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Abstract: High-resolution surface freeze/thaw (F/T) information is valuable for hydrological, frost
creep and gelifluction/solifluction, and climate prediction studies. Currently, large-scale, high-
resolution F/T detection is restricted by low spatial resolution of passive microwave remote sensing
sensors or low temporal resolution of synthetic aperture radar (SAR) data. In this study, we propose
a new method for detecting daily land surface F/T state at 1 km spatial resolution by combining the
Sentinel-1 radar and the Advanced Microwave Scanning Radiometer 2 (AMSR2) with leaf area index
(LAI) data. A non-linear relationship is established between the 1 km F/T index from Sentinel-1 with
1 km F/T index from AMSR2 (FTI) and 1 km LAI data. The 1 km FTI is a disaggregation of the 25 km
FTI obtained from AMSR2. This non-linear relationship is then applied to daily 1 km FTI and LAI data
to predict the 1 km daily F/T index, based on which the F/T status is detected with grid-cell-based
F/T thresholds. The overall accuracy of this daily 1 km F/T is more than 88.1% when evaluated with
the in situ 5 cm soil temperature over China and Canada. This study is valuable for detecting daily,
high-resolution F/T status and is helpful for studies related to disaster and climate prediction.

Keywords: detection of freeze/thaw status; sentinel-1; AMSR2; 1 km resolution; vegetation

1. Introduction

Approximately 50 million square kilometers of the land surface experiences soil
freezing and thawing [1]. Part of this surface exhibits spatially discontinuous soil freezing
and thawing changes due to the heterogeneity of topography, land cover, subsurface
properties, snow cover, and other factors. The spatial and temporal change information
of land surface freeze/thaw (F/T) is essential for hydrological, climatic, topographic
deformation, and ecosystem processes [2–6]. The land surface F/T that occurs in permafrost
regions increases emissions of carbon and nitrogen [7–10] and leads to uncertainties in
climate change predictions [11]. Permafrost degradation in high mountains could lead to
disasters, such as rock and ice avalanches [12]. High-resolution mapping of permafrost
covering high-altitude areas is important for infrastructure planning [13]. High-resolution
monitoring of surface F/T states is important for various research areas, particularly
disasters, such as frost creep and gelifluction/solifluction [14], spring floods, and climate
prediction [15,16]. Remotely sensed satellite data are efficient for detecting land surface F/T
states at global and regional scales; satellite microwave remote sensing at long wavelengths
is well suited for detecting the soil F/T state because of the ability to penetrate into the soil
medium [17,18] and the high contrast in permittivity between liquid water and ice [19].
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Active and passive microwave data have been widely used to detect land surface F/T
in recent years. Several global and regional microwave surface F/T products have been
produced with active and passive microwave sensors, such as the Advanced Microwave
Scanning Radiometer 2 (AMSR2) [20,21], Soil Moisture and Ocean Salinity (SMOS) [22],
Soil Moisture Active Passive (SMAP) [23], the Aquarius L-band radiometer [24], and the
advanced scatterometer (ASCAT) [25]. All these F/T products detect the land surface F/T
state at spatial resolutions from 25 km to 36 km, which cannot accurately describe the
surface F/T process within heterogeneous pixels and does not satisfy the requirements
of many applications, e.g., frost creep and gelifluction/solifluction and flood disaster
monitoring at regional scales. The scattering properties of synthetic aperture radar (SAR)
data, such as scattering type (surface, double-bounce, and volume scattering) and entropy,
in different land covers (such as forest or non-forest, snow-covered or snow-free), land
F/T status had significant seasonal changes and could be used for mapping land cover
types and surficial geocryological characteristics of the permafrost active layer [26,27]. The
obviously seasonal variations of the backscattered signal has been used to detect land
surface F/T. Sentinel-1 (S1) satellite data, which can provide free high-resolution SAR data
since 2015 and have high data volume coverage over study areas in this study, have been
successfully used to detect land surface F/T [28–32]. However, the temporal resolution of
Sentinel-1 depends on the geographical location. For example, Sentinel-1 is available daily
in northern Europe but only once every 12 days in northeastern China. A high-resolution
F/T detection algorithm is required to detect daily high-resolution surface F/T states over
some areas where S1 data are not available daily and meet the demand for many regional
frost creep and gelifluction/solifluction and climate change studies.

Some studies have developed F/T detection algorithm in which high-resolution opti-
cal/thermal data were used to downscale passive microwave data. Kou et al. [33] detected
the land surface F/T state at 0.05◦ with the discriminant function algorithm (DFA) [34] from
brightness temperature (Tb), which was downscaled by blending the land temperature
data using a Bayesian maximum entropy method. Zhao et al. [35] established a relationship
between the passive microwave F/T index (FTI) and thermal infrared observations to
monitor high spatial resolution surface F/T states at 0.05◦. However, these studies mainly
concentrated on the Tibetan Plateau area by combining passive microwave and thermal
infrared data. Additionally, using these methods might reduce the accuracy of passive
microwave soil F/T detection [35] due to the different depths of F/T represented by passive
microwave and thermal infrared.

Currently, there are a few studies regarding the detection of the F/T state that combine
active and passive microwave satellite data. Zhong et al. [36] estimated more accurately
F/T onsets by using a machine learning approach of combination SMAP and ASCAT.
This study revealed the possibility of detecting F/T state by combing active and passive
microwave remote sensing. The combination of passive and active data provides a potential
means for downscaling soil moisture estimates to a finer spatial resolution [37–39]. The
soil dielectric constant is highly dependent on the liquid water content; the higher the
amount of free liquid water is, the higher the dielectric constant. For low dielectric constant
values (dry or frozen soil), the backscattered signal from the soil surface is at its minimum,
and the soil surface emission is at its maximum. Many methods, such as the Tb-based
downscaling method [39], soil moisture-based downscaling method [37], and change
detection method [40], have successfully estimated soil moisture at high spatial resolution
by combining active and passive data. Surface F/T detection relies on observing changes
in soil dielectric properties rather than the absolute value.

In this work, we demonstrate the feasibility of high spatial resolution surface F/T
state determination by a combination of active and passive microwave data over four test
regions located in China and Canada. The objectives of the study are to detect the daily
land surface F/T state at a 1 km spatial resolution and to propose a new approach for
detecting the F/T state combining radar and passive remote sensing data. The advanced
integral equation method (AIEM) microwave emission and scattering model incorporating
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a dielectric constant of F/T soil is used to study the behavior of the radar and passive
signals from thawed to frozen. Finally, a new approach is demonstrated for the detection of
the surface F/T state at high spatial and temporal resolutions using Sentinel-1 and AMSR2
data by incorporating leaf area index (LAI) data. In Section 2, the study area and data
used in this study are briefly described. In Section 3, a detailed description of our new
algorithm development is presented. In Sections 4 and 5, the results and discussion are
given, followed by the conclusion in Section 6.

