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Abstract: Aerosols affect the gross primary productivity (GPP) of plants by absorbing and scattering
solar radiation. However, it is still an open question whether and to what extent the effects of aerosol
on the diffuse fraction (Df) can enhance GPP globally. We quantified the aerosol diffuse fertilization
effect (DFE) and incorporated it into a light use efficiency (LUE) model, EC-LUE. The new model is
driven by aerosol optical depth (AOD) data and is referred to as AOD-LUE. The eddy correlation
variance (EC) of the FLUXNET2015 dataset was used to calibrate and validate the model. The
results showed that the newly developed AOD-LUE model improved the performance in simulating
GPP across all ecosystem types (R2 from 0.6 to 0.68), with the highest performance for mixed forest
(average R2 from 0.71 to 0.77) and evergreen broadleaf forest (average R2 from 0.34 to 0.45). The
maximum LUE of diffuse photosynthetic active radiation (PAR) (3.61 g C m−2 MJ−1) was larger than
that of direct PAR (1.68 g C m−2 MJ−1) through parameter optimization, indicating that the aerosol
DFE seriously affects the estimation of GPP, and the separation of diffuse PAR and direct PAR in
the GPP model is necessary. In addition, we used AOD-LUE to quantify the impact of aerosol on
GPP. Specifically, aerosols impaired GPP in closed shrub (CSH) by 6.45% but enhanced the GPP of
grassland (GRA) and deciduous broadleaf forest (DBF) by 3.19% and 2.63%, respectively. Our study
stresses the importance of understanding aerosol-radiation interactions and incorporating aerosol
effects into regional and global GPP models.

Keywords: aerosol optical depth (AOD); photosynthetic active radiation (PAR); gross primary
productivity (GPP); diffuse radiation; LUE model

1. Introduction

Accurate and reliable estimates of gross primary productivity (GPP) are important
for understanding the terrestrial carbon cycle and predicting plant production status [1,2].
Gross primary productivity is the major indicator to measure the material production
(e.g., food and fiber) capacity and carbon uptake rate of an ecosystem [3,4]. Aerosols can
affect the productivity of plants by increasing the diffuse radiation reaching the surface,
thereby affecting the carbon cycle [5–8]. However, it is difficult to determine how changes
in aerosol-induced radiation affect GPP changes. Thus, it is necessary to incorporate the
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influences of aerosols into GPP models to quantify how aerosols affect the terrestrial carbon
cycle [6,9].

The enhancement or inhibition effect of aerosols on GPP has been an issue of constant
debate [10,11], and the effective quantification of GPP by aerosols has become a scientific
problem that needs to be solved urgently. For two reasons, the estimate of the aerosol
effects on GPP is controversial. First, moderate aerosol loading regions can increase the
diffuse fraction (Df) of solar radiation. Diffuse light can penetrate canopies more effectively
and increase plant photosynthesis via the aerosol diffuse fertilization effect (DFE) [12].
On the contrary, in the dense aerosol loading regions, aerosols have a negative impact
on GPP because the diffuse radiation is easily saturated and the direct light is strongly
attenuated [13,14]. In addition, the negative effect of high-load aerosols on GPP is also
manifested in that aerosol particles are deposited on leaves, thereby blocking stomata,
directly affecting plant photosynthesis and related protein expression [10]. For example, a
modeling study showed that for a part of the northern coniferous forest, a relatively high
aerosol loading (AOD > 2) resulted in a decrease in total radiation and thereby the GPP [4].
Second, the effect of aerosols on GPP may also be limited to the height and leaf area index
(LAI) and variations in different ecosystems. Increased diffuse radiation can enhance GPP
for forests (i.e., broadleaf forest) with complex canopy structure and high LAI [13,15,16]
but not for forests with low canopy (i.e., wetlands) and LAI (i.e., needleleaf forest) [17,18].
However, few studies have currently considered both the regional differences in aerosol
loading distribution and the differences in vegetation structure characteristics [19–21].
There is an urgent need to systematically study the specific impact of aerosols on GPP from
a global perspective.

Existing studies have proved that incorporating the impact of aerosols on GPP
in the GPP models is an important and effective way to reduce the uncertainty of
GPP estimates [22–24]. The transmission of direct light and diffuse light in the canopy
can differ due to aerosols [25], and therefore some models need to divide the canopy
into sunlit and shaded leaves [26,27]. For example, some current two-leaf models and
land surface process models [28,29] consider the influence of aerosols and improve the
performance in simulating GPP by calculating photosynthetically active radiation and
GPP for shaded and sunlit leaves separately [30]. However, most of the current light
use efficient (LUE) models treat the entire canopy as a leaf [31], ignoring the differences
in photosynthetic active radiation (PAR) and LUE caused by aerosols among different
leaves within the canopy [16,32,33]. Regional and global GPP estimates have substantial
uncertainty partly because the influence of aerosol on radiation is not considered [34–36].
Yuan et al. [31] found that ignoring the promotion of aerosols on diffuse radiation
(increasing the diffuse radiation by 43%) led to an underestimation of the European
GPP. Therefore, we emphasize the need to quantify the relationship between aerosols
and diffuse radiation, which is a factor that cannot be ignored in future GPP simulation
improvements.

