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Abstract: Soil organic carbon (SOC) plays a critical role in major ecosystem processes, agriculture,
and climate mitigation. Accurate SOC predictions are challenging due to natural variation, as well as
variation in data sources, sampling design, and modeling approaches. The goal of this study was to
(i) understand SOC stock distribution due to land use (restored prairie grass—PG; lawn grass—LG;
and forest—F), and local topography, and (ii) assess the scalability of SOC stock predictions from the
study site in North Carolina (Lat: 36◦7′ N; Longitude: 80◦16′ W) to the geographic extension of the
Fairview soil series based on the US Soil Survey Geographic (gSSURGO) database. Overall, LG had
the highest SOC stock (82 Mg ha−1) followed by PG (79 Mg ha−1) and forest (73.1 Mg ha−1). SOC
stock decreased with the depth for LG and PG, which had about 60% concentrated on the surface
horizon (0–23 cm), while forest had only 40%. The differences between measured SOC stocks and
those estimated by gSSURGO and modeled based on land use for the Fairview series extent were
comparable. However, subtracting maps of the uncertainty predictions based on the 90% confidence
interval (CI) derived from the measured values and estimated gSSURGO upper and lower values (an
estimated CI) resulted in a range from −17 to 41 Mg ha−1 which, when valued monetarily, varied
from USD 33 million to USD 824 million for the Fairview soil series extent. In addition, the spatial
differences found by subtracting the gSSURGO estimations from measured uncertainties aligned
with the county administrative boundaries. The distribution of SOC stock was found to be related to
land use, topography, and soil depth, while accuracy predictions were also influenced by data source.

Keywords: soil organic carbon prediction; soil horizons; LiDAR; extrapolation uncertainty;
regression kriging

1. Introduction

Soil organic carbon (SOC) plays a critical role in several ecosystem processes that are
important to agriculture. For example, SOC is (i) a medium for plant growth and food
production [1]; (ii) maintains and stabilizes soil structure; and (iii) improves available
water-holding capacity and water infiltration, in addition to reducing erosion [2–4]. SOC
stocks are the largest terrestrial carbon pool [5,6], containing—to a depth of 2 m—five
times as much carbon compared to atmospheric CO2 and other terrestrial biota [7,8]. SOC
management is thus a key opportunity to mitigate the effects of climate change [5–10]. The
recent initiative to increase SOC stock annually by “4 per 1000” (0.4% year−1) highlights
the critical role that SOC is expected to play in reducing atmospheric CO2 [11,12]. In this
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context, understanding the dynamics that control SOC stocks in soils is a step forward in
achieving the goals of the 4 per 1000 initiative.

Many factors such as climate [13–17], land use and management [13,18], terrain char-
acteristics [19–24] and their interactions influence SOC stock dynamics. Climatic factors
such as temperature, precipitation, and resulting soil moisture control organic matter de-
composition and oxidation in soil [13,25,26]. Changes in temperature and precipitation can
make SOC vulnerable to changes over time [27]. Research has shown that soils in colder
and wetter climate conditions tend to have, overall, as much as three times more SOC
compared to warmer and drier climates [1].

Within climatic regions, anthropogenic factors such as land use and management
can play an important role [28–30]. For example, while SOC stocks have been shown to
be vulnerable to shifts in temperature and precipitation [27], improved soil management
and increased soil resilience have been shown to alleviate projected losses of SOC [31].
On the other hand, changes in land use practices have been shown to have a significant
impact on SOC [13,18] and on soil depth as well [32–34]. Depending on the type of land
use changes, SOC stocks can decrease [35] or increase [36,37]. In many instances, for areas
heavily managed by humans, anthropogenic drivers can dominate SOC stock dynamics
over natural drivers [30,38–41], especially land use changes and vegetation types [18,35–37].

The interaction of climate and land use are best observed at a landscape scale, with
soil depth and slope position being two of the major drivers of SOC stock variability.
The distribution of SOC stock varies with depth; SOC mostly occurs in the first meter of
soil [42,43], while half of SOC stocks are stored in the first 30 cm for some of the major
soil orders such as Entisols, Inceptisols, Alfisols, Ultisols, and Mollisols [44]. Additionally,
the SOC stock closer to the surface is more sensitive to change because of land use and
climate change [45]. Topography also plays a significant role in the spatial distribution of
SOC stocks [21,24,46,47]. For example, prior work has [24] found that up to 70% of the
variability in SOC contents could be explained by slope position. When considering slope,
SOC is also impacted by erosion and the degree of soil water saturation [19], suggesting
that drainage patterns influenced by topography also play a significant role.

The complexity of factors influencing the SOC stock amounts and distribution could
present challenges for modeling spatial predictions. The methods for spatial predictions
and the mapping of soil properties can generally be divided into two categories: geostatisti-
cal and conventional [48]. Geostatistical methods such as kriging can be combined with
linear regression or advanced machine learning models such as random forest [49] or cubist
models [43] to form hybrid models following regression kriging (RK) [50] principles. RK
methods are usually multivariate and use environmental covariates to make continuous
predictions between points. Thus, the limited number of samples with measured values
such as carbon and their distribution impact the accuracy of the predictions, especially
when using environmental covariates [51]. Adding to this challenge is the lack of reference
samples as well as the heterogeneity of sampling methods [52–54]. The more traditional
or conventional methods interpolate data between points based on tacit knowledge and
models of soil formation [15,48] and spatially map properties based on polygons rather
than grids, like most geostatistical methods. The US Soil Survey Geographic (gSSURGO)
database is an example of a conventional soil mapping method based on climate, organisms
or vegetation, parent material, and topography (clorpt) acting over time [13,15,48]. Both
spatial prediction methods have their advantages and disadvantages. While polygon-based
predictions are easy to interpret and may be accomplished with less point observations,
they do not represent soil property distribution on a continuum, but are rather based on
mean representative values (RV) assigned to an entire polygon or map unit [55]. Some poly-
gon products also provide a range for the mean property values within the polygon and
map units. For example, gSSURGO provides upper and lower limit values (UL and LL) for
properties, which can be interpreted as the bounds of a confidence interval [56]. However,
this is rather unique to the US gSSURGO and not necessarily true for all polygon-based
products. On the other hand, geostatistical prediction methods represent the spatial distri-
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bution of soil properties as a continuum, using grids where each pixel has a unique value
and an uncertainty prediction, expressed often as the width of a confidence interval [48].
However, geostatistical methods are data-demanding, and when inadequate in density and
distribution can affect prediction accuracy [55]. These models generally require validation
data from measured values to be reliable [57].