2. Materials

The dataset used consists of in situ data, Sentinel-1 SAR data, AMSR2 Tb data and
auxiliary data. The auxiliary data include the ERA5-land reanalysis dataset and LAI data.
The in situ soil moisture and temperature network located in China and Canada (Figure 1)
was used to validate the accuracies of the F/T detection results.
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2.1. In Situ Data

For the purposes of this study, data from four areas with distributed near-surface
soil moisture and a temperature observation network could be obtained. Three in situ
soil moisture and temperature observation networks, including the Genhe watershed,
Saihanba, and Naqu, are located in China (Figure 1c–e), and another in situ soil moisture
and temperature observation network, i.e., Real-time In Situ Monitoring for Agriculture
(RISMA) network, located in Canada (Figure 1g). Each study area is affected by seasonal
soil F/T and located within one Sentinel-1 image.

Genhe watershed study area is located in the northeast of China (50.25~51.25◦N,
120~122◦E). The prominent land cover types in the Genhe watershed, which has a com-
bination of a cold and humid temperate climate and a continental monsoon climate, are
forest, grassland, and cultivated land. The contents of clay and sand in soil over Genhe
watershed are 36–52% and 3–29%, respectively, and the elevation ranges from 500 to
1420 m. The Genhe watershed is widely covered with permafrost. A soil temperature
and moisture observation network has been established over the Genhe watershed since
October 2013 [41,42]. Saihanba study area is located in the north of China (41.75~42.75◦N,
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115.5~117.75◦E). Saihanba, with semi-arid and semi-humid climates, is mainly covered
with forest and grassland with elevations ranging from 700 to 2000 m. The contents of
clay and sand in soil over Saihanba are 9% and 79%, respectively. Seasonal frozen soil
is widely distributed here. A soil moisture and temperature observation network has
been established to measure data at depths of 5 cm and 10 cm since August 2018 over
Saihanba [41]. Naqu, with a semiarid climate, is located in the central Qinghai-Tibetan
Plateau and is distributed with permafrost (31.25~32◦N, 91.5~92.5◦E). The contents of clay
and sand in soil over Naqu are 20% and 66%, respectively. With elevations ranging from
4280 to 5900, Naqu is mainly covered with alpine meadows. The in situ soil temperature at
a depth of 5 cm was obtained from a multiscale soil moisture and temperature monitoring
network [43]. The RISMA soil moisture and temperature network used in this study is
located in Manitoba, Canada, covered with cultivated land and forest [44]. The contents of
clay and sand in soil over RISMA are 9–70% and 3–90%, respectively. This RISMA network
was established since 2011. The soil sensors measured the real dielectric permittivity, soil
moisture, and soil temperature using Stevens Hydra Probe sensors at surface (0–5 cm),
5 cm, 20 cm, 50 cm, and 100 cm depths. Three hydra probe sensors were installed at each
depth. Soil temperature data at a depth of 5 cm with an hour interval are downloaded from
https://ismn.geo.tuwien.ac.at/en/and used in this study. RISMA has a cold climate and
elevation ranging from 130 to 720 m. The RISMA study area (49~50.25◦N, −100~−97◦E) in
this study includes the Manitoba RISMA network.

Taking into account the available time periods of the various soil moisture and temper-
ature observation networks and the auxiliary data, a total of 19, 16, 23, and 13 ground sites
from the Genhe watershed from June 2017 to May 2019, from Saihanba from August 2018
to December 2019, and from Naqu and RISMA from January 2018 to December 2019 were
used in this study. Short descriptions of the in situ sites from the four study areas are given
in Table 1. Figure 1c–e, and Figure 1g show the land cover map and distribution of in situ
stations of the Genhe watershed, Naqu, Saihanba, and RISMA. The GlobeLand30–2010 land
cover map provided by the National Geomatics Center of China was used here, and the
land cover map was produced by integrating pixel- and object-based methods with knowl-
edge and over 10,000 Landsat satellite images with more than 80% overall accuracy [45]
(http://www.webmap.cn/mapDataAction.do?method=globalLandCover, accessed on
5 December 2021)

Table 1. Coordinates and land cover type of the in situ sites.

Area Site Name Lat (◦) Long (◦) Land
Cover Site Name Lat (◦) Long (◦) Land

Cover

Genhe

Site 1 50.507 120.529 Grasslands Site 17 50.451 120.987 Forest
Site 2 50.451 120.711 Forest Site 18 50.327 120.484 Grasslands
Site 3 50.448 120.834 Grasslands Site 19 50.329 120.696 Cultivated
Site 5 50.413 120.547 Grasslands Site 20 50.311 120.589 Cultivated
Site 9 50.556 120.955 Grasslands Site 24 50.309 120.927 Cultivated
Site 11 50.301 120.836 Cultivated Site 26 50.256 120.948 Cultivated
Site 12 50.367 120.883 Cultivated Site 27 50.529 120.499 Grasslands
Site 14 50.511 120.581 Grasslands Site 28 50.463 120.537 Grasslands
Site 15 50.575 120.843 Forest Site 29 50.341 120.977 Forest
Site 16 50.492 120.926 Forest

Saihanba

A3 42.312 117.242 Grasslands P8 42.311 117.233 Forest
A5 42.309 117.236 Grasslands P9 42.249 117.294 Grasslands
A6 42.308 117.241 Grasslands P10 42.255 117.359 Forest
A7 42.305 117.231 Grasslands P11 42.201 117.199 Forest
A11 42.307 117.233 Forest P12 42.236 117.236 Grasslands
P2 42.351 117.207 Forest P13 42.164 117.302 Forest
P6 42.367 117.296 Forest P15 42.135 117.242 Forest
P7 42.261 117.131 Forest P16 42.149 117.371 Forest

https://ismn.geo.tuwien.ac.at/en/and
http://www.webmap.cn/mapDataAction.do?method=globalLandCover
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Table 1. Cont.