In this study, we improved a widely used LUE model, EC-LUE, by including
aerosol-radiation effects, and examined the potential impact of aerosols on GPP at a
global scale. The EC-LUE is a widely used tool to estimate large-scale real GPPs because
of its reasonable performance and few input parameters [37]. Data from the EC-sites
and satellites were used to monitor GPP at the global scale and evaluate the impact of
aerosols on it. The objectives of this study were: (1) to quantify the relationship between
aerosols and diffuse radiation; (2) to determine whether aerosols and diffuse radiation
can be included in the GPP model; and (3) to quantify the aerosol impact on GPP at the
global scale.
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2. Materials and Methods
2.1. Eddy Covariance Flux Tower Data

Data from the FLUXNET2015 dataset (Available online: http://www.fluxdata.org,
accessed on 11 March 2020) explain ecosystem-scale processes such as the exchange of
carbon dioxide, water, and energy between the biosphere and the atmosphere. The data
processing and site description details can be found on the FLUXNET2015 dataset website
(Available online: https://fluxnet.org/data/fluxnet2015-dataset/, accessed on 9 June 2020).
In this paper, a total of 70 eddy covariance (EC) sites were selected (Table S1), and each of
these sites had more than five years of data that were able to capture interannual variations
and long-term changes (Figure 1). According to the classification scheme developed by
the International Geosphere-Biosphere Programme, the land cover classes are divided into
10 types (Table S1): Crop (CRO, 8 sites), Closed Shrub (CSH, 1 site), Deciduous Broadleaf
Forest (DBF, 10 sites), Evergreen Broadleaf Forest (EBF, 5 sites), Evergreen Needleleaf Forest
(ENF, 17 sites), Grassland (GRA, 14 sites), Mixed Forest (MF, 4 sites), Open Shrub (OSH, 2
sites), Wetlands (WET, 5 sites), and Woody Savanna (WSA, 4 sites).
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Figure 1. Geographical distribution of the eddy covariance (EC) flux sites used in this study. Green
circles stand for sites used for calibration, while blue triangles indicate sites used for validation.

The daily GPP variable (GPP_NT_VUT_REF) was estimated using net ecosystem
exchange (NEE) methods [38]. The air temperature (Ta), sensible heat (H), and latent heat
(LE) variables were quantified for each site. Using marginal distribution sampling (MDS),
the micrometeorological variables have been gap-filled with reanalysis datasets, while the
carbon flux measurement data were gap-filled with LE and H. The daily average values
were aggregated to the 8-day time step to match the time step of other data.

2.2. Remote Sensing Data

Aerosol optical depths (AOD) for 550-nm wavelengths are available from the Office of
Global Modeling and Assimilation (GMAO) of NASA (Available online: https://disc.gsfc.
nasa.gov/datasets/, accessed on 14 July 2021). The data is part of the NASA atmospheric
reanalysis dataset (MERRA-2) for the satellite era [39]. In the MERRA project, historical
climate analyses are conducted at a range of time scales covering weather and climate, and
the NASA EOS observations are placed in a climate context.

http://www.fluxdata.org
https://fluxnet.org/data/fluxnet2015-dataset/
https://disc.gsfc.nasa.gov/datasets/
https://disc.gsfc.nasa.gov/datasets/
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The SYN1deg Version 4.1 Cloud and Earth Radiant Energy System (CERES) prod-
uct [40] provided the direct PAR and diffuse PAR data for clear skies for the period from
2000 to 2014. The PARtotal was calculated as the sum of PARdir and PARdif. The SYN1deg
Ed4A product is designed to provide top of the atmosphere (TOA) and surface flux data
with the highest temporal resolution by incorporating hourly GEO imager data. The CERES
PAR data are available online (Available online: https://ceres-tool.larc.nasa.gov/ord-tool/
jsp/SYN1degEd41Selection.jsp, accessed on 3 May 2021).