Because of the diversity in predictive methods and factors associated with SOC stocks
and their spatial prediction, as well as the amount and quality of the available measured
data, the mapping of SOC stocks requires a multiscale approach. The objectives of this
paper are: (i) to assess the variation in SOC stocks for the Fairview series at a field scale
considering soil genetic horizons, land use and topographical factors; (ii) investigate the
scalability of SOC stock predictions based on land use and land cover from the study site to
the entire Fairview series spatial domain mapped based on gSSURGO; and (iii) monetarily
quantify the uncertainties associated with the scalability of SOC stock predictions.

2. Materials and Methods
2.1. Study Site

This study site was the Piedmont Prairie restoration site and its surroundings located at
the Reynolda Gardens in Winston-Salem, NC, USA (Lat/Long: 36◦7′N, 80◦16′W) (Figure 1).
The prairie was established in 2014 in an area of approximately 5 hectares and is planted
with 55 species of native forbs and grasses. Previously, the site was under management
as a lawn and golf course. The prairie is surrounded by lawn grass and forest with
predominately broadleaf deciduous trees (Figures 2 and 3). The major soil is the Fairview
series located within the Major Land Resource Area (MLRA) 136, covering close to half
a million hectares (436,148 ha) in Virginia and North Carolina (Figure 1). The soil is
represented by one pedon with measured data located in central Arkansas in a forested site
and outside of the MLRA 136. On the other hand, the location of our study site was within
the extent of the Fairview series. The Fairview series is classified as fine, kaolinitic, mesic
Typic Kanhapludults derived from residuum from felsic metamorphic or igneous rock [58].
This soil is very deep, well drained, and developed on slopes that vary from 2 to 60%, with
surface elevation ranging between 245 and 265 m asl. The major land use for Fairview series
comprises cultivated crops, pasture, and woodland. The annual average air temperature
for the study area is 13.9 ◦C and the average annual precipitation is 112 cm [59].

2.2. Soil Sampling

The FAO’s recommendations for measuring and modeling soil carbon stocks [60] were
used to select the sampling sites. For the Piedmont prairie, 20 sites were selected using a
conditioned Latin Hypercube (cLHC) [61] method based on the topographic position index,
topographic wetness index, the relative slope position terrain attributes and elevation as
covariates (Figure 2, Table 1). The topographic position index (TPI) classifies the altitude
of each pixel against its neighboring pixels and is used for landform analysis [62]. If a
pixel is higher in elevation than its surroundings, the TPI is positive, highlighting ridges
and hilltops, or foot slopes if the pixel is lower in elevation than its surroundings pixels.
The wetness index (TWI) is a measure of water surface runoff as guided by the surface
terrain [63]. Higher values represent drier conditions with water running away, and lower
values represent wetter conditions with water running towards the area or accumulating.
Relative slope position numerically classifies the terrain in different positions along a
slope gradient and is used in landform analysis and soil mapping [64]. Values vary from
0 to 1, with higher values indicating higher slope positions (i.e., ridges and summits)
and lower values indicating lower positions (foot and toe slope). The cLHS method is a
stratified random sampling procedure that selects samples based on the distributions of
the values from gridded covariates. The sample size is set at the user’s discretion, and
through an optimization routine selects point values from the distribution of the covariates
in the specified domain or covariate space [61]. If soil properties such as SOC correlate
with covariates at the sampling locations, the sampling scheme allows for better and more
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accurate predictions of soil property values for the unsampled grids in the specified domain
or the covariate space.

UAS photogrammetry was used to generate a high-resolution digital elevation model
(DEM). The meadow was mowed in winter and DJI Phantom 4 Pro UAS (DJI, Los Angeles,
CA, USA) was flown on 1 May 2018, capturing imagery before the expansion of the warm
season grasses. Flight was conducted at 60 m altitude using DroneDeploy control software
v. 1.2.1 (DroneDeploy Inc., San Francisco, CA, USA) and images with a resolution of 1.6 cm
GSD, 66% side lap, and 75% end lap. DEM was generated using Agisoft PhotoScan v1.4
(Agisoft LLC, St. Petersburg, Russia). Prior to deriving the terrain attributes, the DEM
was resampled to a 0.5 m × 0.5 m grid using bilinear interpolation and smoothed using
a majority filter (kernel size 2) to reduce noise. In addition, five sampling sites in the
surrounding lawn and forest areas that represented dominant slope positions (summits,
back slopes, and toe slopes) were selected. There was no available high-resolution DEM
for the managed lawn and forest (Table 1); thus, the major slope positions were selected to
capture those represented by the terrain attributes used for the Piedmont Prairie.
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Figure 1. (a) Distribution of soil sampling points at the study site; (b) location of the study site
and the spatial extent of the Fairview series in the study area showing the location of the official
series description (OSD) and the pedon with laboratory analysis from the Kellogg Soil Survey
Laboratory (KSSL).
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Figure 2. Elevation and terrain attributes of the study site derived from a digital elevation model
(DEM) generated for locating sampling sites based on Latin hypercube conditions. Numbers represent
the Sample ID (see Table 1).