Area Site Name Lat (◦) Long (◦) Land
Cover Site Name Lat (◦) Long (◦) Land

Cover

Naqu

BC07 31.274 92.109 Grasslands MS3513 31.677 91.842 Grasslands
BC08 31.332 92.041 Grasslands MS3518 31.661 91.794 Grasslands

C1 31.683 91.771 Grasslands MS3523 31.639 91.754 Grasslands
C3 31.614 91.774 Grasslands MS3527 31.614 91.739 Grasslands
C4 31.618 91.841 Grasslands MS3533 31.586 91.793 Grasslands

CD01 31.712 92.458 Grasslands MS3545 31.573 91.912 Grasslands
CD07 31.495 92.132 Grasslands MS3603 31.259 91.799 Grasslands

F4 31.698 91.773 Grasslands MSNQRW 31.463 92.017 Grasslands
F5 31.693 91.786 Grasslands P1 31.782 91.729 Grasslands

MS3475 31.946 91.721 Grasslands P10 31.807 91.845 Grasslands
MS3494 31.805 91.749 Grasslands P11 31.815 91.795 Grasslands
MS3501 31.754 91.782 Grasslands

RISMA

MB1 49.562 −98.019 Cultivated MB8 49.752 −97.982 Cultivated
MB2 49.492 −97.933 Cultivated MB9 49.694 −98.024 Cultivated
MB3 49.519 −97.956 Cultivated MB10 49.975 −97.348 Cultivated
MB4 49.636 −97.988 Cultivated MB11 50.111 −97.573 Cultivated
MB5 49.621 −97.957 Cultivated MB12 50.189 −97.598 Cultivated
MB6 49.678 −97.959 Cultivated MB13 49.932 −99.387 Cultivated
MB7 49.665 −98.007 Cultivated

2.2. Satellite Data

Sentinel-1 comprises a constellation of two polar-orbiting satellites (Sentinel-1A (S1A)
and -1B (S1B)), performing the C-band (5.406 GHz) synthetic aperture radar (SAR) imaging.
S1A and S1B were launched in April 2014 and April 2016, respectively. Sentinel-1 data
products are available from https://scihub.copernicus.eu/dhus/#/home, accessed on
20 December 2021. Only S1B has acquired data over the Genhe watershed and RISMA, and
only S1A has acquired data over Naqu. Both S1A and S1B acquired data over Saihanba,
but to match the descending AMSR2 data with overpass time at 1:30 am, S1B data with
overpass time at 22:20 pm were used. The revisit frequency of S1 data over the four study
areas is as long as 12 days. A short description of the S1 data of the four study areas is
given in Table 2.

Table 2. Detailed information on S1 data over the four study areas. Number means the number of S1
SAR images during the time period.

Area S1A/S1B Time Period Number Overpass Time

Genhe
watershed S1B June 2017–May 2019 55 22:10

Saihanba S1B August 2018–December 2019 33 22:20
Naqu S1A January 2018–December 2019 59 23:50

RISMA S1B January 2018–December 2019 57 00:23

The S1 SAR data used in this study are interferometric wide swath mode (IW) images
in both VV and VH polarizations that were generated from the Level-1 ground range
detected (GRD) product. First, the S1 SAR images were preprocessed. The preprocessing
steps include multilooking processing, radiometric correction, filtering, and geometric
correction using Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM)
data. Then, the image pixel values were converted to backscatter coefficients (σ0). The
backscatter coefficients obtained from different incidence angles θ (σ0

θ ) were normalized to
40◦ (σ0

40◦ ) according to the square cosine correction equation [46,47]:

σ0
40◦ =

σ0
θ cos2(40◦)

cos2(θ)
(1)

https://scihub.copernicus.eu/dhus/#/home
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Finally, the spatial resolution of the preprocessed S1 data was resampled from 20 m to
1 km using the average sampling method.

The passive microwave data used in this study are AMSR2 L3 Tb (6.925 GHz and
36.5 GHz) with a spatial resolution of 0.25◦ provided by the Japan Aerospace Exploration
Agency (JAXA) (https://gportal.jaxa.jp/gpr/information/product, accessed on 20 Decem-
ber 2021). The AMSR2 Tb data were selected from descending orbits in the same time
period as the S1 data over different areas. Then, the spatial resolution of the Tb data was
resampled to 1 km with a simple weighted method.

2.3. Auxiliary Data

ERA5-land reanalysis data from https://cds.climate.copernicus.eu/were used in this
work for both the development and validation of F/T estimates. The ERA5-land dataset
provides 0.1◦ hourly air (~2 m height), soil (layer 1: 0~7 cm) and hourly snow depth data
in gridded format.

The Global Land Surface Satellite (GLASS) LAI product, with a spatial resolution of
500 m and a temporal resolution of 8 days, was generated from time series MODIS surface
reflectance data using general regression neural networks [48,49]. To match the resolution
of S1B data, the GLASS LAI data were resampled to a 1 km spatial resolution using the
average sampling method. Considering the small change in vegetation, the LAI within
8 days was treated as the same value.

3. Methods
3.1. F/T Indices Derived from Active and Passive Microwave Observations
3.1.1. F/T Indices from Radar Observations

Algorithms for F/T detection from SAR are typically based on the threshold detection
approach [28–30] and may include the additional use of models [31,32]. Threshold detection
algorithms are based on examining the temporal change in the backscatter coefficient
relative to reference thresholds acquired during frozen and thawed seasons. Threshold
algorithms are often called seasonal threshold algorithms (STAs). Derksen et al. [23]
identified the land surface F/T state from SMAP satellite radar data by examining the
temporal changes in the seasonal scale index (SSI). SSI is a linear stretching of the time
series radar backscatter and is linearly related to radar backscatter with an approximate
range of 0~1. The SSI obtains a value of 0 when the backscatter is the same as the frozen
reference and a value of 1 when the backscatter signal is the same as the thaw reference. In
this study, we first implemented the STA for S1 data to detect the surface F/T state. The
original SSI in Derksen et al. [23] is defined as follows:

SSI =
(
σt − σ f re

)
/
(
σthaw − σ f re

)
(2)

where σt is the backscatter coefficient at time t, σ f re is the average of 10 minimum backscat-
ter values obtained from winter (December, January and February), and σthaw is the average
of 10 maximum backscatter values obtained from summer (June, July, and August). σ f re
and σthaw can be approximated as the minimum and maximum backscatter, respectively.
Finally, the land surface F/T states are categorized by the following threshold value:

SSI > T, thaw (3)