2.3. Description of the AOD-LUE Model

We developed a new LUE model, AOD-LUE, by improving the EC-LUE model [37] by
incorporating the relative effects of diffuse and direct radiation on GPP. A total of 35 EC
sites encompassing ten vegetation types were selected for calibration, and the remaining 35
EC sites were used for model verification (Figure 1). The EC-LUE model is expressed as:

GPP = PAR × fPAR × εmax × min(Ts, WS) (1)

where fPAR is the fraction of incident daily photosynthetically active radiation absorbed
by the vegetation canopy (g C m−2 MJ−1 APAR) (%), PAR is the incident daily photosyn-
thetically active radiation (MJ m−2), εmax is the maximum light use efficiency without
environmental stress (APAR) [2], min is the minimum function of two scalars varying
from 0 to 1 and represents the reduction of potential LUE under limiting environmen-
tal conditions, and Ts and Ws, are temperature and water downward regulation scalars,
respectively.

To explicitly consider the Df effect of aerosols, we used the Df fitting to divide PAR
into PARdir and PARdif in the EC-LUE model. At the same time, the maximum LUE
parameter (ε) will also be parameterized for PARdir and PARdif separately. We use a
nonlinear regression equation (NLS) to fit the LUE values of the two types of radiation
respectively. The AOD-LUE model is as follows:

GPP = fPAR ×
(

PAR × (1 − Df)× LUEdir + PAR × Df × LUEdi f

)
× f(Ts, Ws) (2)

where LUEdir is the maximum LUE (g C m−2 MJ−1 APAR) affected by PARdir, LUEdif is the
maximum LUE affected by PARdif. In the overall model representation, through the NLS
equation, LUEdir and LUEdif were estimated to be 1.68 (g C m−2 MJ−1) and 3.61 (g C m−2

MJ−1) respectively.
In the model, fPAR is approximated as linear function of NDVI:

fPAR = a × NDVI + b (3)

where a and b are empirical constants. According to Sims et al. [41], a and b are set to 1.24
and −0.168, and NDVI is obtained directly from 1 km MODIS data.

The influence of aerosol on solar radiation is mainly manifested in two aspects, the
enhancement of PARdif and the weakening of PARdir. In order to consider the influence of
aerosol on the diffusion part of global irradiance, the Df was calculated as:

Df =
PARdif

PARtotal
(4)

where PARtotal is the total photosynthetically active radiation, and PARtotal is the total PAR.

https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SYN1degEd41Selection.jsp
https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SYN1degEd41Selection.jsp
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Aerosol and Df were fitted by the Michaelis–Menten equation:

Df =
Vmax × AOD
KM + AOD (5)

where Vmax is the maximum rate achieved by the ecosystem when the substrate concentra-
tion is saturated. The Michaelis constant KM is the concentration of substrate at which a
reaction rate is halved of Vmax. The concentrations at which Vmax and KM were optimized
in this study were 0.6 and 0.14 respectively [11,42].

Estimated Ts based on the equation developed for terrestrial ecosystem model (TEM):

TS = (Ts − Tmin) × (Ta − Tmax)(
(Ta−Tmin) × (Ta − Tmax) − (Ta − Topt)

2
) (6)

where Tmin (0 ◦C), Tmax (40 ◦C), and Topt (23.5 ◦C) correspond to the minimum, maximum,
and optimum daily air temperatures (◦C) for photosynthesis. Ts = 0 if Tmin or Tmax fall
below or above the minimum air temperature [37].

The evaporative fraction (Ws) formula is as follows:

WS = LE
LE + H (7)

where LE is EC-measured latent heat flux (W m−2), and H is sensible heat flux (W m −2).
The determination coefficient (R2), RMSE, and SD of the predicted value and the

observation value are calculated to evaluate the performance of the model at the site
level [43,44].

2.4. Data Analysis and Prediction of GPP

This study used ArcGIS 10.4 to calculate the annual average values of AOD, PARdir,
PARdif and PARtotal from 2000 to 2014, and plot the global average. A linear trend analysis
method was used to study the annual trend of each variable, and then to test the significance
of the regression slope.

In this research, an orthogonal regression method was used to compare each spatial
data product with the corresponding site-level measurement value. Orthogonal regression
can consider the errors of independent variables and dependent variables at the same
time [45]. The correction coefficient obtained by orthogonal regression was used to correct
the spatial data set for the prediction of GPP globally. The correction coefficients were
derived by regressing a flux tower variable value against a spatially derived variable
value based on slope and intercept. For the global GPP simulation, the AOD-LUE model
was driven by the MERRA-2 reanalysis dataset. The 1km NDVI data we obtained are
aggregated these data to 0.1 degree resolution and monthly time step.

In addition, we used the AOD-LUE model to estimate GPP with the 0.1◦ spatial
resolution and monthly temporal resolution for the globe during 2000–2019 (Figure S1a).
Using linear regression analysis in Python3, we determined the long-term trend in GPP
from 2000 to 2019 (Figure S1b).

