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Abstract: The African continent is receiving unprecedented pressure from population growth, ur-
banisation, decreased agricultural productivity and changing climate. However, the continent lacks
technological advancement. Therefore, there is a need to apply global data and open geospatial
tools for analysis to prevent, stop and comprehend the trend and effects of land degradation, food
insecurity and the unsustainability of cities. The study takes three representative indicators (climate
risk, land degradation and land consumption) from FAO’s four strategic better’s to demonstrate the
feasibility and applicability of global datasets to support decision makers. Three representative cities
in Africa are selected for the study—Houet, Burkina Faso (West Africa); Kisumu, Kenya (East Africa);
and Analamanga, Madagascar (South East Africa). The study found that eight Fokontany of the
Analamanga region were at high risk from climate change; at the ward level, a maximum of 54.2% of
the total degraded land area in Kisumu; and maximum land-consumption rate of 1.5 was found in
Houet at the department level. The results of this study can be a basis for policymakers in planning
an inclusive climate-adaptation measure and sustainable land-use frameworks and policies.

Keywords: geospatial; sustainability of cities; land cover; global tools; open data; land degradation;
land consumption

1. Introduction

The total population of Africa is increasing rapidly, with the total population almost
doubling by 2050, and two-thirds of the population growth is projected to be absorbed in
urban areas [1]. The annual population growth rate from 2010 to 2015 was 1.3% [2], with
that of the world at 1.018% in 2020 [3]. Furthermore, the urban population in Africa has
rapidly grown from 27% in 1950 to 40% in 2015 and is expected to reach 60% by 2050 [4].
FAOSTAT projects the total urban population to surpass the rural population between 2035
to 2040 (Figure 1) [5].

The increase in population in Africa has led to increased competition for food and natural
resources. Although evidence of larger yield through limited investments exists [6,7], the
reduction in crop yield and food insecurity is looming over the region as crop yield has
stagnated since the 70s. For example, 153 million people over fifteen years of age suffered
from severe food insecurity in sub-Saharan Africa in 2014/15 [8]. The region also has the
lowest per capita income, with sub-Saharan Africa reporting one-third of the average per
capita income (PCI) of the world in 2014. The leading cause of food insecurity is associated
with limited investment in agriculture, disasters with severe droughts and floods leading
to loss of cropland and agricultural areas, insufficient pastures to graze and feed livestock,
and traditional and unmechanised farming systems [8].

The impacts of climate change have a greater impact on the African continent, and
the continent’s low and fragile economy further exacerbates the impacts. According to the
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IPCC AR6 report, agricultural productivity has been greatly impacted by climate extremes
and the sector has faced higher economic losses. In addition, a decline in vegetation and
enhanced desertification due to climate change is expected. For example, in the Sahara and
Sahel, the rainfall is projected to drop, leading to soil degradation and an increase in the
frequency of dust storms. As a result, agricultural production is severely affected, which is
already reeling under poor irrigation and traditional farming methods [9,10]. This has put
tremendous pressure on 250 million smallholding farmers who own crop farms of less than
five hectares [11].
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Lack of proper land-management practices, natural-resource management and agricul-
tural practices, particularly among farmers with poor economic backgrounds, has further 
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gion’s population is increasing rapidly, which leads to the expansion of agricultural activ-
ities to meet the needs of the growing population [14]. Varying climatic conditions, con-
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Despite being one of the most vulnerable regions globally, climate change studies in
East, West and Central Africa are limited. About two-thirds of the land resources in Africa
have degraded to a certain degree [12]. Human activities have led land-use and land-cover
changes, resulting in land degradation [13], and climate change has further increased
the risk [12]. Agriculture and income are the two driving factors behind environmental
degradation [14]. While increasing population leads to environmental damages, a higher
income level lowers negative impacts on the environment due to agricultural practices.
Agriculture is crucial for the economy of many of the countries in the African subcontinent.
Lack of proper land-management practices, natural-resource management and agricultural
practices, particularly among farmers with poor economic backgrounds, has further con-
tributed to the region’s environmental and land-degradation problems [12]. The region’s
population is increasing rapidly, which leads to the expansion of agricultural activities to
meet the needs of the growing population [14]. Varying climatic conditions, conflict, war
and deforestation are also the driving factors for land degradation in Africa [12,14,15].