SSI < T, frozen (4)

where T is the threshold. In previous work, T was set to 0.5 [23] or was optimized using
in situ soil/air temperature data observed from measurement stations [29,30]. However,
the feasibility of T with a fixed value or optimized value is limited by certain regions. In
this study, we defined the pixel-based T with the distribution fit of SSI and ERA5-land
air temperature, which is described in detail in Section 3.2.3. Figures 2 and 3 show the
time series of the boxplot of SSI calculated with S1 data (noted as SSIS1) at VH and VV

https://gportal.jaxa.jp/gpr/information/product
https://cds.climate.copernicus.eu/were
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polarization over four study areas, respectively. The green line is the median of SSIS1. In
Figures 2 and 3, the land surface is easy to classify as a thawed or frozen state when the SSIS1
is close to 1 or 0, respectively. To compare the F/T detecting ability of SSIS1 at VH and VV
polarization, we calculated the difference in SSIS1 between the minimum value in summer
and the maximum value in winter. The larger the difference in SSIS1 between summer and
winter, the more sensitive it is to land surface F/T. In Figure 2, the difference in SSIS1 at
VH polarization is 0.83, 0.7, 0.4, and 0.74 over the Genhe watershed, Saihanba, Naqu, and
RISMA, respectively. In Figure 3, the difference in SSIS1 at VV polarization is 0.72, 0.55, 0.63,
and 0.6 over the Genhe watershed, Saihanba, Naqu, and RISMA, respectively. Obviously,
SSIS1 at VH polarization is more suitable for F/T detection over the Genhe watershed,
Saihanba, and RISMA, and SSIS1 at VV polarization is more suitable for F/T detection over
Naqu. In previous studies, Baghdadi et al. [29], Fayad et al. [30], and Rodionova [50] found
that VH polarization is more suitable for F/T detection than VV polarization over different
study areas, although VV polarization is more sensitive to the soil dielectric constant. We
found that the land surface of the above three studies is mainly covered with forest, crop,
shrub, and grassland, which is similar to the Genhe watershed, Saihanba and RISMA areas.
The sensitivity of VH polarization to volume scattering from vegetation may cause a greater
difference in SSIS1 between summer and winter. Over the Naqu area, the effect of volume
scattering from meadows is almost negligible; therefore, SSIS1 at VV polarization is more
sensitive to land surface F/T. Therefore, SSIS1 at VH polarization is selected to monitor
land surface F/T over the Genhe watershed, Saihanba and RISMA areas, and SSIS1 at VV
polarization is selected to classify land surface F/T over the Naqu area.
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top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the
most extreme data points not considered outliers, and the outliers are plotted individually using the
‘+’ marker symbol in black.
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3.1.2. F/T Indices from Passive Microwave Observations

DFA [21,34], which is based on AMSR2 data, was chosen to detect land surface F/T
states for passive microwave remote sensing data. Both the SMAP and AMSR2 F/T
detection algorithms have F/T indices to identify surface F/T, while the F/T detection
index of SMAP (i.e., normalized polarization ratio (NPR)) is sensitive to the change in
soil liquid water content and that of AMSR2 (i.e., FTI) is sensitive to changes in soil
temperature [51]. In this study, the passive microwave F/T detection index was mainly
used to provide surface temperature information. DFA examines the 2-D spatial distribution
of V polarization Tb of 36.5 GHz (Tb36.5 V) and the quasi-emissivity (Qe) from AMSR2
satellite data relative to signatures acquired during frozen and thawed states. These two
factors can distinguish F/T by Fisher discriminant analysis. Tb36.5 V was selected because
it is the most sensitive band to land surface temperature [52]. As the ratio of Tb was between
any lower frequency and 36.5 V, Qe was mainly influenced by changes in the dielectric
constant. Several studies [21,34,53] have used DFA to successfully monitor F/T states. To
obtain the DFA over the Genhe watershed, based on the in situ 5 cm soil temperature
data and AMSR2 C and Ka-band data, Fisher linear discriminant analysis was used to
parameterize the DFA. The C band was chosen because of its similar wavelength to the
Sentinel-1B. The FTI was computed as follows:

FTI = a × Tb36.5V + b × (Tb6.925H/Tb36.5V) + c (5)

where FTI corresponds to the passive F/T detection index, and Tb6.925H corresponds to a
Tb of 6.925 GHz at H-polarization, as H-polarization is more sensitive to soil liquid water
content. The coefficients in Equation (5) are parameterized by areas with in situ 5 cm soil
temperature and vary with study area and shown in Table 3. The coefficients of Genhe
watershed and Saihanba are obviously different from Naqu and RISMA. Genhe watershed
and Saihanba have similar location and closer coefficients. Finally, the F/T state is classified
according to the following formula, where T is set to 0:

FTI < T, thaw (6)

FTI > T, frozen (7)
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Table 3. The coefficients in Equation (5) over four study areas.

Area a b c

Genhe watershed −0.4552 −44.3366 160.5139
Saihanba −0.3668 −35.4591 129.0621
Naqu −0.279 40.1433 35.5872
RISMA −0.2266 −3.3469 60.7911

3.2. Development of the High-Resolution F/T Detection Algorithm

The FTI and SSI have obvious F/T season characteristics, as shown in Figure 4, and
can be used to detect the surface F/T state. The seasonal variation in the FTI was consistent
with the seasonal changes in soil temperature. Over bare land surface, the SSI changes
during the F/T transition are mainly influenced by the dielectric constant. Typically, when
the soil freezing process starts, the SSI decreases rapidly due to the drastic decrease in free
liquid water within the top layer of the soil surface. As the soil freezing front progresses
in the deeper layers and the soil temperature decreases, the SSI decrease slows down and
tends to stabilize. Similarly, during the soil thawing process, the increase in SSI is typically
rapid at the beginning and slows down as the thawing process continues. Both FTI and SSI
have seasonal responses to land surface F/T, thus it is potential to detect surface F/T by
analyzing the relationship between the FTI and SSI. The relationship between the dielectric
constant and temperature typically follows a logistic curve during the soil surface F/T
process [54–56]. In our study area, the soil dielectric constant is mainly determined by
the soil water content and its phase. A near-linear relationship between soil liquid-water
content and radar backscatter has been demonstrated and implemented in high-resolution
soil moisture estimation studies [37,40,57]. As SSI is linearly related to backscatter, SSI is
linearly related to the dielectric constant. Zhao et al. [35] developed a high-resolution near-
surface F/T detection algorithm based on the linear relationship between FTI and thermal
infrared temperature with an accuracy higher than 70% over the Qinghai–Tibet Plateau
region. In a study validating the performance of the DFA parameterized by Wang et al. [21]
in China, Wang et al. [51] also found that the FTI was linearly correlated with surface
temperature. Naeimi et al. [25] found that the behavior of backscatter concerning soil
temperature followed a logistic curve in most cases based on the ASCAT data, especially in
high latitude areas with sparse vegetation. Without considering the influence of vegetation
on backscatter, the behavior of the SSI from the soil (noted as SSIsoil) and the FTI is expected
to follow a logistic curve, similar to the relationship between the dielectric constant and
soil surface temperature. The relationship between SSIsoil and FTI is expressed as follows:

SSIsoil =
1

1 + a × exp(−b × FTI)
(8)

where a and b are the model parameters.