2.5. Aerosols Contribution to Changes in GPP

In order to represent different biomes on the global spatial scale, the global potential
natural vegetation (PNV) map at 1 km spatial resolution (Available online: https://doi.
org/10.7910/DVN/QQHCIK, accessed on 18 February 2021) was used for the prediction
of GPP. The PNV map includes 10 vegetation types. We used PVN vegetation classification
because it assumes an undisturbed natural vegetation state and can well reflect the zonal
characteristics of vegetation [46]. The aerosol-radiation effect has a higher latitudinal
direction in the influence of GPP, and the use of PVN can better show the influence of
aerosol on GPP in different latitudes vegetation types.

https://doi.org/10.7910/DVN/QQHCIK
https://doi.org/10.7910/DVN/QQHCIK
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To isolate the contribution of aerosols to GPP, we also simulated GPP with a global
spatial resolution of 0.1◦ and a monthly temporal resolution from 2000 to 2019 using the
EC-LUE model. The simulation based on the AOD-LUE model considered aerosol radiation
effects and was referred to as S0 hereafter, while the simulation based on the EC-LUE model
ignored aerosol radiation effects and was referred to as S1 hereafter. Two metrics: ∆GPP
(Equation (8)) and ∆GPP (%) (Equation (9)) were used to measure the differences in GPP
between the S0 and S1 simulations:

∆GPP = GPPS0 − GPPS1 (8)

∆GPP(%) = ∆GPP
GPPS1

(9)

3. Results
3.1. Spatio-Temporal Variations of AOD, PARdif, PARdir and PARtotal

The global mean values of AOD, PARdir, PARdif, and PARtotal had large spatial differ-
ences from 2000 to 2014 (Figure 2). The high values of AOD and PARdif (>0.8 and 50W m−2,
respectively) were found in regions with rapidly developing economies such as eastern
China and northern India, mainly due to man-made pollution (Figure 2a,c); the moderate
values were found in desert areas (e.g., the Arabian Peninsula and North Africa) likely due
to frequent sandstorms; the low values (<0.2 and 20W m−2, respectively) were found in the
Qinghai-Tibet Plateau and Andes Mountains. The PARdir distribution patterns (Figure 2b)
showed the opposite pattern to those of AOD and PARdif on the Plateau, in the Himalayas,
and in the Andes. In addition, PARtotal and PARdir values had similar spatial patterns
(Figure 2b,d), and the influence of PARdir on PARtotal was greater than that of PARdif.
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The trends of AOD, PARdir, PARdif, and PARtotal mean values over the period 2000–
2014 varied across regions (Figure 3). For example, in India and southeastern China, values
for AOD and PARdif exhibited significant growth trends (Figure 3a,c), while those for
PARdir and PARtotal showed significant declines (Figure 3b,d). The value for PARdif showed
a significant growth trend, while that for AOD dropped noticeably in tropical regions (e.g.,
Indonesia and Congo Basin) (Figure 3a,c). Values of PARdif, PARdir and PARtotal all had
increasing trends in most parts of the Southern Hemisphere (Figure 3b,d). At the global
scale, the annual averages of AOD and PARdif showed upward trends (0.03 Wm−2 and
0.1 Wm−2) (Figure 3e,g), while the annual averages of PARdir (−0.3 Wm−2) and PARtotal
displayed downward trends (Figure 3f,h) during the period 2000–2014.
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3.2. High Correlations between AOD and Df

The AOD had a high correlation with the diffusion fraction (Df) (Figure 4; R2 = 0.57,
p < 0.01), and the influence of AOD on Df can be expressed by the distribution of the
Michaelis–Menten equation (Equation (5): Df = Vmax × AOD/(Km + AOD), where AOD is
set to range from 0.1 to 1). Among them, Vmax represents the threshold of Df that could
be affected by AOD (Figure 4), that is to say, AOD will not have an impact on Df once Df
exceeds this value (0.6). In addition, Km represents the AOD value (0.14) when Df is half
Vmax (i.e., 0.3) (Figure 4). According to this equation, we can know the increase velocity
of diffusivity under different aerosol loading. When the AOD loading was low (from 0 to
0.14), Df increases rapidly (from 0 to 0.3), which was a first-order reaction. As the value of
AOD increases (from 0.14 to 1), the growth rate of Df starts to slow down (from 0.3 to 0.6),
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which was a second-order reaction. Overall, most of the AOD values were low, indicating
a large scatter at low AOD.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 17 
 

 

 

Figure 4. Scatter plot of daily diffuse fraction (Df) and daily AOD of flux tower sites globally. The 

red line is fitted by the Michaelis–Menten equation in clear sky. Vmax represents the maximum Df, 

and Km represents the AOD value at half of the maximum Df. 