Therefore, there is an established need to measure the indicators to better plan for
sustainable cities in the wake of climate change, population growth and pressure, and
an increase in food demand with limited land resources and productivity. FAO’s four
pillars [16] based on the four betters aim to transform the agri-food system and make it more
efficient, inclusive, resilient and sustainable. First, better production aims at efficient and
inclusive agriculture and food supply chains at local, regional and global levels to ensure
sustainable consumption and production in the wake of climate change. Second, better
nutrition targets end food hunger, attain food security, better nutrition and improved access
to healthy diets. Third, better environment’s goal is the sustainable use of ecosystems and
resources for agri-food systems and addressing climate change. Lastly, better life focuses
on reducing inequalities and encouraging inclusive economic growth.

The main aim of this study is to select three representative indicators—climate risk
assessment, land degradation and land-consumption rate—and demonstrate the applicabil-
ity and feasibility of the selected indicators to better plan for sustainability and greening of
cities using global data and tools. First, the climate risk assessment is carried through the
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change in parameter of length of the growing period. Second, land degradation (SDG 15.3.1)
is assessed as a function of change in land cover, land productivity and soil organic car-
bon. Third, the land-consumption rate (SDG 11.3.1) is derived as a function of changes in
urban area and population. The study can be carried out with minimal local data. These
indicators are chosen in the framework of FAO’s four betters and address the goals of the
four betters. The selected indicators consider climate change, investigate the impacts and
pressure of the rapidly growing population on the available resources, increasing food
demand and land degradation. The objective of this study is to (a) assess climate risk for
the future projected scenarios using the length of the growing period and population data;
(b) measure degraded land; and (c) measure the land-consumption rate to demonstrate the
applicability of global and open data and tools for the measure of indicators in support to
greening and sustainability of cities.

2. Materials and Methods
2.1. Study Area

For this research, three cities in Africa were selected for each indicator. Houet in
Burkina Faso was selected to assess the land-consumption rate, Kisumu in Kenya was
selected for land degradation, and Analamanga in Madagascar was selected for climate risk
assessment. The selected study areas are from the eastern, north-western and south-eastern
regions of Africa. The three study areas’ economies are highly dependent on agriculture
and face the challenge of a rapidly growing population, food insecurity, pressure on land,
and the looming threat of climate change. Therefore, the three areas, as shown in Figure 2,
located in different regions of Africa, are a sample study area selected as a representative
for the entire continent of Africa.
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Figure 2. Location map of the study area: (a) Houet (Burkina Faso), (b) Kisumu (Kenya), (c) Anala-
manga (Madagascar) in Africa.

2.1.1. Analamanga, Madagascar

Madagascar is an island nation on the south-eastern coast of Africa. With an area of
approximately 590,000 sq.km, it is the fourth-largest island globally. About 61.1% of the
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country’s population lives in rural areas. The island nation has a wide range of vegetation
habitats: humid tropical forest to arid semi-desert, which receives an average annual
rainfall of 3500 mm and 350 mm, respectively. Agriculture is the backbone of the country’s
economy. The native forests in the country are converted for agricultural purposes; after the
soil quality degrades, the land is abandoned [17–19]. The capital Antananarivo lies in the
Analamanga region and is the largest city, covering an area of 86.4 sq.km and a population
of roughly 1.3 million, which is 30% of the urban population. The tropical mountain city is
situated in the central highland region of Madagascar at an altitude of 1280 m above sea
level. Human settlements are centred on the hills, whereas the lowlands, plains and valleys
are used for agricultural purposes. The agricultural area accounts for 43% of the total
area of Antananarivo, with rice fields being the most significant land-use type. However,
rapid urbanisation has led to encroachment of traditional rice plains, resulting in soil- and
water-resource degradation. Furthermore, as the city is situated on a hill, the scope of
expanding the metropolitan area is limited [19–21]. The island nation is exposed to climate
risks and vulnerable to climate impacts. Loss of forest habitat has resulted in making the
country more vulnerable to climate change. The region experienced continuous increase in
temperature and variable rainfall patterns consequently affecting the hydrological cycle.
The country was hit with cyclones. In 2004, cyclones Elita and Gafilo resulted in 2.3% GDP
loss, whereas in 2006 cyclone Boloetse resulted in 0.7% GDP loss. Additionally, drought
across the country has affected maize crop production. It is projected that climate change
will result in frequent droughts, cyclones and a rise in sea levels [18,22,23].