Table 1. Terrain attributes and land use types by soil sampling points. Note that NA stands for
not available.

Relative Topographic

Sample Elevation Slope SAGA Position Land

ID (m) Position WI Index Use

Point 0 254.2 0.17 3.51 −0.77 Prairie
Point 1 254.1 0.03 4.58 −1.04 Prairie
Point 2 260.2 0.44 4.74 2.17 Prairie
Point 3 255.4 0 5.54 0.5 Prairie
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Table 1. Cont.

Relative Topographic

Sample Elevation Slope SAGA Position Land

ID (m) Position WI Index Use

Point 4 263.8 0.01 4.97 −1.12 Prairie
Point 5 245.8 0.02 5.99 −3.51 Prairie
Point 6 257.2 0.18 5.05 0.89 Prairie
Point 7 245.0 0 5.51 −0.36 Prairie
Point 8 249.5 0 6.67 −1.69 Prairie
Point 9 250.5 0.17 3.39 0.59 Prairie
Point 10 254.4 0.58 3.97 1.04 Prairie
Point 11 248.1 0.02 4.69 −2.14 Prairie
Point 12 248.2 0.06 4.08 −1.44 Prairie
Point 13 251.0 0.24 3.99 −0.4 Prairie
Point 14 254.6 0.14 4.5 −0.03 Prairie
Point 15 254.3 0.22 3.54 0.08 Prairie
Point 16 253.9 0.16 5.37 0.24 Prairie
Point 17 253.5 1,00 2.45 2.14 Prairie
Point 18 249.1 0 7.16 −2.08 Prairie
Point 19 249.0 0.01 6.77 −2.09 Prairie

Point 20 253.0 NA NA NA Lawn Grass
Point 21 252.5 NA NA NA Lawn Grass
Point 22 251.3 NA NA NA Lawn Grass
Point 23 243.1 NA NA NA Lawn Grass
Point 24 249.9 NA NA NA Lawn Grass

Point 25 249.5 NA NA NA Forest
Point 26 257.7 NA NA NA Forest
Point 27 254.7 NA NA NA Forest
Point 28 254.7 NA NA NA Forest
Point 29 250.4 NA NA NA Forest

2.3. Soil Analysis and SOC Stock Calculations

Soil samples were collected and described based on US Soil Survey standards and
methods [65]. Three complete pedon descriptions and samples were conducted in each of
the prairie, managed lawn, and forest areas (Figure 3). The remainder of the soil samples
were collected by an auger to a depth of 0.5 m and were based on genetic horizons. At each
site, three cores were taken inside a 0.5 m × 0.5 m plot and oven-dried at 110 ◦C for 24 h to
determine bulk density [66].

Additional samples (2 in the forest and lawn areas, 17 in the prairie) were taken and
composited for each genetic horizon, air-dried for 48 h, and ground to 2 mm for soil analysis.
The soil samples were analyzed for organic carbon by the NC State Environmental and
Agricultural Testing Services based on the dry combustion method. The soil organic carbon
(SOC) stock (Mg ha−1) for the genetic horizon was calculated using Equation (1) for each of
the sites for 0–50 cm soil thickness. During the field soil description and sampling processes,
no rock fragments (RFs) were observed. Therefore, RFs were not included in Equation (1).
The value of the SOC stocks (Mg ha−1) in USD was also calculated by multiplying the SOC
stock with USD 30/Mg ha−1 SOC value according to California Carbon Allowance stock
prices [67].

SOC (%)∗Bulk Density
( g

cm3

)
∗Thickness (cm) = SOC Stocks (1)

During the field soil description and sampling processes, no rock fragments (RFs)
were observed. Therefore, RFs were not included in Equation (1). The value of SOC stocks
(Mg ha−1) in USD was also calculated by multiplying the SOC stock with USD 30/Mg ha−1

SOC value according to California Carbon Allowance stock prices [67].
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Figure 3. Soil landscape showing three different vegetation forms (prairie grass, lawn grass, and
forest) with the lower left inset showing a soil core collected for determining the soil bulk density
and a soil profile described and sampled.

2.4. Spatial Modeling

The spatial prediction model was based on RK [68,69]. A regression between SOC
stocks at sampling locations and topographic variables (elevation; topographic position
index—TPI; SAGA wetness index—SAGA_WI; and relative slope position—RSP) was
performed using a multiple linear regression (MLR) model, and the model residuals
were mapped using ordinary kriging (OK) and utilizing RStudio Team (2021) [70]. The
selection of the specific terrain variables depended on their proven relationship with SOC
distribution in the landscape [42,47,71]. RK modeling was performed separately for each
genetic horizon (Ap, Bt and BC/C). The maps of the MLR-predicted SOC and OK residuals
were summed together to yield the final spatial predicted maps. A residual variogram
was modelled with 5 theoretical models (spherical—sph; exponential—exp; gaussian—gau;
Mat: A model of the Matern family—mat; and M. Stein’s model—ste) [72], and the best
fitting model was selected based on kappa statistics. The ste performed the best for all
three horizons and was selected. The 90% confidence interval (CI) of the predicted SOC
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for each horizon was also calculated. The z-value based on 18 degrees of freedom (19-1)
and two tails with a p-value of 0.1 (90% CI) was 1.729. The 90% instead of 95% CI was
considered more realistic given the uncertainty of natural systems compared to standard
controlled experiments. Spatial modeling was only performed for the prairie grass due to
lack of LiDAR coverage for the lawn grass and the forest.