3.3. Improvement of GPP Estimation by Considering the Aerosol-Radiation Effect 

Compared with the EC-LUE model, the improved GPP model that considered aero-

sol-radiation effects (i.e., the AOD-LUE model) can more accurately estimate GPP (Figure 

5a). The AOD-LUE model had higher R² (0.68) and slope (0.93) than the EC-LUE model 

(R2 = 0.6 and slope = 0.89). The data points of the AOD-LUE model values were more 

concentrated in the vicinity of the 1:1 line than those of the EC-LUE model, which indi-

cated that the GPP values estimated by the AOD-LUE model were closer to the true values 

(i.e., flux tower GPP). Additionally, the simulated value of the AOD-LUE model de-

creased when the tower’s GPP was less than 7.5, and vice versa. The degree of improve-

ment of the AOD-LUE model differed across EC sites (Figure 5b). To be more specific, the 

AOD-LUE model was better optimized at the EC sites where the R2 for the EC-LUE model 

was lower (Figure 5b). The AOD-LUE model can be greatly improved (is about 40–120%) 

when the R2 value of the EC-LUE model is in the range of 0–0.4., but when the R2 value of 

the EC-LUE model was high (i.e., R2 greater than 0.6), the R2 value of the AOD-LUE model 

was not greatly improved (less than 10%). 

 

Figure 4. Scatter plot of daily diffuse fraction (Df) and daily AOD of flux tower sites globally. The red
line is fitted by the Michaelis–Menten equation in clear sky. Vmax represents the maximum Df, and
Km represents the AOD value at half of the maximum Df.

3.3. Improvement of GPP Estimation by Considering the Aerosol-Radiation Effect

Compared with the EC-LUE model, the improved GPP model that considered aerosol-
radiation effects (i.e., the AOD-LUE model) can more accurately estimate GPP (Figure 5a).
The AOD-LUE model had higher R2 (0.68) and slope (0.93) than the EC-LUE model (R2 = 0.6
and slope = 0.89). The data points of the AOD-LUE model values were more concentrated
in the vicinity of the 1:1 line than those of the EC-LUE model, which indicated that the
GPP values estimated by the AOD-LUE model were closer to the true values (i.e., flux
tower GPP). Additionally, the simulated value of the AOD-LUE model decreased when the
tower’s GPP was less than 7.5, and vice versa. The degree of improvement of the AOD-LUE
model differed across EC sites (Figure 5b). To be more specific, the AOD-LUE model was
better optimized at the EC sites where the R2 for the EC-LUE model was lower (Figure 5b).
The AOD-LUE model can be greatly improved (is about 40–120%) when the R2 value of
the EC-LUE model is in the range of 0–0.4., but when the R2 value of the EC-LUE model
was high (i.e., R2 greater than 0.6), the R2 value of the AOD-LUE model was not greatly
improved (less than 10%).

For each vegetation type, the simulation performance of the AOD-LUE model outper-
formed the EC-LUE model (Table 1). As compared with the EC-LUE model, the AOD-LUE
model produced higher R2 and less SD across all vegetation types. The improvement was
more obvious in EBF and CSH, in which the EC-LUE model has low R2 (0.35, 0.18) and high
RMSE (2.21, 1.76), and the AOD-LUE model increased R2 by 0.1 and 0.11 and decreased
RMSE by 0.12 and 0.17 and SD by 0.2 and 0.18. For other vegetation types such as MF, DBF,
and ENF, the AOD-LUE model had slightly higher performance than the EC-LUE model.
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The results show that the AOD-LUE model has higher potential in some poorly simulated
vegetation types.
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Table 1. The performance of AOD-LUE and EC-LUE in simulating GPP for each vegetation type.

EC-LUE AOD-LUE

Vegetation Types Abbreviation R2 RMSE SD R2 RMSE SD

Crop CRO 0.78 *** 3.04 6.20 0.80 *** 2.97 5.64
Closed Shrub CSH 0.18 ** 2.76 1.88 0.29 ** 2.59 1.69

Deciduous Broadleaf Forest DBF 0.79 *** 2.79 5.78 0.81 *** 2.77 5.23
Evergreen Broadleaf Forest EBF 0.35 ** 2.21 2.07 0.45 ** 2.09 1.87

Evergreen Needleleaf Forest ENF 0.61 *** 1.79 2.03 0.66 *** 1.73 1.86
Grassland GRA 0.72 *** 2.82 3.26 0.76 *** 2.71 2.95