2.1.2. Kisumu, Kenya

Kenya spans along the equator in the Eastern part of Africa. With an area of 582,646 sq.km,
98.1% is landmass, whereas the remainder, 1.9%, is water bodies. The country’s climate is
categorised into seven agroclimatic zones based on the varying climatic conditions [24,25].
The study area, Kisumu, is situated on Lake Victoria and lies in the western part of Kenya.
It is the third-largest city in Kenya and the capital of Nyanza province [26]. As the city is
situated in the equatorial region, it experiences a tropical rainforest climate. Hence, the
region experiences a warm to hot and wet climate with a mean temperature of 22.9 ◦C
and mean annual rainfall of 1490 mm. The port city covers an area of 546 sq.km with a
population of about 335,000 [27]. Western Kenya is a predominantly agroeconomic region,
and with a growing population and high population density of 130–150 people/sq.km,
the land is experiencing increasing pressure. The majority of the population, accounting
for up to 90%, rely heavily on agriculture as a source of their income. An average farm
measures about 0.6 ha [28,29]. Additionally, 53% of the population lives under the poverty
line. Erratic rainfall patterns, droughts and floods have adversely affected food security
for the people. The city’s location has economic and political importance within the East
African region [28,30,31]. Added to that, land degradation is a major problem in the African
continent. Annually, soil erosion has resulted approximately 2–40% decrease in agricultural
productivity. The scenario is similar in Kenya, affecting millions of people. The extent and
severity of land degradation is increasing with 20% of cultivated areas, 30% of forests and
10% of grassland degraded [32]. Human activities have resulted in 12% of degraded land,
where 27% of the population resides. The contributing factors behind land degradation
are deforestation and bad agricultural practices. Furthermore, county governments, and in
particular the farmers in Kenya, are more concerned about soil erosion [32,33].

2.1.3. Houet, Burkina Faso

In the western part of Africa lies the landlocked country of Burkina Faso. With an area
of approximately 274,000 sq.km it has a population of about 19 million. The population
in the country is rapidly increasing, with an annual population growth rate of 3% in 2016.
Burkina Faso has a short rainy season from June to October and an extended dry season
from November to May. The average annual rainfall is 1100 mm in the south and 300 mm
in the north. Likewise, the mean monthly temperature varies throughout the country. The
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northern part of the country, situated in the Sahel zone or the Sahelian Acacia Savanna,
has a mean monthly temperature between 23 ◦C and 34 ◦C. The southern part located in
the Sudanian Savanna experiences temperature between 25 ◦C and 31 ◦C. Burkina Faso’s
economy depends on agriculture, livestock and forestry sectors [34–36]. The province
of Houet lies in the western part of Burkina Faso and has an area of 11,582 sq.km. It
is located in the South Sudanian Climatic Zone and experiences an alternating wet and
dry season, with the average annual rainfall in Houet being 1200 mm. The province is a
significant region for rice cultivation [37]. Globally, 10–15% of land-use change is attributed
to agriculture and urban expansion, and 6% to pastural land. Burkina Faso has also seen a
drastic land-cover change due to external forces such as rapid population growth, internal
migration and poverty. For example, a decrease in rainfall and availability of arable land in
the north and central Burkina Faso led to internal migration of farmers to the south [38,39].

2.2. Methodology

The present study relies on the three case studies: (a) measure of the risk due to
change in climate in Analamanga (Madagascar), (b) the measure of land-consumption rate
(SDG 11.3.1) in Houet, Burkina Faso, and (c) the measure of degraded area (SDG 15.3.1)
in Kisumu, Kenya. The overall methodology consists of selecting an area of interest,
preparing the indicators of measure and aggregating the indicators at the subcounty
(Kisumu), department (Houet) or Fokontany level (Analamanga).

2.2.1. Case Study 1: Measure of Risk Associated with Climate Change in the Analamanga
Region of Madagascar

i. Description of the terminology and input data

The length of the growing period (LGP) is defined as “the agro-climatic potential
productivity of land in number of days in a year when temperature regime and moisture
supply are conducive to the crop growth and development” [40]. LGP is associated with the
land productivity and agroclimatic potential of land. It is the result of the combined effect
of suitable temperature, water stress in terms of soil moisture and humidity responsible
for the growth and development of crops. Since LGP is a representative parameter of the
combined climatic necessities for crop development, it is used as an indicator for measuring
the effect of changing climate. The administrative boundary is obtained from GADM at
Fokontany (admin level 4), LGP data from the GAEZ platform [41], and population data
from Worldpop for the year 2020 [42] are used (Table 1).