2.5. Spatial Extrapolation to the Fairview Series

First, the amount of SOC stocks across Fairview series area was derived from the
gSSURGO database [58] using the ArcMap-Soil Data Development Toolbox (Version date
13 October 2020). The tool is designed to utilize gSSURGO databases for creating soil
property maps at user-specified depths. As the average soil thickness for the surface
horizons in the study site was 25 cm, maps of SOC and Bd were generated for 0–25 cm before
calculating the SOC stocks. The SOC stocks were estimated by means of the mentioned tool
for a 0–25 cm soil depth. Furthermore, the lower and higher estimated SOC and Bd values
across the soil series were extracted using the dominant component criteria. gSSURGO
map units are polygons that can have more than one soil series or component mapped
within the polygon boundaries. Fairview series was the major soil mapped in the study
site; thus, the dominant component criterion was selected.

Second, an SOC stock map was also generated based on the gSSURGO Fairview soil
series extent combined with the 2019 US Geological Survey LULC (https://www.mrlc.gov/
(accessed on 1 April 2022)) map. The Fairview series area was overlayed with the USGS-
LULC to determine the extent of forest, pasture, and managed lawns. The mean SOC
and bulk density values from the forest, pasture, and managed lawns and their 90% CI at
the study site were assigned to the gSSURGO Fairview series extent that corresponded to
their respective USGS-LULC categories. The SOC stocks were calculated for the 0–25 cm
soil thickness.

3. Results
3.1. Measured Values of Soil Organic Carbon and Bulk Density

Regardless of land use, the surface horizon (Ap) had an overall higher SOC content
compared with the subsurface horizons (Bt or BC/C) (Table 2, Figure 4).

Table 2. Soil organic carbon (SOC, wt%), bulk density (Bd g cm−3), and SOC stock (Mg ha−1)
sample mean (x-bar), standard deviation (Sx), and sample size (n) for the pits and auger holes of the
soil horizon.

Soil Characteristics Horizon
Prairie Grass Lawn Grass Forest

x (Sx,n) x (Sx,n) x (Sx,n)

Average Depth (cm) Ap 26.33 (12.06, 3) 16.33 (3.51, 3) 11.83 (1.26, 3)
Bt 13.00 (3.46, 3) 14.33 (2.89, 3) 18.75 (0.35, 2)
BC 16.00 (2.82, 2) 19.33 (6.11, 3) 25.67 (10.79, 3)

Soil Organic Carbon (wt%) Ap 1.88 (0.76, 20) 2.29 (1.39, 5) 2.59 (0.89, 5)
Bt 0.67 (0.45, 20) 0.92 (0.32, 5) 0.85 (0.37, 5)
BC 0.67 (0.32, 20) 0.61 (0.19, 5) 0.87 (0.59, 5)

Bulk Density (g cm−3) Ap 1.19 (0.16, 12) 1.34 (0.11, 9) 0.96 (0.40, 9)
Bt 1.51 (0.19, 9) 1.55 (0.13, 9) 1.32 (0.24, 6)
BC 1.15 (0.28, 6) 1.21(0.26, 9) 0.93 (0.24, 9)

SOC Stocks (Mg ha−1) Ap 46.97 (14.70, 20) 47.88 (29.53, 5) 28.92 (9.69, 5)
Bt 13.16 (8.55, 20) 20.39 (7.42, 5) 20.90 (7.65, 5)
BC 18.59 (19.42, 20) 14.13 (5.79, 5) 23.04 (22.88, 5)

https://www.mrlc.gov/
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Figure 4. Distribution of SOC (wt%), Bd (g/cm3) and SOC stocks (Mg/ha) with depth for soil pits in
the prairie grass, lawn grass and forest.

The SOC content for Ap was twice as much compared to the subsurface horizons.
The mean SOC content for the surface horizon of the lawn and forest were comparable,
and higher than prairie. The soil bulk density, on the other hand, showed opposite trends
between Ap and Bt, especially in terms of depth. The mean soil Bd for BC decreased and
was comparable with the surface Bd regardless of land use.

3.2. SOC Stocks and Their Monetary Value

The prairie and lawn areas had more SOC stocks compared to the forest area, especially
for the surface horizon. Prairie grass had significantly higher SOC stocks than forest, but
only for the Ap horizon and only at p < 0.05. Additionally, lawn grass had significantly
higher (p < 0.05) SOC stocks compared to prairie for the Bt horizon. Overall, surface horizon
had higher SOC stocks compared with the subsurface horizons (Table 2, Figure 5) across
all land uses. However, not all the differences were significant for all land uses. The Ap
horizon had significantly higher (p < 0.001) SOC stocks compared to Bt and BC for prairie
grass, while for lawn grass the Ap horizon had significantly higher (p < 0.05) SOC stocks
compared to BC.



Remote Sens. 2022, 14, 2846 10 of 22Remote Sens. 2022, 14, x FOR PEER REVIEW  12 of 25 
 

 

 

Figure 5. Box plots of mean SOC stock statistical comparisons by land use and soil horizons. Three 

stars indicate significance at p < 0.001 and one star indicates significance at p < 0.05. black dots rep‐

resent 5th and 95th percentile values. 

3.3. SOC Stock Spatial Distribution for Prairie Grass 

The MLR model was used to predict and map SOC stocks for each soil horizon from 

prairie  area  based  on  elevation,  relative  slope  position  (RSP),  SAGA  wetness  index 

(SAGA‐WI), and topographic position index (TPI) as predictors (Table 3). The RSP and 

TPI terrain attributes were the most influential on SOC stock predictions. While TPI was 

most influential for the Ap horizon, for Bt and BC, the RSP was most influential. Overall, 

elevation had a negative influence on SOC for all soil horizons, whereas TPI had a positive 

influence. 