3.2.1. AIEM Model Simulations of FTI and SSI

An analysis of the potential of combining S1 C-band data and AMSR2 data to detect
land surface F/T states was carried out using simulations of Tb and backscatter. The
radar backscattering coefficients and passive Tb of bare soils under frozen and unfrozen
conditions were simulated using the AIEM [58], incorporated with the dielectric constant
model of frozen and unfrozen soil (Zhang’s model) [55,59–61]. One of the factors used
to determine microwave emissions from a rough surface is the dielectric constant of soil.
Dobson et al. [59] developed a dielectric mixing model for thawed soil that has been widely
applied in the field of microwave remote sensing. An extension of the semi-empirical
dielectric constant model was developed by adding an ice item to respond to frozen
conditions [55,60]. These two dielectric mixing models were used to simulate the dielectric
constant of F/T soil. Mironov et al. [54] validated the Zhang’s model [55,60] with dielectric
data for soils and showed that Zhang’s model could simulate the dielectric constant of
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frozen soil well, with root mean square errors (RMSEs) of 2.16 and 1.18 for the real and
imaginary parts, respectively. AIEM was implemented to simulate the radar backscattering
coefficient and Tb from the soil surface. As an improvement to the integral equation method
(IEM), the AIEM reserves complementary components for the scattered fields and removes
the simplifying assumption in the spectral representation of Green’s function [62]. The
AIEM was used because it provides a better performance than the IEM [58]. The AIEM
can better explain the surface microwave scattering and accurately simulate the ground
radiometer data at AMSR-E frequencies [63,64]. The effects of frozen soil volume scattering
on higher frequencies (Ku and Ka-band) rather than the C band have been observed and
modeled in a few studies [65,66]. Although AIEM does not consider the volume scattering
of frozen soil, it has been shown to successfully simulate surface emissions from frozen
soil [34,53].
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Figure 4. An example of time series of satellite SSIS1, FTI, and in situ soil temperature for cultivated
land ((a), site 11), grassland ((b), site 18), and forest ((c), site 2) over the Genhe watershed. Red line
with red circle and red plus symbol are the SSI at VV and VH polarization, respectively. Black line
with black circle and black plus symbol are the soil temperature and FTI, respectively.

For simulations, the F/T soil dielectric constant was estimated by the dielectric mixing
model. The dielectric constant estimates were set as input data for the AIEM to simulate the
backscattering coefficients in VV and VH polarizations at an S1 frequency of 5.406 GHz and
to calculate the passive microwave Tb at 6.925 GHz and 36.5 GHz. The input parameters
for simulation of the radar backscattering coefficient and passive microwave Tb were
randomly generated and are shown in Table 4. We assumed that the roughness parameters
and soil texture of a fixed pixel did not change over time, and the parameter was set to a
constant value.

Table 4. Input parameters in the simulation of the radar backscattering coefficient and passive
microwave Tb. RMS height indicates root mean square height. CL means correlation length.

Simulation Frequency
(GHz) Theta (◦)

Soil
Moisture
(m3/m3)

Soil Tem-
perature
(◦C)

RMS
Height
(cm)

CL (cm)
Sand
Content
(%)

Clay
Content
(%)

Radar 5.406 40 0.02–0.44 −50~50 2 20 40 30

Passive
6.925

55 0.02–0.44 −50~50 2 20 40 3036.5
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Figure 5 shows the behavior of SSI vs. FTI based on simulation data. To highlight
the relationship between the SSI and FTI in the F/T transition, the simulation data from
Table 4 with soil moisture higher than 0.2 m3/m3 were selected when obvious dielectric
constant changes occurred during the F/T transitions. A logistic relationship is observed
between the SSI and FTI with a coefficient of determination of 0.97 from the simulation
data in Figure 5.
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3.2.2. Effect of Vegetation on F/T Determination

The scatters between the satellite-based SSIS1 and FTI over cultivated land, grassland,
and forest in plots Figure 6a–c follow the logistic curve with a coefficient of determination
from 0.88 to 0.91. Even though the relationship between the SSIsoil and FTI in Equation
(8) was established for bare land, it also applies for vegetated surfaces. The correlation
coefficient is slightly lower over grassland and forest. Additionally, vegetation cover affects
the surface freeze onset. The freezing onset of most vegetation-covered surfaces occurs
later than that of bare land due to the insulation effect of the vegetation layer [67]. Forests
and grasslands are widely distributed in the study areas. Considering the non-negligible
effect of vegetation, LAI data were introduced during algorithm development. According
to the water cloud model (WCM) [68,69], the backscatter from vegetation can be expressed
as follows:

σ0
veg = E × V1 × cos(θ)×

(
1 − exp

(
−2 × F × V2

cos(θ)

))
(9)

where E and F are the parameters of the model and θ is the incidence angle of radar. V1 and
V2, which describe the canopy, have various descriptors in previous studies [69–72] and
can be described as an exponential form of the LAI. Since SSI and backscatter are linearly
correlated, the relationship between backscatter from vegetation and LAI in WCM is used
to express the relationship between the SSI from vegetation (SSIveg) and the LAI. According
to Equation (9), the relationship between SSIveg and LAI can be simplified as follows:

SSIveg = E × LAIL1 ×
(
1 − exp

(
−F × LAIL2)) (10)

where E, F, L1, and L2 are fitting coefficients. The influence of vegetation based on
Equation (10) was added to Equation (8), and the SSI can be written as follows:

SSI =
a

1 + b × exp(−c × FTI)
+ d + E × LAIL1 ×

(
1 − exp

(
−F × LAIL2)) (11)

where a, b, c, d, E, F, L1, and L2 are the function coefficients. Nonlinear fitting was performed
pixel by pixel based on the time series of the SSIS1, FTI and LAI data. In this method, the
relationships were established at the 1 km scale. The regressed coefficients were applied
to the daily 1 km FTI and LAI data to estimate the new time-continuous 1 km SSI data
(SSInew). Taking the three in situ sites in Figure 6 as an example, after comprehensively
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considering the soil information from the FTI and vegetation from the LAI, the coefficient
of determination between the SSInew and SSIS1 increased to 0.92, 0.89, and 0.88 for site 12,
site 3, and site 17, respectively. Figure 7 shows the relationship between SSIS1 and SSInew
both considering and not considering the LAI at sites 12, 3, and 17. A small increase in the
coefficient of determination can be seen when using LAI information. This improvement
was mainly reflected when the value of SSI was relatively small.
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Figure 6. An example of scatters between SSIS1 and FTI from satellite data for cultivated land ((a), site
12), grassland ((b), site 3), and forest ((c), site 17) over the Genhe watershed. Black circles represent
the satellite data.
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Figure 7. Scatter plot between the SSIS1 and SSInew both considering (d–f) and not considering
(a–c) the LAI for cultivated land ((a,d), site 12), grassland ((b,e), site 3), and forest ((c,f), site 17) over
the Genhe watershed.