Table 1. Input data for assessing the risk of changing climate in the Analamanga region of Madagascar.

Input Data Source

Administrative boundary level 4 (Fokontany) GADM
Length of growing period (LGP) GAEZ data

Population data Worldpop

ii. Methods

The workflow to measure future climate risks is presented in Figure 3. The LGP
data for the historical period (1981–2010) were obtained through the CRUT32 model and
future scenarios (under RCP 2.6, 4.5 and 8.5 for 2041–2070) through the ENSEMBLE climate
model from the GAEZ data. The population data (per pixel) of Madagascar for 2020 were
acquired from Worldpop. Next, the population data and LGP data were clipped to the
Analamanga region. Average LGP days during the historical and projected future periods
were computed using zonal statistics from QGIS desktop software. Then, the change in
LGP days in future scenarios was calculated as a difference from the historical period
(Table 2). The change in LGP was normalised for RCP 2.6, RCP 4.5 and RCP 8.5 scenarios.
Next, the total population at each Fokontany was computed and normalised. Finally, the
risk of changing climate was calculated as the function of normalised LGP change (a proxy
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for hazard) and normalised population (a proxy for exposure) using Equation (1). Due to
unavailability of global and observation data on the hazard impact (vulnerability) which
propagates into the livelihood of the society, risk was calculated as a function of hazard
and exposure [43]. Empirically (Equation (1)):

Risk = Hazard (LGP change) × Exposure (population) (1)
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Table 2. Summary of population and change in length of the growing period in the Analamanga
region, Madagascar.

Population
Class (nb)

Fokontany
(nb)

Length of Growing Period (LGP) Change

Change at RCP
2.6 (Days)

Fokontany
(nb)

Change at RCP
4.5 (Days)

Fokontany
(nb)

Change at RCP
8.5 (Days)

Fokontany
(nb)

<10,000 168 ≤5 23 ≤5 14 ≤20 18
10,000–50,000 23 5–10 3 5–10 11 20–25 113

>50,000 1 10–15 166 10–15 167 >25 61
Total 192 192 192 192

2.2.2. Case Study 2: Measure of Land Degradation (SDG 15.3.1) in Kisumu, Kenya

i. Description of the terminology and input data

SDG 15.3.1 measures the proportion of degraded land over total land area. Land
degradation is defined as “the reduction or loss of the biological or economic productivity
and complexity of rain fed cropland, or range, pasture, forest, and woodlands, resulting
from a combination of pressures, including land use and management practices” [44].
The indicator is measured from three sub-indicators, viz. (a) land-cover change, (b) land-
productivity change and (c) soil organic carbon (SOC) change. The input parameters are
summerised in Table 3. The land cover for the years 2016 and 2020 was generated using
a subset of Africover legend [45] for Kenya. Change in land productivity was measured
from the annual series of NDVI from Landsat 8, and baseline soil organic carbon data were
obtained from Soil Grids [46]. Further, to assess the available land for tree plantation and
hedgerow plantation around parcels in the degraded area, image segmentation of NICFI
planet data was carried out to delineate the parcels.
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Table 3. Input data for measuring degraded land (SDG 15.3.1) and delineating parcels for hedgerow
and tree plantations.

Input Data Source

Administrative boundary level 2 (county) UNOCHA-HDX
Land cover for 2016 and 2020 Generated from Sentinel 1 and 2 imageries