Table 3. Variogram parameters of the MLR model residuals, and RK cross validation results to pre‐

dict SOC stocks. 

    Parameters  Ap  Bt  BC 

Variogram  Nugget  207.5  0.56  280.7 

  Sill  258  29  261 

  Range  4.8  48  306 

    Kappa  0.3  0.4  0 

Cross  R2  0.3  0.7  0.24 
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represent 5th and 95th percentile values.

The variability of SOC and Bd was high, especially for the surface horizon compared
to the subsurface horizons. The SOC content was more variable for lawn grass compared
to prairie grass and forest, as shown by the standard deviation values (Table 2). However,
for Bd the opposite was true. The surface horizon was the least variable for lawn grass
compared to prairie grass and forest. Like SOC content, the variability of SOC stocks was
the highest for the Ap horizon for lawn grass compared to the other horizons across all land
uses. Overall, the variability of SOC, Bd and SOC stocks decreased with depth between Ap
and Bt, except for prairie grass and lawn grass, where variability for Bd slightly increased
(Table 2).

3.3. SOC Stock Spatial Distribution for Prairie Grass

The MLR model was used to predict and map SOC stocks for each soil horizon
from prairie area based on elevation, relative slope position (RSP), SAGA wetness index
(SAGA-WI), and topographic position index (TPI) as predictors (Table 3). The RSP and
TPI terrain attributes were the most influential on SOC stock predictions. While TPI
was most influential for the Ap horizon, for Bt and BC, the RSP was most influential.
Overall, elevation had a negative influence on SOC for all soil horizons, whereas TPI had a
positive influence.
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Table 3. Variogram parameters of the MLR model residuals, and RK cross validation results to predict
SOC stocks.

Parameters Ap Bt BC

Variogram Nugget 207.5 0.56 280.7
Sill 258 29 261

Range 4.8 48 306
Kappa 0.3 0.4 0

Cross R2 0.3 0.7 0.24
ME 1.1 0.6 −3.7

MAE 23.7 6.4 17.52
RMSE 27.89 7.4 27.95

p-value 0.23 0.004 0.56

The SOC stocks’ MLR residuals for prairie grass showed spatial dependencies between
neighboring sampling points, and varied in soil horizon (Table 3). The nugget/sill ratio was
80 and 100% for Ap and BC, indicating a weak spatial dependency according to the scale
edified by a landmark prior study [73]. On the other hand, the nugget/sill ratio for the Bt
horizon was only 2%, indicating a very strong spatial dependency and small degree of local
variation, as also supported by the nugget value that was 0.56 compared to 207 and 280
for the Ap and BC horizons. The higher sill values for Ap (258) and BC (261) compared to
Bt (29) suggest a higher variability between sampling points and lower prediction accuracy
at finer scales. The strong spatial dependency and small local variation for the Bt were also
reflected in the model’s performance.

The distribution of SOC stocks for all horizons showed similar patterns. There were
higher SOC stocks in the north–central and western parts of study area, and lower SOC
stocks in the eastern part (Figure 6).

Higher SOC stocks were predicted for the summit with higher values of TPI and
RSP, especially for the Bt horizons. The spatial pattern of SOC stock was similar among
the horizons; however, there was more spatial variability for the Ap and BC horizons
compared to Bt. The predicted SOC stock varied from 35.4 to 201.5 Mg ha−1 for Ap and was
higher overall compared to Bt and BC, which varied from 3.1 to 71.3 Mg ha−1 and 1.0 to
109.7 Mg ha−1. The range of predicted SOC stock was larger compared to the range for the
measured SOC stocks for all horizons. The uncertainty prediction of SOC expressed as the
width of the 90% confidence interval was higher for the Ap horizon (12.3 to 57.4 Mg ha−1)
compared to Bt (4.5 to 19.0 Mg ha−1) and BC (17.5 to 51.8 Mg ha−1). The uncertainty was
higher for the summits compared to the back slope and toe slope positions.

The R2 for the cross-validation of the regression kriging model was highest for Bt (0.7)
and was significant (p = 0.004) compared to Ap and BC. The mean absolute error (MAE)
and root mean square error (RMSE) were also smaller for Bt compared to Ap and BC.

In terms of the extent of Fairview series in the MLRA 136, when using the estimated
gSSURGO mean representative values (RV), the mean SOC stocks for the Fairview series
ranged from 10 to 65 Mg ha−1 (Figure 7). In terms of the difference in SOC stocks between
estimated upper value (UV) and lower value (LV), the confidence interval proxy to the
estimated RV, was from 2 to 65 Mg ha−1 (Figure 7).

The difference between gSSURGO-estimated SOC stock based on RV and SOC stock
based on measured values (Figure 7) ranged from 7 to 62 Mg ha−1. The SOC stock for
the Fairview series area based on the combination of measured values from the study site
and 2019 USGS-LULC ranged from 29 to 48 Mg ha−1 (Figure 8) and the 90% confidence
interval was between 11 and 56 Mg ha−1 (Figure 8). The SOC stock difference between
the gSSURGO estimated range (UV-LV) and the 90% CI based on the combination of the
measured values from the study site and the USGS LULC ranged from −65 to 38 Mg ha−1

(Figure 8).
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Figure 6. Spatial distribution of measured versus predicted SOC stocks (90% confidence interval, CI)
for soil horizons on the prairie grass site.

However, when spatially subtracting the 90% CI width from gSSURGO (UV-LV),
the difference varied from −17 to 46 Mg ha−1, suggesting that the uncertainty—as ex-
pressed by the 90% CI and gSSURGO UV-LV—was not spatially consistent and was either
overestimated or underestimated in some of the areas (Figure 9).



