 2.4.
The optimum hyperparameters and the corresponding best score obtained after the opti-
mization of the seven models are listed in Table 5, together with other parameter settings of
each model. The results show that the GCO-SVC model achieved the best score (0.231471),
followed by the GA-SVC (0.232593), RF (0.238102), GRID-SVC (0.243250), KNN (0.290551),
DT (0.324234), and ANN (0.434876) models. Comparison of the grid search optimized
models (ANN, DT, KNN, and GRID-SVC) with the metaheuristic algorithm optimized
models (GA-SVC and GCO-SVC) revealed that the best scores of the latter models were
less than 0.235, while those of the former models were greater than 0.235. Thus, the models
optimized by the metaheuristic algorithms performed better than the models optimized by
the grid search algorithm.

Table 5. The optimal hyperparameters of the seven models.

Model Parameter Settings Optimal Hyperparameters Best Score

ANN MaxIterations = 500
Solver = “lb f gs”

HiddenLayerSize = 70
α = 0.1 0.434876

DT Criterion = “gini”
Splitter = “best”

MaxDepth = 2
MinSamplesLea f = 1 0.324234
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Table 5. Cont.

Model Parameter Settings Optimal Hyperparameters Best Score

KNN Algorithm = “auto”
Lea f Size = 30

nNeighbors = 23
Weights = “distance”

Distance = “Manhattan”
0.290551

RF
MaxDepth = None

MinSamplesSplit = 2
MinSamplesLea f = 1

nEstimators = 135
Criterion = “gini”

MaxFeatures = “log2”
0.238102

GRID-SVC
Coe f 0 = 0

Tol = 0.0001
MaxIterations = −1

C = 1.0
γ = 0.1

Kernel = “rb f ”
0.243250

GA-SVC

Coe f 0 = 0
Tol = 0.0001

MaxIterations = −1
Epoch = 100

Population = 100
cp = 0.95

mp = 0.025

C = 0.46565951
γ = 0.15258858
Kernel = “rb f ”

0.232593

GCO-SVC

Coe f 0 = 0
Tol = 0.0001

MaxIterations = −1
Epoch = 100

Population = 100
cr = 0.70
w f = 1.25

C = 0.64040679
γ = 0.19201292
Kernel = “rb f ”

0.231471

3.3. Model Performance Comparison

The optimal hyperparameters and training set were applied for model construction
and training, and the testing set with 174 samples was used for model evaluation. Then,
the performance metrics of the seven models on the training and testing sets were acquired.
Table 6 lists the accuracy, F1 score, Log loss, and AUC values of the seven models on
the training and testing sets. The GCO-SVC model achieved the best scores of all four
metrics: an accuracy of 0.9425, an F1 score of 0.9412, a Log loss of 1.9850, and an AUC of
0.9425. The performance of GCO-SVC was consistent between the training and testing
sets, which indicates that the model has a strong generalization ability without overfitting
or underfitting. The other two SVC-based models, GA-SVC (AUC = 0.9371) and GRID-
SVC (AUC = 0.9198), followed in second and third place, respectively, with slightly lower
performance and good generalization. The performance of ANN, KNN, and RF on the
training set was perfect, each yielding an accuracy of 1, an F1 score of 1, a Log loss of 0,
and an AUC of 1, but they did not achieve corresponding performance on the testing set
(accuracy, F1 score, and AUC less than 0.91 and Log loss > 3.1), which revealed overfitting.
The DT model exhibited the poorest performance among the models on both the training
set and the testing set, with the poorest scores for all metrics. Its performance was consistent
between the two sets, which demonstrated the absence of overfitting or underfitting by DT.
The ROC curves of the seven models based on the testing set are shown in Figure 7a.

Table 6. Model performance on the training and testing sets.

Dataset Metric ANN DT KNN RF GRID-SVC GA-SVC GCO-SVC

Training

Accuracy 1.0000 0.8966 1.0000 1.0000 0.9409 0.9384 0.9532
F1 score 1.0000 0.8981 1.0000 1.0000 0.9420 0.9400 0.9538
Log loss 0.0000 3.5730 0.0000 0.0000 2.0417 2.1268 1.6164

AUC 1.0000 0.8965 1.0000 1.0000 0.9408 0.9382 0.9532
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Table 6. Cont.