3.2.3. Pixel-Based Threshold of SSI for Detecting F/T

To detect surface F/T at the 1 km grid from the SSI, a threshold (T) needs to be
determined. Previous studies basically defined T as 0.5 [23,50] or optimized it using in
situ soil/air temperature data [29,30] when detecting land surface F/T with radar data.
However, the feasibility of T with a fixed value or optimized value is limited by certain
regions. Considering the heterogeneity of the land surface (such as land cover and terrain),
a pixel-based T is defined to monitor the land surface F/T status with SSI over different
areas. The T is defined as follows:

T =

{
SSI_T T_min ≤ SSI_T ≤ T_max

T_refer SSI_T< T_minor SSI_T >T_max
(12)
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where SST_T is the threshold defined with SSI and T_min, T_max, and T_refer are the
thresholds defined with ERA5-land air temperature. The ERA5-land air temperature data
were used here to ensure that T is effective since the SSI_T could be very low or high and
lead to low accuracy in some pixels with strong heterogeneity of land cover. To analyze
the possible maximum and minimum frozen conditions, T_min and T_max are defined
with time series ERA5-land daily minimum and maximum temperatures, respectively.
We assume that the SSI_T should be within the range between T_min and T_max. If
not, T_refer is defined with the time series ERA5-land daily 1:00 AM temperature, which
corresponds to the overpass time of AMSR2. To find T_min, T_max, and T_refer, the F/T
classification accuracy of SSI was validated for different threshold values (from min of
SSI to max of SSI with an increment of 0.01) with ERA5-land air minimum, maximum,
and 1:00 AM temperatures, respectively. The F/T status of ERA5-land air temperature
is defined with a threshold of 0 ◦C. Then, T_min, T_max, and T_refer are found with
threshold values when the accuracy is highest. However, the biases between the in situ soil
temperature and ERA5-land hourly air temperature over the four study areas are −1.18 ◦C,
−1.18 ◦C, −7.83 ◦C, and −2.1 ◦C over the Genhe watershed, Saihanba, Naqu, and RISMA,
respectively. Considering the larger bias of ERA5-land hourly air temperature over the
Naqu area, to avoid introducing more error, the SSI_T is the threshold over the Naqu
area. The cold bias over the Naqu area was also reported by previous studies [73–75]. To
define the SSI_T, we estimated the probability density distribution curve of the SSI during
late autumn to early spring. The SSI_T is fitted as the SSI value that is symmetrical to
the minimum values of SSI (SSI_min). The mean of the probability density distribution
curve is the axis of symmetry. Figure 8 shows an example of determining SSI_T based on a
histogram and the probability density distribution curve of SSInew during late autumn to
early spring. Finally, the land surface F/T status was detected by SSInew based on Equations
(3), (4), and (12). To compare the land surface F/T detection results with S1, Equation (12)
was also applied to SSIs1 to monitor the F/T status.
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Figure 8. An example of the SSInew histogram at site 24 during late autumn to early spring.

3.3. Evaluation Metrics

The F/T classification accuracy was evaluated using three indices [33] as follows:

F_right = FF/(FF + FT) ∗ 100% (13)

T_right = TT/(TT + TF) ∗ 100% (14)

Total_right = (FF + TT)/(FF + FT + TF + TT) ∗ 100% (15)

where FF and TT represent the correctly classified numbers of frozen soil and thawed soil,
respectively. FT and TF represent false detection flags of frozen soil and thawed soil, respec-
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tively. Equations (13)–(15) represent freeze accuracy, thaw accuracy, and overall accuracy,
respectively. The in situ F/T state is defined by soil temperature data corresponding to the
overpass time of AMSR2 with a threshold of 0 ◦C.

4. Results
4.1. F/Tnew Classification Assessment

In this section, the 5 cm depth of in situ soil temperature was used to evaluate the
performance of the new F/T algorithm. Figure 9 shows the classification accuracies of
F/Tnew at each site from June 2017 to May 2019 over the Genhe watershed, from August
2018 to December 2019 over Saihanba and from January 2018 to December 2019 over Naqu
and RISMA. As shown in Table 5, the total accuracies for all ground sites were 93.29%,
90.79%, 88.53%, and 88.1% over the Genhe watershed, Saihanba, Naqu, and RISMA,
respectively. The mean total accuracy of all study areas was 90.18%, which is higher than
the required measurement accuracy (90%) of soil F/T based on the essential climate variable
(ECV) observation requirements from the Global Climate Observing System (GCOS) (https:
//gcos.wmo.int/en/essential-climate-variables/about/requirements, accessed on 8 July
2021). Furthermore, the overall accuracies over four study areas are higher than the baseline
mission requirement of 80% accuracy of SMAP [23].
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Figure 9. The classification accuracies of F/Tnew at each site from June 2017 to May 2019 in the
Genhe watershed.

Table 5. Classification accuracy (%) statistics for F/Tnew over four study areas.

Area F_Right T_Right Total_Right

Genhe watershed 93.64 93.19 93.29
Saihanba 93.85 89.08 90.79
Naqu 93.13 85.77 88.53
RISMA 85.24 90.2 88.1

The accuracy at site 11 over the Genhe watershed area with farmland is lower than
that at other sites with lower thaw accuracy. This is because the roughness of ground soil
over the farmland decreased after harvest and plowing. The smoother surface caused by
farming activities in the autumn would lead to a decrease in backscatter coefficients [76]. In
this situation, the drop in backscatter coefficients before surface freezing may lead to false

https://gcos.wmo.int/en/essential-climate-variables/about/requirements
https://gcos.wmo.int/en/essential-climate-variables/about/requirements
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frozen flags being detected by F/Tnew. The accuracies of CD07, MS3527, and P1 over the
Naqu area are significantly lower than those at other sites. Figure 10 shows the time series
of the SSIS1, in situ soil moisture and ERA5-land snow depth at site MS3527 over the Naqu
area. At site MS3527, SSIS1 in winter is higher (approximately 0.3) in the case of deep snow
(~50 cm in December 2018) due to the effect of snow volume scattering. In Figure 10a, soil
moisture increases to 0.2 m3/m3 in May and June with the thawing of the land surface and
then decreases to 0.02~0.15 m3/m3 in July and August due to drought. The SSIS1 would
decrease to −0.1 with decreasing soil moisture in summer. With the combined effect of
deep snow in winter and drought in summer, the high values of SSIS1 in winter (~0.3)
were larger than the low values of SSIS1 in summer (~−0.1), leading to false frozen flags
in summer. The accuracy over RISMA with cultivated surfaces is lower than that over
other study areas. Figure 11 gives the time series of the SSInew, ERA5-land temperature, in
situ soil temperature and the threshold of F/T classification at site MB3 over the RISMA
area. The pink dotted line is the threshold of SSInew. In Figure 11, SSInew at site MB3 in
winter (~0.4) is as high as SSInew in spring, which causes false thaw flags in winter and
lower frozen accuracy due to the effect of snow melting. The high SSInew in winter usually
corresponded to the increase in ERA5-land air temperature when snowmelt may occur.
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Figure 10. Time series of the SSIS1B, in situ soil moisture and ERA5-land snow depth at site MS3527
over the Naqu area. (a) Time series of the SSIS1 (black line marked with a black circle) and in situ soil
moisture (blue dashed line); (b) time series of ERA5-land snow depth.
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data at site MB3 over the RISMA area.
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4.2. Comparisons of the SSIS1B and SSInew Results