Remote Sens. 2022, 14, 2846 13 of 22

Remote Sens. 2022, 14, x FOR PEER REVIEW  15 of 25 
 

 

The R2 for the cross‐validation of the regression kriging model was highest for Bt (0.7) 

and was significant (p = 0.004) compared to Ap and BC. The mean absolute error (MAE) 

and root mean square error (RMSE) were also smaller for Bt compared to Ap and BC. 

In terms of the extent of Fairview series in the MLRA 136, when using the estimated 

gSSURGO mean representative values (RV), the mean SOC stocks for the Fairview series 

ranged from 10 to 65 Mg ha−1 (Figure 7). In terms of the difference in SOC stocks between 

estimated upper value (UV) and lower value (LV), the confidence interval proxy to the 

estimated RV, was from 2 to 65 Mg ha−1 (Figure 7). 

 

Figure 7. SOC stock distribution for the extent of the Fairview series in the study area for 0–25 cm 

soil thickness. The SOC stock was calculated as a mean based on the gSSURGO estimated repre‐

sentative value (RV) (upper panel) as the difference between the estimated upper values (UV) and 

the lower values (LV) (middle panel). The lower panel shows the difference between the measured 

and estimated SOC stock values. 

Figure 7. SOC stock distribution for the extent of the Fairview series in the study area for 0–25 cm soil
thickness. The SOC stock was calculated as a mean based on the gSSURGO estimated representative
value (RV) (upper panel) as the difference between the estimated upper values (UV) and the lower
values (LV) (middle panel). The lower panel shows the difference between the measured and
estimated SOC stock values.

The 90% CI was narrower for the prairie (10.6 Mg ha−1) and forest (14.6 Mg ha−1)
areas. In order to better assess the impact of the differences in SOC stock between land
uses, the uncertainty was expressed in USD/Mg stock. Converted to USD per Mg ha−1

SOC stock (assuming USD 30/Mg ha−1 SOC stock, based on California Carbon Allowance
stock prices) the uncertainty for the gSSURGO using the difference between UV-LV was
USD 1890 ha−1, and thus comparable with the 90% CI for the lawn grass (USD 1689 ha−1).
The uncertainty levels for prairie and forest areas were smaller, with USD 10.6 ha−1 and
USD 14.6 ha−1 compared to lawn grass and the gSSURGO.
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Figure 8. Mean SOC stock distribution at a regional level for the Fairview series area (including the
study area), based on measured values from prairie grass, lawn grass and forest sites, assigning the
2019 USGS-LULC categories (upper panel), 90% confidence interval for the mean SOC stock (middle
panel), and the difference between the mean SOC stock calculated based on 2019 USGS-LULC and
the gSSURGO-RV.
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Figure 9. Spatial distribution of SOC stock difference between the estimated gSSURGO range (UV-LV)
and the calculated range (90% CI) at the study site based on the measured values for the Fairview
series. The upper panel offers a closer look at the contrast between the administrative boundaries
and the difference between the two measures of the CI (UV-LV-estimated CI versus 90% CI from
measured values for 0–25 cm soil thickness.

4. Discussion

The differences in mean SOC stock based on measured or estimated values, as well
as their respective prediction ranges (90% CI and UV-LV), were comparable in trend and
magnitude. However, there were spatial differences both locally (study site level) and
regionally (MLRA level). There may be many factors for these differences, such as land use
and management [13,37,74], modelling (gSSURGO or geostatistical bases) [50,55,75], and
measurement methods [76], among others. First, we focus on the local spatial variability of
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the study site followed by a discussion at MLRA level and conclude with some remarks on
uncertainty interpretations.

4.1. Land Use Effects with Soil Depth on SOC Stocks

The SOC stocks at the study site varied both spatially and in depth, but mostly in
terms of surface horizon (Figures 4 and 6). Additionally, most of the stock—between
40 and 60%—was concentrated on the surface horizons (0–25 cm), except for the forest
where the amount of stock for the surface layer was comparable with the subsurface
(Table 2). The distribution of SOC stock with depth may be related to land use [77,78] and
the dynamics of the study site, as found elsewhere [79]. Multiple land use changes in the
original broadleaf forest, located there since European settlement, may have occurred at
the study site, which may have led to the redistribution of SOC stocks and altered depths,
especially for the forest area [80]. Prior research has shown that the changing of land use
practices can lead to significant differences in soil properties and thickness [32–34]. Given
the replanting and conversion of the site in the last half century, it would be expected that
soil thickness, and especially SOC in the top horizon, would vary significantly. On the other
hand, the relatively sharp decline in stock with depth for both the prairie and lawn areas in
comparison to the forest may also be related to the relatively new prairie establishment
(5 years) and management of the lawn. Studies have shown that, initially, the accumulation
rate of SOC for deeper layers under native prairie is slower compared to managed crop
rotation systems [81], leading to more SOC at the surface layer. Though over extended
periods of time (i.e., thousands of years) SOC moves down the land profile, leading to
SOC-enriched soil profiles, on a decadal scale, most of the SOC could still remain in the
0–40 cm depth [82–84], driven mainly by root distribution, which plays a significant role in
SOC content distribution with depth [85]. According to Equation (1), the distribution of
SOC stocks with depth is related to SOC content and Bd. Data from our study showed that
the stock change with depth was driven more by the SOC concentration than Bd, a finding
corroborated by another study [86]. The SOC content decreased at similar rates (Ap to
Bt) regardless of the land use. However, the SOC stock decrease was lesser for the forest
compared to the prairie and lawn areas, mostly due to the difference in bulk density. The Bd
for the prairie and lawn areas increased with depth (Ap to Bt) by approximately 1 time, but
by 1.4 times for the forest. On the other hand, the SOC concentration was, overall, 2.8 times
higher for Ap than Bt across all land uses, with the forest having the highest value (3.1).
The SOC stock was 2.2 times higher for Ap compared to Bt with prairie grass having the
highest difference (2.9) and forest the lowest (1.4). Additionally, the SOC concentration and
stock were more variable compared to Bd, as observed by others [86,87]. Higher SOC stock
variability and concentration for the surface horizon compared to subsurface horizons have
been reported by other researchers as well [42,88,89].