Dataset Metric ANN DT KNN RF GRID-SVC GA-SVC GCO-SVC

Testing

Accuracy 0.9080 0.8908 0.8966 0.9080 0.9195 0.9368 0.9425
F1 score 0.9036 0.8914 0.8989 0.9080 0.9186 0.9364 0.9412
Log loss 3.1760 3.7715 3.5730 3.1760 2.7790 2.1835 1.9850

AUC 0.9075 0.8914 0.8976 0.9085 0.9198 0.9371 0.9425
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the GA-SVC and GCO-SVC models.

To evaluate the convergence of the GCO-SVC model, the same metaheuristic-based
GA-SVC model was employed for the comparison of the convergence curves, as shown in
Figure 7b. As evident from Table 5, GCO-SVC and GA-SVC have almost the same parameter
settings for hyperparameter optimization, including the parameters of the optimization
algorithm (epoch, population) and the default parameters of SVC (such as tolerance and
max iterations), and they have the same hyperparameter search space. The convergence
curves in Figure 7b show that compared to GA-SVC, GCO-SVC converged faster initially
and slower in the middle, but it continued to converge throughout the process, finally
obtaining a lower loss than GA-SVC at the end of the iteration. In summary, GCO-SVC
offered better performance than GA-SVC and powerful continuous optimization but may
require many iterations.

In the pairwise model comparison, GCO-SVC was compared with the other six models
using the Wilcoxon signed-rank test, and the results are shown in Table 7. The performance
of the GCO-SVC model was significantly different from that of the other six models, with
all the p values being lower than 0.05 and all z values exceeding the critical range (−1.96
to +1.96).

Table 7. Pairwise comparison results for the seven models using the Wilcoxon signed-rank test
(two-tailed).

Pairwise Comparison z Value p Value Significance

GCO-SVC vs. ANN 333.56 0.00 Yes
GCO-SVC vs. DT −160.03 0.00 Yes

GCO-SVC vs. KNN −515.59 0.00 Yes
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Table 7. Cont.

Pairwise Comparison z Value p Value Significance

GCO-SVC vs. RF −8.67 0.00 Yes
GCO-SVC vs. GRID-SVC 81.97 0.00 Yes

GCO-SVC vs. GA-SVC 333.79 0.00 Yes

3.4. Landslide Susceptibility Maps

Seven trained models using the optimal hyperparameters and training set were con-
structed to predict the landslide susceptibility indices for all the mapping units in the study
area. Then, all the mapping units were divided into five susceptibility levels: very low
(0.0 to 0.1), low (0.1 to 0.3), moderate (0.3 to 0.5), high (0.5 to 0.8), and very high (0.8 to
1.0). Finally, seven landslide susceptibility maps were produced from the ANN, DT, KNN,
RF, GRID-SVC, GA-SVC, and GCO-SVC models, as shown in Figure 8, and the statistical
analysis results for the landslide distribution at different susceptibility levels are listed in
Table 8.

Table 8. Density analysis of landslide susceptibility maps of the different models.

Model Susceptibility
Level

Pixels in
Domain (A)

Pixels in
Landslide (B)

Percentage of
Domain to Total

Domain (C)

Percentage of
Landslide to Total

Landslide (D)

Frequency Ratio
(D/C)