In this section, to see the performance of the new algorithm (SSInew) in determining
the surface F/T status, we presented an example of the spatial distribution of SSIS1B, SSInew,
the retrieved F/T maps of S1B (F/TS1B), the retrieved F/T maps of SSInew (F/Tnew) and
ERA5-land air temperature over the Genhe watershed. Then, time series of F/T detection
results were presented over the study areas. Figure 12 provides examples of the SSIS1B ((a),
(f)), the SSInew ((b), (g)), the F/TS1B ((c), (h)), the F/Tnew ((d), (i)), and the ERA5-land air
temperature ((e), (j)) on 24 October 2018, 5 November 2018, respectively (i.e., the freezing
period) over Genhe watershed. The spatial resolutions of SSIS1B and SSInew are 1 km, and
the ERA5-land air temperature is 10 km. Although ERA5-land air temperature has a coarser
spatial resolution than SSInew, it can still provide temperature distribution information
for reference. Most of the SSIS1B and SSInew values over the study area decreased from
approximately 0.5 to nearly 0 during this period, which indicated freezing of the land
surface. The images in Figure 12b,g are the SSInew obtained from this study, which has
similar spatial details to the SSIS1B (Figure 12a,f), but the value is higher than that of the
SSIS1B. At the bottom of Figure 12f, the backscattering coefficients showed a distinct bright
stripe, which may be caused by noise. In Figure 12g, the bright stripe was significantly
improved by SSInew. The images in Figure 12c,d and Figure 12h,i can be compared with
the ERA5-land air temperature images shown in Figure 12e,j. The maps of F/TS1B and
F/Tnew correspond well with the ERA5-land air temperature. The land surface was mainly
unfrozen on 24 October 2018 and began to freeze on 5 November 2018. In Figure 12e, the
air temperature in the southwestern part of the study area is approximately 2 ◦C, and the
corresponding F/Tnew states were mainly thawed; the temperature in the northeastern part
of the study area is approximately 0 ◦C, and the corresponding F/Tnew states were both
thawed and frozen.
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Figures 13–15 show time series of F/Tnew, F/TS1B and air temperature over 13 days
over the Genhe watershed, Saihanba and RISMA areas, 2018. During the 13 days of
each area, F/Tnew provided daily F/T detection maps, while F/TS1B provided only two
days of F/T detection maps. Figure 13 shows the results over the Genhe watershed



Remote Sens. 2022, 14, 2854 17 of 27

from 24 October 2018 to 5 November 2018. On 24 October, the F/Tnew estimated that the
study area was partly frozen, and on 25 October, it was mainly thawed, both of which
correspond well with temperature. During 26–29 October, the F/Tnew maps showed
increasing amounts of frozen soil as the air temperature dropped. From 30 October to
2 November, the air temperature increased, and the surface was again estimated to be
thawed in the F/Tnew maps. After 3 November, the air temperature suddenly dropped,
and the surface soil was estimated to be mainly frozen in the F/Tnew maps. Figure 14
shows the results over Saihanba from 10 November 2019 to 22 November 2019. During
this period, the land surface was undergoing a freezing process and almost completely
frozen from 15 November. Daily F/Tnew maps captured the thawing on 13–14 November
and corresponded well with ERA5-land air temperature. Figure 15 shows the results over
RISMA from 5 March 2019 to 17 March 2019. The surface was predominantly frozen during
this time period, but a brief thaw occurred from 13 March to 15 March. The advantage of
F/Tnew over F/TS1B in terms of temporal resolution is evident in capturing the land surface
F/T states during the F/T transition period (i.e., spring and autumn). As mentioned in
Section 3.2.3, the ERA5-land air temperature has a significant bias in the Naqu area, so
the comparative analysis between daily F/Tnew and ERA5-land air temperature is not
shown here.
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5. Discussion
5.1. The Feasibility of the Method Developed in This Study

In this section, the feasibility of the method developed in this study was discussed in
three stages: (1) analysis of the quality of the regression model in Equation (11) between
Sentinel 1 radar, AMSR2 radiometer and GLASS LAI data; (2) exploration of the influence
of the difference in the surface F/T state between the S1B and AMSR2 overpass times; and
(3) discovery of the role of LAI data in the method proposed in this study.

The purpose of this paper was to estimate the land surface F/T state with a high
spatial and temporal resolution and to investigate a new approach for detecting the F/T
state at a high spatial resolution of 1 km by combining radar and passive remote sens-
ing data. The high temporal and spatial surface F/T detection algorithm developed
in this study is particularly useful in areas with heterogeneous land classes, soil types,
and topographic distributions. Typically, for such areas, the soil F/T transitions also
progress heterogeneously according to the target characteristics. In previous studies, the
retrieval of high-resolution land parameters, such as the F/T state and soil moisture, was
mostly based on a model established on the same scale by combining multisource remote
sensing [35,38,39,57,77]. The other group of methods estimated high-resolution land pa-
rameters from coarse-scale data by introducing ancillary data to describe the spatial het-
erogeneity [78,79]. The method presented here is based on a nonlinear regression model
between active microwave, passive microwave, and optical remote sensing data, including
Sentinel 1 radar, AMSR2 radiometer, and GLASS LAI product. This study first combined
these three categories of data to provide high-resolution F/T estimates both temporally
and spatially. The quality of SSInew obtained by the regression model in Equation (11) was
evaluated with the RMSE between SSInew and SSIS1, which is shown in Equation (16):