Another variability factor is related to the spatial distribution of SOC stock as in-
fluenced by terrain [85]. Overall, more SOC stock was found on summits compared to
back slope and toe slope. Erosion, whether natural or anthropogenic, is a well-recognized
process that erodes the accumulated surface SOC and transports and deposits it down-
stream [46,85,90]. Thus, the higher SOC content and stock at the summit reflects the stability
of this slope position with regard to erosion. However, the relationship between SOC and
slope position depends on the characteristics of the landscape [24]. A study from the lower
Himalayas in India found higher amounts of SOC stock at the summits and back slopes
compared to toe slopes [91], in part due to the summits and back slopes being more resistant
to erosion than the toe slopes. However, other studies found the opposite, with higher
SOC stocks in the lower back slopes and toe slopes compared to the summit [20,23]. The
watershed size and the location of the study site within the watershed likely explain the
opposite trends compared to our study site. Both studies [20,23] focus on larger watersheds
where the distribution of precipitation and runoff can have a larger influence on soil or-
ganic carbon distribution in the landscape, especially downstream. An Iowa watershed [21]
found that toe slopes and foot slopes predominated in terms of SOC stocks relative to back



Remote Sens. 2022, 14, 2846 17 of 22

slopes, and the researchers attributed this to the combined effect of soil erosion and SOC
deposition within watersheds. In riparian soil profiles [1,22], significantly larger deposits
of SOC stocks were found compared to upland soil profiles, which could further explain
the distinction between the soil profiles of upland soils and watersheds. Our study site was
located on a hillslope with a small first-order stream and away from major downstream
tributaries, with larger contributing areas and erosion and deposition rates as a result.

4.2. Spatial Prediction and Extrapolation Uncertainty

The strong relationship between terrain attributes and Bt, and the subsequent bet-
ter performance of regression kriging seem to suggest that the argillic horizon is better
preserved compared to the surface horizon (Ap) and deeper horizon (BC). SOC stock
calculations can be based on fixed depth increments or genetic horizons, and the choice
often reflects the data and scale of mapping [13,74,92]. Global and regional models that
may rely on multiple data sources prefer fixed depth increments. The selection is dictated,
in most cases, by the incompatibility of data gathering protocols from various sources, as
shown by multiple modeling efforts [50,75,93]. However, the fixed depth approach may
not fully capture the relationships between pedogenesis, soil landscape, and SOC stock
dynamics [94] and, furthermore, may not be sensitive to land use comparisons [79]. The
significant differences between surface and subsurface horizon and between land uses,
especially for the surface horizon in our study site, further support the importance of ge-
netic horizons for SOC stock trend evaluation, especially at field level. The poor modeling
performance for the Ap could likely be attributed to management that has influenced the
relationship between SOC stock and terrain. Similarly, we postulate that the SOC stock
for the BC horizon was less influenced by management and terrain and more by parent
material and depth; thus, it did not show a good correlation with topography. On the other
hand, the better model performance for the Bt horizon suggests that this pedogenic horizon
better preserves landscape and topography compared to the other horizons.

Despite the geographic distance of the Fairview pedon from the study site, the mea-
sured SOC content and Bd were comparable with the values measured at the study site
(Tables S2 and S3). For example, the pedon SOC content was 3.3% for the Ap horizon and
decreased to less than 0.5% for the subsurface horizons. The SOC amount (2.6%) and depth
trends were comparable and similar to the study site, especially for the forest. Similarly, the
pedon Bd increased from 1.30 to 1.87 g cm−3 between the surface and subsurface horizons,
which was similar with the prairie and lawn areas. On the other hand, the forest showed
similar trends, but the Bd was lower for the surface (0.96 g cm−3). The values for SOC
and Bd between the pedons and the study site and between the pedons and the gSSURGO
estimations were similar, leading to comparable mean SOC stocks and confidence intervals.
The SOC stock difference between the estimated upper and lower values, a measure of
uncertainty as shown by a previous study [56], was 63 Mg ha−1 and comparable with
a 90% CI for the lawn grass (56 Mg ha−1). Interestingly, the difference between the pe-
don mean-measured KSSL and gSSURGO estimate for the 0–25 cm soil thickness was
USD 1650 ha−1 and comparable with lawn grass and the gSSURGO (UV-LV). However,
there were differences in the spatial distribution of the confidence intervals between the
gSSURGO estimates and the measured values from the study site when applied to the
Fairview series extent in MLRA 136. The 90% CI for the measured SOC stock from the study
site in combination with the 2019 USGS-LULC for the Fairview series extent in MLRA 136
was between 11 and 56 Mg ha−1. This was slightly narrower compared to gSSURGO UV-LV,
which was between 2 and 65 Mg ha−1. In addition, the spatial difference showed artifacts
related to administrative boundaries. These inconsistencies are not surprising, given the
fact that the soil surveys which are the foundation of the gSSURGO were conducted at
different times by different surveyors using evolving technology and software [55], leading
to uncertainties varying both in scale and direction [95–97].