Mixed Forest MF 0.71 *** 1.91 3.05 0.77 *** 1.75 2.68
Open Shrub OSH 0.65 *** 0.66 0.81 0.68 *** 0.59 0.74

Wetlands WET 0.68 *** 2.40 4.51 0.72 *** 2.21 4.14
Woody Savanna WSA 0.63 *** 1.60 1.80 0.67 *** 1.46 1.65

*** p <0.001; ** 0.001≤ p < 0.01 (2-tailed).

3.4. Impact of Aerosols on GPP

The impact of aerosols on GPP (∆GPP = ±400 g C m−2 yr−1) showed spatial hetero-
geneity on a global scale (Figure 6a). Aerosols had positive effects on GPP in many areas
across the globe, such as northern China, Central Asia, India, Europe, tropical and southern
Africa, and Mexico, and the positive impact of ∆GPP could be up to 300−400 g C m−2 yr−1

(6–8%) (Figure 6a,c). The negative effects of aerosols on GPP were mainly concentrated
in tropical Asia, western Europe, Amazon, and coastal areas in some regions (Figure 6a).
From the perspective of latitude distribution, aerosols had a large weakening effect on
∆GPP (200 g C m−2 yr−1) in tropical and high latitude (220 g C m−2 yr−1) regions but had
a large enhancement effect for most subtropical (110 g C m−2 yr−1) and temperate (80 g C
m−2 yr−1) regions (Figure 6b,d). From the percentage change in the spatial distribution
of GPP caused by the aerosol, it was found that there was a large substantial increase in
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GPP in Central Asia, the Sahara Desert, and northwestern China. The GPP values in the
Amazon rainforest, Southeast Asia, and boreal forest areas declined significantly due to the
impact of the aerosol (Figure 6c).
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variation of its annual (b) latitude from 2000 to 2019.The percentage changes in the spatial distribution
of (c) ∆GPP (%) (GPP(AOD-LUE) − GPP(EC-LUE)/GPP(EC-LUE) × 100) caused by aerosols and the
variation of its (d) latitude from 2000 to 2019.

Different terrestrial ecosystems responded differently to aerosols (Figure 7). Among
all vegetation types, aerosols had a positive impact of 2.38% on ∆GPP and a negative
impact of 3.83%. The GPP increased for some subtropical and temperate vegetation, some
drought-tolerant woods and dry grasslands, but decreased for other vegetation types,
including tropical vegetation and alpine vegetation (Figure 7). Specifically, there was
a negative correlation between ∆GPP and aerosols in Evergreen Broadleaf Forest (EBF)
(−6.45%), Evergreen Broadleaf Forest (EBF) (−3.97%), Evergreen Needleleaf Forest (ENF)
(−3.36%) and Wetlands (WET) (−4.67%). Aerosol positively influenced ∆GPP in the mainly
Grassland (GRA) (3.19%) and Deciduous Broadleaf Forest (DBF) (2.63%), graminoid and
Open Shrub (OSH) (2.38%), Crop (CRO) (2.19%) and Woody Savanna (WSA) (1.49%).
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4. Discussion
4.1. Model Improvement by Incorporating the Effects of Diffuse Radiation

The traditional ecosystem models typically do not consider the impact of diffuse
PAR [47], and have a certain deviation in simulated GPP under clear and cloudy condi-
tions [48]. However, the changes in diffuse radiation under natural conditions are often
caused by changes in aerosols, and our results found that aerosols can significantly increase
diffuse PAR. Gu et al. [30] hypothesized that aerosols would increase NPP due to the
increased quantum yield of diffuse light. However, the effects of diffuse light on GPP have
not been quantified globally. In addition, we also found that when there was a higher Df,
aerosols weakened plant photosynthesis by reduced direct PAR. Therefore, compared with
previous modeling studies that only considered the total incident PAR [49,50], our research
results revealed that the relative effects of diffuse PAR and direct PAR on plant growth
should be considered in GPP models.

Most LUE models define GPP as the product of PAR and LUE absorbed by the
vegetation canopy [2]. When PAR is affected by aerosol and changes, maximum LUE will
also change [51]. In the estimation of GPP based on remote sensing, the GPP estimation
caused by the structural changes of LUE can also be considered as a key component of the
total error budget [21,52,53]. The LUE models like EC-LUE typically use a constant LUE
independent of the biological community [48], and assume that LUE is independent of the
diffuse PAR [54], which leads to the underestimation of GPP on cloudy days with more
diffuse radiation.