Satellite imagery Sentinel 1 and 2, Landsat 8 and NICFI planet
Productivity index NDVI

ii. Methods

a. Preparation of study area and generating the land-cover map

Figure 4 summarises the workflow to delineate the area for tree plantation from de-
graded area. The administrative boundary at the subcounty level of Kisumu was obtained
from UNOCHA-HDX. Land-cover legends for Kisumu were prepared from the subsets
of Africover land cover of Kenya (2000), as shown in Figure 5. A total of 2600 training
points, 200 each for thirteen land-cover classes, were collected manually using the visual
interpretation of very-high-resolution satellite imagery (e.g., Bing and Google) and spectral
indices of NDVI for the year 2020. After collecting training points, the satellite imageries
from Sentinel 1 and 2 were mosaicked for 2016 and 2020. To preserve the phenology of
vegetation, imageries were prepared for summer, spring, autumn and winter seasons. A
random-forest model was trained in Google Earth Engine using training points and applied
over 2020 imagery for classification. 70% of training data were used for actual training, and
the remaining 30% were used for in-sample validation. The land-cover classification for
2020 was obtained at Kappa 74% and Producer Accuracy of 77%. The model prepared with
training points for the year 2020 was used for classifying the imagery from 2016.
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b. Preparation of land-degradation (SDG 15.3.1) sub-indicators

Land-cover change, land-productivity change and SOC change are the three sub-
indicators for SDG 15.3.1. The methods for measuring these sub-indicators are described in
the following subsections.

1. Preparation of a land-cover change matrix and measurement of land-cover change

The thirteen land-cover classes were reclassified to align with six IPCC land-cover
classes as shown in Table 4. Then, a transition matrix was prepared, as shown in Table 4,
to define the transitions between 2016 and 2020 as either degraded, stable or improved,
as defined by UNCCD. The land-cover change was defined according to the IPCC transi-
tion class.

Table 4. Land-cover change transition matrix for six IPCC classes. Boxes are colour-coded as
improved (green), stable (blue) or degraded (orange).

Original
Class

Final Class

IPCC class Forest Grassland Cropland Wetland Settlement Bare Land
Forest

Grassland
Cropland
Wetlands

Settlement
Bareland

2. Preparation of land-productivity data and measurement of land-productivity change

Land productivity was measured through the NDVI of Landsat 8. In addition, a series
of annual land productivity was prepared from 2016 to 2020, and its metrics of productivity
trend, performance and state were prepared following the Good Practice Guideline v2 from
the United Nations Convention to Combat Desertification (UNCCD) [47].

3. Preparation of soil organic carbon (SOC) data and Measurement of SOC change

In order to prepare the SOC baseline data, the soil grid and the change in SOC was
calculated following the Good Practice Guidelines (GPG) v2 from UNCCD.

Following the measurement of SDG 15.3.1 sub-indicators, SDG 15.3.1 was calculated
on a pixel-by-pixel basis using the one-out-all-out principle (1OAO) principle, meaning if
any of the pixels are classified as degraded, the final measure of the pixel is degraded. For
the present study, the SDG 15.3.1 module of the SEPAL platform [48] from FAO was used
for the analysis.
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4. Image segmentation to delineate parcels

Image segmentation and delineation of parcels were carried out in Google Earth
Engine using NICFI planet data at 5 m spatial resolution. With the purpose of tree or
hedgerow plantation around the boundary of parcels, the parcels were further delineated
for boundaries of parcels.

5. Overlaying the degraded area with parcels to prioritise the plantation areas

Finally, the parcels were overlayed over the degraded areas and classified as high-
priority areas for plantation. Other classes of stable and improving land overlaid with
parcels were classified as medium- and low-priority plantation areas, respectively, as shown
in Figure 6.
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2.2.3. Case Study 3: Measure of Land-Consumption Rate (SDG 11.3.1) in Houet, Burkina Faso

i. Description of the terminology and input data

SDG 11.3.1 is the measure of the land-consumption rate. The land-consumption rate
is defined as “the ratio of land consumption rate to the population growth rate” [44]. The
indicator measures the extent of the urban area built to the population change. Input
data listed in Table 5 were acquired from various sources to measure the indicator. The
administrative boundary at the department level (admin level 3) was acquired from GADM,
and the land cover for Houet was generated using subsets of Observatory for Sahara and
Sahel (OSS) Legends for Burkina Faso (2016) for 2016 and 2020 and population data were
obtained from Worldpop for 2016 and 2020.

Table 5. Input data to measure land-consumption rate (SDG 11.3.1).