ANN

Very Low 1,006,570 3222 78.19% 9.55% 0.1221
Low 44,610 1058 3.47% 3.13% 0.9046

Moderate 24,966 791 1.94% 2.34% 1.2084
High 37,504 1655 2.91% 4.90% 1.6831

Very High 173,619 27,025 13.49% 80.07% 5.9368

DT

Very Low 1,012,900 4911 78.69% 14.55% 0.1849
Low 0 0 0.00% 0.00% 0.0000

Moderate 73,691 3325 5.72% 9.85% 1.7209
High 101,856 8683 7.91% 25.73% 3.2514

Very High 98,822 16,832 7.68% 49.87% 6.4963

KNN

Very Low 653,424 81 50.76% 0.24% 0.0047
Low 207,630 726 16.13% 2.15% 0.1334

Moderate 131,899 1627 10.25% 4.82% 0.4705
High 172,609 8254 13.41% 24.46% 1.8238

Very High 121,707 23,063 9.45% 68.33% 7.2274

RF

Very Low 819,929 1128 63.70% 3.34% 0.0525
Low 201,461 2420 15.65% 7.17% 0.4581

Moderate 88,133 3010 6.85% 8.92% 1.3026
High 75,989 5944 5.90% 17.61% 2.9834

Very High 101,757 21,215 7.90% 62.86% 7.9517

GRID-SVC

Very Low 900,588 1185 69.96% 3.51% 0.0502
Low 116,040 1650 9.01% 4.89% 0.5423

Moderate 58,303 1809 4.53% 5.36% 1.1834
High 79,551 4440 6.18% 13.16% 2.1287

Very High 132,787 24,667 10.32% 73.09% 7.0851

GA-SVC

Very Low 919,184 1337 71.41% 3.96% 0.0555
Low 101,455 1492 7.88% 4.42% 0.5609

Moderate 53,742 1652 4.17% 4.89% 1.1724
High 73,138 4103 5.68% 12.16% 2.1396

Very High 139,750 25,167 10.86% 74.57% 6.8685

GCO-SVC

Very Low 918,028 1331 71.32% 3.94% 0.0553
Low 106,417 1498 8.27% 4.44% 0.5369

Moderate 51,981 1638 4.04% 4.85% 1.2019
High 69,348 4044 5.39% 11.98% 2.2241

Very High 141,495 25,240 10.99% 74.78% 6.8035
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Table 8 shows that the very high and high susceptibility levels accounted for 16.40%,
15.59%, 22.86%, 13.81%, 16.50%, 16.54%, and 16.38%; the moderate levels accounted for
1.94%, 5.72%, 10.25%, 6.85%, 4.53%, 4.17%, and 4.04%; and the very low and low susceptibil-
ity levels accounted for 81.66%, 78.69%, 66.89%, 79.35%, 78.98%, 79.29%, and 79.58% of the
total area for ANN, DT, KNN, RF, GRID-SVC, GA-SVC and GCO-SVC, respectively. KNN
obtained the highest percentage of very high- and high-susceptibility units to total land-
slides (92.79%), followed by GCO-SVC (86.76%), GA-SVC (86.72%), GRID-SVC (86.24%),
ANN (84.98%), RF (80.47%), and DT (75.60%).

Figure 8c and the above results show that the LSM produced by KNN generally
reflected higher susceptibility and differed significantly from the LSM obtained with the
other six models; thus, it is not recommended. The results of ANN showed that very low-
and very high-sensitivity units accounted for 91.68% of the total area, with the former
accounting for 78.19% and the latter for 13.49%; these values highly differ. DT showed
similar performance to ANN, having an even higher very low-susceptibility percentage of
78.69%; thus, neither model showed good generalization. Figure 8d shows that RF achieved
a better result than ANN, DT, and KNN in terms of susceptibility distribution, but the
proportion of very high or high susceptibility levels was significantly lower than that of the
other models, indicating that its results were conservative. In addition, the LSM produced
by DT had an intermediate break and no units classified into the low susceptibility level, as
shown in both Table 8 and Figure 8b. The SVC-based models GRID-SVC, GA-SVC, and
GCO-SVC produced similar landslide susceptibility maps but differed in many details.
For example, the proposed GCO-SVC model obtained the best performance with respect
to the percentage of very high-susceptibility units to total landslides (74.78%), followed
by GA-SVC (74.57%) and GRID-SVR (73.09%), and the numbers of pixels classified into
very high-susceptibility units based on GCO-SVC exceeded the corresponding numbers
obtained via GA-SVC and GRID-SVC by 141,495 and 8708, respectively.