Although the uncertainty of the prairie and forest areas were small relative to lawn
grass and gSSURGO, when expressed in monetary terms and applied to the Fairview
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extent in MLRA 136, even the smallest uncertainty could translate to large amounts of
money. For example, the smallest uncertainty was 2.5 Mg ha−1 for the difference between
Bd determined at field capacity (33 kPa) and oven-dried (OD). However, when expressed
in relation to the Fairview series extent, this translates to approximately USD 33 million.
The 56.3 Mg ha−1 uncertainty for lawn grass from the study site was worth approximately
USD 737 million, but was less for the prairie (USD 139 million) and forest areas (USD
191 million) (Figure 10).

Remote Sens. 2022, 14, x FOR PEER REVIEW  20 of 25 
 

 

a measure of uncertainty as shown by a previous study [56], was 63 Mg ha−1 and compa‐

rable with a 90% CI for the lawn grass (56 Mg ha−1). Interestingly, the difference between 

the pedon mean‐measured KSSL and gSSURGO estimate for the 0–25 cm soil thickness 

was USD 1650 ha−1 and comparable with lawn grass and the gSSURGO (UV‐LV). How‐

ever, there were differences in the spatial distribution of the confidence intervals between 

the gSSURGO estimates and the measured values from the study site when applied to the 

Fairview series extent  in MLRA 136. The 90% CI for the measured SOC stock from the 

study  site  in  combination with  the 2019 USGS‐LULC  for  the Fairview  series extent  in 

MLRA  136 was between  11  and  56 Mg ha−1. This was  slightly narrower  compared  to 

gSSURGO UV‐LV, which was between 2 and 65 Mg ha−1. In addition, the spatial difference 

showed artifacts related to administrative boundaries. These inconsistencies are not sur‐

prising, given  the  fact  that  the soil surveys which are  the  foundation of  the gSSURGO 

were conducted at different times by different surveyors using evolving technology and 

software [55], leading to uncertainties varying both in scale and direction [95–97]. 

Although the uncertainty of the prairie and forest areas were small relative to lawn 

grass and gSSURGO, when expressed in monetary terms and applied to the Fairview ex‐

tent  in MLRA  136,  even  the  smallest uncertainty  could  translate  to  large  amounts  of 

money. For example, the smallest uncertainty was 2.5 Mg ha−1 for the difference between 

Bd determined at field capacity (33 kPa) and oven‐dried (OD). However, when expressed 

in relation to the Fairview series extent, this translates to approximately USD 33 million. 

The 56.3 Mg ha−1 uncertainty for lawn grass from the study site was worth approximately 

USD 737 million, but was less for the prairie (USD 139 million) and forest areas (USD 191 

million) (Figure 10).   

 

Figure 10. Differences in SOC stocks (Mg ha−1) and SOC stock value ($ ha−1) for different uncertainty 

sources for the Fairview series. 

The uncertainty due  to gSSURGO  (UV‐LV) and  the difference between gSSURGO 

and measured pedon  (KSSL) were among  the  largest amounts: USD 824 and USD 720 

million,  respectively. The  intensive management of  the  lawn grass  relative  to both  the 

prairie and forest areas, and the field’s historical land use changes—from forested, to a 

golf course, to turf grass—seem to be reasonable explanations for the observed increased 

uncertainty  in the  lawn grass, as found by others [1,2,8,75,86]. Studies focused on  land 

Figure 10. Differences in SOC stocks (Mg ha−1) and SOC stock value ($ ha−1) for different uncertainty
sources for the Fairview series.

The uncertainty due to gSSURGO (UV-LV) and the difference between gSSURGO and
measured pedon (KSSL) were among the largest amounts: USD 824 and USD 720 million,
respectively. The intensive management of the lawn grass relative to both the prairie and
forest areas, and the field’s historical land use changes—from forested, to a golf course, to
turf grass—seem to be reasonable explanations for the observed increased uncertainty in
the lawn grass, as found by others [1,2,8,75,86]. Studies focused on land management and
ecology have found that, in heavily managed landscapes, anthropogenic drivers will come
to dominate natural ones [38,98].

5. Conclusions

In this study we combined several data types, scales, and forms of analysis that formed
this unique approach. We used LiDAR in combination with measured ground data and
existing regional soil data to assess SOC stock variability in relation to factors such as land
use, topography, and soil depth. Furthermore, we utilized land use data collected from
satellite imagery to upscale the SOC stocks to the full geographic extent of the major soil
found in the study area. Finally, we estimated the uncertainty related to the evaluation and
upscaling of SOC from a monetary perspective, highlighting some of the challenges in an
accurate account of SOC stocks.

The SOC stock distribution depth was influenced by land use and topography. The
SOC stock was higher for the surface horizons compared to the subsurface horizons, and
higher for the summits compared to the backslope and the footslope. The SOC stock
uncertainty prediction ranges based on gSSURGO estimates and measured values were
comparable. However, the distribution of the uncertainty prediction ranges was spatially
inconsistent between the gSSURGO estimates and the measured values for the Fairview
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soil series extent. Spatially, the SOC stock uncertainty was over or underestimated by
gSSURGO relative to stocks determined based on measured SOC and upscaled to the
Fairview extent based on the 2019 USGS-LULC at the study site. Assessing and upscaling
accuracy predictions from a site to a larger area is challenging due to both the influence of
environmental controls at a local scale, such as land use and topography, and differences
between data sources at larger scales.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14122846/s1, Table S1: SOC stock comparisons between soil
horizons by land use cover (LULC) and between LULC by soil horizon; Table S2: Soil properties and
calculated SOC stocks based on pedon-measured values from the KSSL; Table S3: Mean SOC stocks,
90% confidence intervals (90% CI) and estimates between gSSURGO upper values (UV) and lower
values (LV).
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