Input Data Source

Administrative boundary level 3 (department) GADM
Land cover for 2016 and 2020 Generated using Sentinel 1 and 2 imageries

Population data for 2016 and 2020 Worldpop

ii. Methods

a. Preparation of study area and generating the land-cover map

The summary of the methodological approach in deriving the land-consumption rate is
shown in Figure 7. The administrative boundary at the department level of Houet province
was obtained from GADM. Land-cover legends for Houet were prepared from the subsets
of the OSS land cover of Burkina Faso (2016). A total of 2400 training points, 200 each for
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the twelve land-cover classes, were collected manually using the visual interpretation of
very-high-resolution satellite imagery (e.g., Bing and Google) and spectral indices of NDVI
for the year 2020. After collecting training points, the satellite imageries were mosaicked
from Sentinel 1 and 2 for the years 2020 and 2016. To preserve the phenology of vegetation,
imageries are prepared for rainy and dry seasons. A random-forest model was trained in
Google Earth Engine using training points and applied over 2020 imagery for classification.
70% of training data were used for actual training, and the remaining 30% for in-sample
validation. The land-cover classification for 2020 was obtained at Kappa 84% and Producer
Accuracy of 85%. The same model was prepared with 2020 training points and used to
classify 2016 imagery. The land-use map of Houet is presented in Figure 8.
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b. Preparation of population data

The population data for 2016 and 2020 obtained as population per pixel (100 m resolu-
tion) from Worldpop were aggregated at departments of Houet. Additionally, changes in
population from 2016 to 2020 were tabulated.

c. Masking the non-urban area from land cover and preparing the change

All other land-cover classes except built-up areas were masked, and the statistics were
prepared at the department level. Furthermore, the change in built-up areas from 2016 to
2020 was prepared.

d. Measurement of land-consumption rate

After changes in urban areas and an increase in population between 2016 to 2020 were
calculated, the land-consumption indicator was calculated using Equation (2).

Land consumption rate =
∆ built up area
∆ population

(2)

3. Results
3.1. Case Study 1: Climate Risk Assessment in the Analamanga Region of Madagascar

The result in Table 6 shows that 8, 95 and 89 Fokontany of the Analamanga region are
at high, medium and low risk from climate change impacts on agriculture with the RCP
2.6 scenario. The number of Fokontany increased to 8, 66 and 118 at high, medium and low
risk for the RCP 4.5 scenario. However, the number of Fokontany decreased to 6, 59 and
127 at high, medium and low risk for the RCP 8.5 scenario. The six Fokontany at high risk
for the RCP 8.5 scenario are Soavimasoandro, Androhibe, Ambodivoanjo Ambohijatovo
Fara, Analamahitsy Tanana, Amorona and Ambaravarankazo. Two additional Fokontany
at high risk for the RCP 4.5 and 2.6 scenarios are Alarobia Amboniloha and Ambatobe.

Table 6. Number of Fokontany in Analamanga region at risk class.

Scenario
Risk Class (Number of Fokontany)

Total (nb)
Low Medium High

RCP 2.6 89 95 8 192
RCP 4.5 118 66 8 192
RCP 8.5 127 59 6 192

The map of the Analamanga region with different risk classes for the three future
scenarios, RCP 2.6, RCP 4.5 and RCP 8.5, is presented in Figure 9.

3.2. Case Study 2: Degraded Land in Kisumu County of Kenya

The land-degradation indicator (SDG 15.3.1) (Table 7), shows that land degradation
ranges from 940 ha in Kisumu Central to 7684 ha in Muhorini subcounty, representing 12%
to 25% of total land area, Figure 10, respectively. Muhorini, Nyakach and Nyando subcoun-
ties follow with higher values for degraded areas. Results are further disaggregated at the
ward level, and it shows that Migosi (54.2%), Manyatta’ B’ (42.9%) and Kondele (39.8%)
are the top three wards with highly degraded areas by percentage. Similarly, Miwani
(6.7%), Nyang’oma (7.4%) and Ombeyi (8.9%) rank in the bottom three by percentage for
degraded areas.
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Table 7. The extent of land status (ha) between 2016–2020 in the Kisumu subcounty.

Sub-County Degraded Stable Improved Total

Muhoroni 7684 52,274 6406 66,364
Nyakach 7116 17,449 11,559 36,124
Nyando 4868 26,758 9354 40,980

Kisumu West 2814 13,622 5231 21,666
Seme 2773 16,834 8042 27,648

Kisumu East 2023 7878 3838 13,739
Kisumu Central 940 2137 647 3725

Muhoroni 7684 52,274 6406 66,364
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Next, the degraded, stable and improved land are overlayed over the parcel to pri-
oritise tree and hedgerow plantation areas as high, medium and low class, respectively
(Figure 11).
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Figure 11. The extent of priority land available for trees and hedgerow plantation around parcels in
Kisumu, Kenya.