4. Discussion
4.1. PFI of the Influencing Factors

To assess the predictive power of the influencing factors, PFI was employed to deter-
mine the contributions of the different influencing factors to the predictions of the seven
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models, as described in Section 2.5. The PFI score of each influencing factor is shown in
Figure 9. The results show that EV, DRV, and DRD were the most sensitive influencing
factors affecting the landslide susceptibility predicted by ANN, RF, GRID-SVC, GA-SVC,
and GCO-SVC. For GCO-SVC, the PFI of each factor was stable, and EV was the most
sensitive factor, followed by DRV, DRD, SAP, SPI, TWI, DF, ERG, LU, APP, and SA. For
DT, only EV affected the results, which is inconsistent with reality; thus, the model is not
recommended. For KNN, the variance of the PFI of each factor was large, but the mean
values were generally consistent with those of the other models. In conclusion, EV, DRV,
and DRD were the top three landslide influencing factors in the study area.

Figure 9. PFI scores of landslide influencing factors for the seven models (randomly shuffled 30 times),
includes (a) ANN, (b) DT, (c) KNN, (d) RF, (e) GRID-SVC, (f) GA-SVC, and (g) GCO-SVC.
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4.2. Sensitivity Analysis of the Parameters of the GCO-SVC Model

According to the principle of the GCO metaheuristic optimization algorithm described
in Section 2.4.1, the model has four important parameters that affect the performance of
the algorithm: cr, w f , Population, and Epoch, which represent the difficulty of mutation,
the coefficient of mutation, the total population, and the number of iterations, respectively.
The set of default parameters, cr = 0.7, w f = 1.25, Population = 100, and Epoch = 100,
was taken as the benchmark, and the control variable method was used to vary the other
parameters and observe the performance of the model on the validation set to determine
the effect of each parameter on the GCO-SVC model. Figure 10 shows the performance of
the GCO-SVC model under different combinations of hyperparameters.
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Figure 10a shows that an increase in the difficulty of mutation (cr) does not significantly
improve the performance of the model and can even have the opposite effect (e.g., when
cr = 0.8); thus, it is recommended that cr be set to 0.7. The performance of the model under
different values of the coefficient of mutation (w f ) and the total population (Population) in
Figure 10 exhibits a mountain shape, with the model performing optimally when w f = 1.25
and Population = 100. In regard to the number of iterations (Epoch), an increase in Epoch
improves the performance of the proposed GCO-SVC model, but a large increase in epochs
may lead to overfitting and consume a considerable amount of computing capacity and time;
thus, it is recommended that Epoch be set at 200. In conclusion, the suggested combination
of hyperparameters for the GCO-SVC model is cr = 0.7, w f = 1.25, Population = 100,
and Epoch = 200.
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5. Conclusions

In this study, a new model called GCO-SVC was proposed for assessing landslide
susceptibility in the Zigui to Badong basins of the TGRA. The proposed GCO-SVC model
was validated for landslide susceptibility in the study area through the analysis of 11 influ-
encing factors. Six commonly used models, ANN, DT, KNN, RF, GRID-SVC, and GA-SVC,
were used for comparative analysis based on the objective measures of accuracy, F1 score,
Log loss, and AUC. In addition, the PFI scores of all influencing factors and the sensitivities
of the parameters of the GCO-SVC model were evaluated. The following conclusions
were drawn from the comparison study: (1) The proposed GCO-SVC model demonstrated
good fitting and generalization in the evaluation of landslide susceptibility in the study
area. (2) The proposed GCO-SVC model obtained optimal results across all metrics, i.e.,
AUC, accuracy, F1 score, and Log loss, and performed significantly better than the other six
models. (3) EV, DRV, and DRD were found to be the top three most influential factors in
this study area by PFI analysis. (4) The optimal combination of parameters for the proposed
GCO-VC model was identified through parameter sensitivity analysis, which showed that
the performance of GCO-SVC can be improved by appropriately increasing the number
of epochs. In summary, the GCO-SVC model holds promise for landslide susceptibility
analysis and performed better than six other popular models in the study area. In the
future, the proposed GCO-SVC model should be applied to additional cases to validate
its adaptability.
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