In this research, through the AOD-LUE model, we quantified the maximum LUE
parameter of PARdif and PARdir (3.61 and 1.68, respectively). The maximum LUE of PARdif
is much higher than that of PARdir mainly because canopy photosynthesis tends to use
light more effectively under diffuse light than direct light [55]. Most of the modeling and
observational studies also proved that LUE increases when the Df increases [56,57]. The
regression relationship between the GPP estimated by the EC tower data and the GPP
simulated by the AOD-LUE model has a slope of 0.68, which is higher than the slope for the
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original EC-LUE model (Figure 5a). This means that the model with the effects of aerosols
added further shows the spatial heterogeneity of global GPP [27,58].

4.2. Differences in the Impact of Aerosol Diffuse Fertilization Effect on GPP in Different Regions

According to our modeling, aerosol-induced changes in PAR have a strong impact
on GPP depending on aerosol loading and cloud thickness. Moderate aerosol increases
the photosynthesis of plants by increasing the Df of total PAR, while the further increase
in aerosol loading can have the opposite effect due to the strong attenuation of total PAR.
Moderate aerosol loading would increase plant photosynthesis and the total partition of
PAR to Df, while further increases in aerosol loading could have an opposite effect due
to a strong attenuation of total PAR. The key mechanism of aerosols affecting GPP is its
effect on total PAR and partitioning of total PAR into direct and diffuse fractions. Diffuse
PAR is more effective than direct PAR in penetrating vegetation canopy [11,30,42] and
therefore has a higher LUE coefficient (3.61 g C m−2 MJ−1) than direct PAR (1.68 g C m−2

MJ−1). In addition, the aerosol diffuse fertilization effect (DFE) was very closely related to
cloud cover [12,59], which caused the Df of the area to easily reach saturation and reduce
the availability of light [60]. Therefore, the overall impact of aerosol DFE on GPP may be
positive in areas with low cloud cover and aerosol loading, and may be negative in areas
with higher cloud cover and aerosol loading.

The negative impact of aerosols on GPP is the greatest in the tropics (∆GPP < −4%).
This is mainly because tropical regions with strong evapotranspiration have limited po-
tential for aerosol DFE due to thick cloud cover [12,61], which cannot compensate for the
reduction of total PAR and direct PAR (Figure 3b,d). However, our results showed that
∆GPP > 2% is common in subtropical areas with low cloud cover, especially in some arid
and semi-arid regions (∆GPP > 3%) (Figure 6d). The cloudiness in these areas is generally
low and does not inhibit the aerosol DFE [25,61] likely because the vegetation photosynthe-
sis in these areas does not saturate [8,62] and the change of aerosol to diffuse PAR increases
the potential LUE. The mean value of diffuse PAR in these areas was relatively high and
exhibited an increasing trend.

However, compared with subtropical regions with moderate aerosols, southeastern
China did not exhibit increases in GPP due to aerosol DFE despite a heavy aerosol loading
(AOD > 0.5). Previously, Yue and Unger [63] considered the impact of aerosols and ozone
pollutants on net primary productivity (NPP) and found that the aerosol DFE would
increase NPP by 0.2 Pg C (5%) in eastern China. The reason why our research results are
different from them is likely because we have considered that the increase of Df is limited
by aerosol loading and the corresponding offsetting effect of direct PAR attenuation [25].

Although aerosols have positive and negative effects on GPP, they are even offset by
positive and negative effects in the global effect. What cannot be ignored, is the change
of scattered radiation caused by aerosols. Although the relationship between scattered
radiation and aerosol coincidence leads to a small change in GPP, it can be compensated by
the increase of LUE [10].

4.3. Differences in the Impact of Aerosol DFE on Different Vegetation Types

Our results show that aerosol DFE increased GPP for most broad-leaved forests.
However, in coniferous forests, the aerosol greatly reduced the total PAR and reduced the
∆GPP by 3.36%. One possible explanation is that the aerosol DEF of coniferous forests is not
as obvious as that of broad-leaved forests [64], which may be caused by the sparse canopy
and lower leaf area index (LAI) of coniferous forests [12,65]. Another possible reason is that
the negative effect by the reduction of total PAR more than offset the DEF. As a result of the
increase in the proportion of leaves exposed to moderate light levels, terrestrial ecosystems
with high LAI were more sensitive to diffuse radiation [66]. A modeling study by Alton
et al. [67] showed that under the condition of an increased diffuse fraction, the actual LUE
increased by 33% for a broad-leaved forest with an LAI of 5.05 but by only 6% for a Scottish
coniferous forest with an LAI of 2. The simulations by Knohl and Baldocchi [15] using a
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multilayer canopy model also indicated that the aerosol DFE decreased with a decrease in
LAI.