The result in Table 8 shows that the high-priority available land ranges from 307 ha in
Kisumu Central to 2703 ha in Muhoroni for tree plantation around parcels.

Table 8. The land availability at different priority classes for tree and hedgerow plantations in
Kisumu, Kenya.

Subcounty
Areas (ha) with Priority Class

High Medium Low Total

Muhoroni 2703 18,318 2172 23,193
Nyakach 2444 5256 3636 11,336
Nyando 1694 8840 3000 13,534
K. West 958 4376 1661 6995
Seme 926 5324 2503 8753

K. East 653 2564 1185 4403
K. Central 307 657 216 1180
Muhoroni 2703 18,318 2172 23,193

3.3. Case Study 3: Land-Consumption Rate in Houet Province of Burkina Faso

The land-consumption rate (SDG 11.3.1) for Houet province between 2016 and 2020
is presented in Table 9. The rate ranges from 1.1 in Bobo-Dioulasso to 1.5 in Lena. The
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top three departments with the highest land consumption rate are Lena (1.5), Karankasso-
Vigue (1.3) and Koundougou (1.3), and the bottom three departments with lower land
consumption rates are Bama (1.2), Faramana (1.1) and Bobo-Dioulasso (1.1), as presented
in Figure 12.

Table 9. The number of departments with land-consumption rate class in Houet, Burkina Faso.

Rate (Ratio) Department (nb)

1.1–1.2 5
1.2–1.4 7
1.4–1.6 1
Total 13
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4. Discussion
4.1. Case Study 1: Climate Risk Assessment in the Analamanga Region of Madagascar

For this study, the parameter length of growing period (LGP) is selected to measure
the climate risk at the projected (RCP 2.6, RCP 4.5 and RCP 8.5) scenarios from GAEZ data.
The LGP data are fundamental to land productivity when temperature and moisture supply
facilitate crop growth. Therefore, unlike yield, suitability area and attainable production,
which are specific to crop, LGP covers a broad dimension of agricultural production relating
directly to agroclimatic potential productivity in days.

The steps and the analysis are simple and easy to formulate to assess the overall risk
associated with climate change in agricultural production. Based on the study findings, the
cities can be prioritised for high, medium and low risk. This would aid the local authorities
in developing better plans and policies for the cities against the impacts of climate change
on urban and periurban agriculture. The study also demonstrates the use of global tools
and data aggregated at the lower administrative level (here, Fokontany) to prioritise the
areas for any planned interventions (such as climate adaptation programmes).

The analysis, however, may not be representative of the impacts in the African conti-
nent itself. The regional climate assessment varies considerably within Africa. For instance,
in East Africa, the temperature is expected to rise from 0.5 degrees to 3 degrees with an
increase in the precipitation and shift in intraseasonal rainfall by 2050 [49], whereas the
temperature is projected to rise from 1.6 degrees to 2.9 degrees by 2050 with reduced
rainfall in the extreme west of West Africa [50]. Such differences in temperature and rainfall
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patterns are expected to have considerable difference in the agricultural production across
the continent.

4.2. Case Study 2: Degraded Land in Kisumu County of Kenya

The study used both global (productivity, SOC) and local data (land cover) to generate
the data for measuring the degraded land in publicly available cloud performing tools
(GEE and SEPAL). However, the land cover generated following the national land-cover
legend is challenging, both with the availability and resolution of data. Therefore, to use
the finest (10 m) resolution data for generating land cover, the assessment was carried out
using 2016 and 2020 data.

Degraded land is the measure of areas that fail to serve biodiversity, ecosystem ser-
vices, nutrient cycling and lower production and yield [51]. Information on degraded
land is crucial to identify the hotspots and plan for actions that include the conservation,
rehabilitation, restoration and sustainable management of land resources. The measure
also helps address the emerging pressures on land to help avoid future land degradation,
which is the first step in greening cities and making cities sustainable in terms of equitable
use of resources under growing populations and changing climate. The delineation of
parcels to derive available land for tree and hedgerow plantation in degraded land is an
addition of ancillary data for greening and sustainability of cities through the measure of
degraded land.

The present analysis is, however, limited to the assessment through satellite imagery.
Deforestation in the form of timber harvesting for large-scale commercial forestry, shifting
cultivation and slash-and-burn agriculture are common drivers of land degradation in
Africa [15,52]. The assessment of degradation through land-cover changes such as conver-
sion of cropland to settlement area may not be as evident as conversion of grassland to
cropland through remote-sensing techniques. Further, external forces such as commercial
agriculture can play a role in degradation of land, which cannot be directly observed from
remote sensed imageries. In addition, the change in land-cover and land productivity in
the framework of degraded land is context-specific. The conversion of land as a result of
shifting cultivation and large-scale commercial forestry for timber disbalances the overall
ecosystem, degrades the overall functioning of the ecosystem and ultimately degrades the
land in the long run.

There is also evidence of farmland fragmentation using unmanned aerial vehicles
(UAV). In the Qilu Lake watershed of China, UAVs were used to measure the forms, sce-
narios and drivers of farmland fragmentation and its impact on agricultural production
efficiency [53]. A case study on Rwanda demonstrates that physical drivers of such frag-
mentation, used as a risk-management strategy, have positive impacts on the nutritional
balance for food quality and food sustainability, both being the integral components of
food security [51].

4.3. Case Study 3: Land-Consumption Rate in the Houet Province of Burkina Faso

The study used global data (population data) and local data (national land-cover
legend) to derive the land-consumption rate. The latest and finer available data, with 10 m
resolution, was used for 2016 and 2020. The satellite imagery was acquired from Sentinel 2
and 100 m population data from Worldpop.

The land-consumption rate measures the physical expansion of the urban area (built-
up area) relative to the population growth rate. Cities require an orderly expansion of the
urban area to accommodate the internal population growth, migration and provision of the
transportation and open-space services. However, the disproportionate physical growth of
urban areas relative to population growth leads to inefficient and unsustainable land use
that not only results in negative impacts on the environment but also negative consequences
in social and economic terms [51]. Therefore, the measure of the indicator provides an
important insight to the city planners about the urban expansion and population growth.
The measure of the indicator also adds them in decision making for prioritising the areas for
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interventions to find a balance between growing population, built-up areas and provision
of services (such as transportation and public open spaces).

The interpretation of the indicator, however, may give a dubious meaning. For instance,
the ratio of 1 can be associated with both (1) urban compactness and ensuite of delivery
of provisional services; and (2) congestions, ill management of urban expansion and
deteriorating living standards [54]. The paper recommends further analysis of the indicator
with additional sub-indicators for SDG 11.3.1 and validation of machine-learning results
using ground data.

5. Conclusions

Global data and open geospatial tools can be used for climate risk assessment, land-
degradation status and land-consumption indicators. The results aggregated at lower
administrative levels can be helpful in decision making, preparing and planning the
cities in the wake of climate change, food insecurity, population growth and increased
urbanisation using simple analysis and through minimal use of local data. Global data
and remote-sensing tools can play a vital role in undertaking such studies, especially
in countries where local data are scarce and not readily available. Further, the present
assessment made use of open satellite imagery (Sentinel, Landsat, NICFI planet) for image
classification and fragmentation.

However, the accuracy of the result is challenging for validating the data. The results
of this study can be a basis for policymakers in planning an inclusive climate adaptation
measure and sustainable land-use frameworks and policies.

The present study selected the Analamanga region in Madagascar for climate risk
assessment found eight Falkontany, viz. (1) Soavimasoandro, (2) Androhibe, (3) Ambodi-
voanjo Ambohijatovo Fara, (4) Analamahitsy Tanana, (5) Amorona, (6) Ambaravarankazo,
(7) Alarobia Amboniloha and (8) Ambatobe, are at high risk from climate change. Similarly,
in Kisumu county, Kenya, the measure of the land-degradation indicator showed that
Migosi, Manyatta’ B’ and Kondele have higher degraded areas than other areas within the
county. Therefore, these areas should be prioritised for land restoration and rehabilitation
activities. Furthermore, Lena, Karankasso-Vigue and Koundougou departments in Houet
province, Burkina Faso, have a higher land-consumption ratio. The findings demonstrate
a higher need for intervention to find a balance between expanding the built-up area,
accommodating the population and providing basic services (such as transportation and
open spaces).
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