In addition, previous studies have suggested that GPP in some ecosystems with
fewer leaves or open canopies, such as grasslands and wetlands, is also less sensitive to
diffuse radiation [17,50]. However, in our research, we found that in some drought-tolerant
grasslands (such as WSA) with low LAI, the aerosol DFE caused a significant increase in
GPP (Figure 7). Jing et al. [29] found that CO2 absorption increased significantly due to
aerosols and thick clouds in grasslands with extremely low LAI (0.37). There is a significant
relationship between canopy structure and the aerosol DFE for the multilayer arctic shrub
system with low LAI (1.5) [68]. Some previous studies also have suggested that the LAI of
temperate coniferous forests and temperate deciduous forests was similar, and LAI alone
cannot explain the differences in the response of GPP between plant functional types (PFTs)
to the aerosol DFE [15,69]. Therefore, our results support Park et al.’s [11] view that canopy
structure may be more important in determining the aerosol DFE than LAI.

4.4. Limitations and Future Needs

There are still some uncertainties in our quantitative study of the influence of aerosol
on GPP. First, the current flux tower sites measure less diffuse PAR when conducting
carbon and water flux observations [29,36]. Although most process-based models can
now differentiate between sunlit and shaded leaves [21,36,70], field measurements are still
necessary in order to parameterize the effects of diffuse PAR on LUE and photosynthesis.
However, most of the diffuse radiation data used nowadays are mainly derived from
experience or numerical models [67,71]. Therefore, the lack of field-based diffuse PAR
measurements can lead to uncertainty in simulated effects of scattered radiation on GPP by
numerical models.

Second, the indirect effects of aerosols on meteorological changes (i.e., precipitation)
can also affect GPP. Yue et al. [63] found that aerosol-induced drought strongly reduced
NPP, which may be due to aerosol-induced changes in evaporation and precipitation [22,72].
In addition, the indirect effects of aerosols can also change the size and distribution of cloud
droplets and cloud albedo [32,73] and increase the depth and number of clouds. Clouds can
also disturb the scattered radiation, surface temperature and precipitation and thus have
complex effects on the terrestrial carbon cycle. Because the relationship between aerosols
and clouds is so complicated, current research cannot completely separate them [74,75]. To
resolve these meteorological feedbacks and accompanying mechanisms, future efforts are
needed to fully couple the terrestrial biosphere, atmosphere chemistry and climate in earth
system models [63].

Third, the input data also affect the simulation of the impact of aerosols on GPP. The
effects of spatial resolution and uncertainty of remote sensing data on carbon fluxes cannot
be ignored [76,77]. Some uncertainties in the simulation of the AOD-LUE model may be
caused by the scale mismatch between the input data sets. The spatial resolution of the AOD
data used in this article was 0.5◦ × 0.625◦, while the spatial resolution of other simulated
flux tower datasets was generally less than 0.03◦ × 0.03◦. This kind of uncertainty in GPP
simulation caused by data scale mismatch is inevitable [1,53]. For example, researchers
Wang et al. [35] found that spatial PAR data explained 57% of the PAR variation detected at
EC tower sites [78,79]. To achieve a global level of spatial resolution for GPP modeling on a
large scale, the GPP model research center still must improve the quality of remote sensing
data.

5. Conclusions

The relationship between aerosols and diffuse radiation was quantified and a new
LUE model developed in this study to explicitly account for the diffuse fertilization effect
of aerosols on GPP. By changing the structure of the widely used EC-LUE model, the
maximum LUE of diffuse PAR and direct PAR were incorporated and parameterized. In
comparison with the original model (EC-LUE), the new model (AOD-LUE) shows fairly
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good performance across different biomes (R2 = 0.68, p < 0.01). The model was then used
to simulate GPP at the global level from 2000–2014. We then used the AOD-LUE model
to simulate GPP at the global scale for the period 2000–2014. With the global-scale GPP
estimates, we quantified the effects of aerosol radiation on GPP regionally and globally
and for different vegetation types. Although the total effect is low, it still needs attention,
because the total effect is offset by both positive and negative aspects, but the positive and
negative effects of different regions are very large. Aerosols mainly have a relatively large
negative impact on Closed Shrub (CSH) (∆GPP = −6.45%), and a positive impact on arid
and semi-arid regions (GRA) (∆GPP = 3.19%) in the subtropical zone. Our results showed
that the effects of aerosol radiation have severely affected the global GPP. Separating PAR
to diffuse and direct components and incorporating their relative effects to LUE models are
effective for improving the accuracy of the GPP simulation at regional to global scales.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14122759/s1, Figure S1: Spatial pattern of global GPP simulated
by the AOD-LUE model during 2000–2019: (a) averaged annual GPP; (b) trend of annual GPP (g
C m−2 yr−1); Table S1: Information of the eddy covariance (EC) sites used in this study for model
calibration and validation.
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