RMSE =

√
1
m

m

∑
i=1

( f (yi)− yi)
2 (16)

where m is the number of data points used for regression, f (yi) is the SSInew, and yi is the
SSIS1. Figure 16 provides the histogram and spatial distribution of RMSE over four study
areas. The artificial surfaces and water bodies were masked. Except for the some mixed
pixels covered with cultivated land and grassland or grassland and forest, the RMSE was
lower than 0.2 over the Genhe watershed, Saihanba, and Naqu areas. Most of the RMSE in
the RISMA area are below 0.25. The smaller the value of RMSE is, the smaller the difference
between SSInew and SSIS1. Generally, smaller RMSE values obtained in Equation (16)
correspond to a more reliable SSInew and a higher probability of accurate monitoring of
land surface F/T. Figure 17 provides two examples of the relationships among SSIS1, FTI,
LAI, and SSInew from the Genhe watershed, one with low RMSE (a–c) and another with
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high RMSE (d–f). We found that even for the high RMSE example (Figure 17d–f), the
regression model could capture the soil seasonal characteristics and soil state changes. In
Figure 17d, the SSIS1 increased during winter (the value of FTI was approximately 10) due
to the effect of snow. Volume scattering and absorption of the microwave signal within the
snow layer increases with deepening snow cover [25], which possibly leads to an increase
in the SSIS1. This finding also corresponded well with Figure 10. These results demonstrate
the feasibility of the regression model proposed in this paper.
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Figure 16. The histogram and spatial distribution of the root mean square error (RMSE) between
SSInew and SSIS1 of the nonlinear regression model shown in Equation (11) over the Genhe watershed
(a,b), Saihanba (c,d), Naqu (e,f), and RISMA (g,h) areas.
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The high consistency of the surface F/T state between the S1 and AMSR2 overpass
times would decide the basis for algorithm development. As shown in Table 2, the overpass
time of S1B over the Genhe watershed (22:00) differs the most from that of AMSR2 (1:30).
To combine S1B and AMSR2 to detect the surface F/T state, an analysis was performed
to determine the difference in surface F/T indicated by the in situ 5 cm soil temperature
between 10:00 PM and 1:30 AM over the Genhe watershed. Figure 18 shows the comparison
of in situ 5 cm soil temperature between 10:00 PM and 1:30 AM over cultivated land,
grassland, and forest in the Genhe watershed. The temperatures between the two times
show little difference, especially at approximately 0 ◦C. The consistency of surface F/T
flagged at 10:00 PM and 1:30 AM was 93.72%, 98.85%, and 99.04% for cultivated land,
grassland, and forest, respectively. The consistency of cultivated land was lower due to a
lack of vegetation cover, which can cause a small temperature difference between 10:00 PM
and 1:30 AM.
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Figure 18. Comparison of 5 cm soil temperature between S1B overpass time (22:00) and AMSR2
overpass time of the descending orbit (1:30) over cultivated (a), grassland (b), and forest (c) in the
Genhe watershed.

The presented method uses the FTI and LAI to estimate the SSInew and further detects
surface F/T. The FTI and SSI, as microwave-based F/T indices, are suitable for monitoring
the surface F/T status. LAI data were introduced into the F/T index-based logistic model
to compensate for the effect of the vegetation layer on surface F/T status determination.
The vegetation layer directly influences the observations, particularly the radar signal.
The vegetation layer also thermally insulates the soil beneath it, affecting the soil freezing
and thawing processes. To clarify the role of LAI in detecting the surface F/T state,
the F/T index-based logistic model in Equation (8) without considering the LAI was
executed to estimate the SSInew_noLAI. Then, the surface F/T state was detected by the
SSInew_noLAI using the same method as in the SSInew. The in situ soil temperature was used
to evaluate the accuracies of F/Tnew and F/Tnew_noLAI, as shown in Figure 19. The x-axis
and y-axis show the accuracies of F/Tnew and F/Tnew_noLAI, respectively. Table 6 provides
the classification accuracy statistics for F/Tnew_noLAI and F/Tnew over different land cover
types. Figure 20 shows the frozen days of F/Tnew and F/Tnew_noLAI from June 2017 to May
2018 over the Genhe watershed area as an example. The two indices have similar spatial
distributions, but F/Tnew, which introduces high-resolution vegetation information, has
more spatial details. In interlaced area of cultivated and grasslands in the southwest Genhe
watershed area, frozen days of F/Tnew in Figure 20a are more than that of F/Tnew_noLAI
in Figure 20b over cultivated area. In addition, in interlaced areas of grassland and forest,
frozen days of F/Tnew in Figure 20a are more than that of F/Tnew_noLAI in Figure 20b
over grasslands. The difference of frozen days between F/Tnew and F/Tnew_noLAI mainly
occurs in the land cover which accounts for a small proportion of all land covers within
passive microwave pixel. From the comparison at these four regions shown on Table 6,
the overall accuracy of F/Tnew is greater than F/Tnew_noLAI over different land cover
types, especially in Genhe watershed where the heterogeneity of land cover within passive
microwave pixel scale is greater. The introduction of LAI data obviously improved the F/T
detection accuracy in the case of heterogeneous land cover within the passive microwave
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pixel scale. This is because LAI can indicate high-resolution vegetation green-up date
which is close to surface thawing date [80–82]. In summary, by introducing LAI data, the
validation accuracies of the vegetation-covered surface improved, and the F/T maps had
more spatial details.
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Figure 19. A comparison of thawed (a), frozen (b) and total (c) accuracies between F/Tnew and
F/Tnew_noLAI.

Table 6. Total classification accuracy (%) statistics for F/Tnew and F/Tnew_noLAI.

Area Cultivated Grassland Forest

F/Tnew_noLAI

Genhe 88.66 88.23 86.16
Saihanba / 91.3 90.22
Naqu / 86.4 /
RISMA 86.87 / /

F/Tnew

Genhe 92.24 93.36 93.79
Saihanba / 91.53 90.34
Naqu / 88.53 /
RISMA 88.1 / /
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5.2. F/T Classification Accuracy Comparisons between F/TS1 and F/Tnew

Figure 21 provides comparisons of the thawed (a), frozen (b), and total (c) accuracies
between F/TS1 and F/Tnew over four study areas at a 1 km resolution. Table 7 provides
the classification accuracy statistics for F/TS1 and F/Tnew. The result comparisons were
calculated based on all available S1 data for each study area, as shown in Table 2. The mean
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thaw, freezing, and total accuracies for almost all in situ sites of F/Tnew were higher than
those of F/TS1 over the four study areas. The F/TS1 estimates were retrieved using only
S1 radar data, and the F/Tnew estimates included the combined use of S1 and FTI data.
Multifrequency passive microwave remote sensing is sensitive to both soil moisture and
soil temperature and is suitable for monitoring surface F/T. Radar signals are susceptible
to roughness and vegetation when monitoring surface F/T. From our results comparison,
F/Tnew, which contains passive information, has higher accuracies than F/TS1. Addition-
ally, anomalies caused by noise may exist in the S1 data (Figure 12b). SSInew could reduce
abnormal phenomena by considering time series data. Therefore, F/Tnew detection had a
better performance than F/TS1.
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Figure 21. Comparison of thawed (a), frozen (b), and total (c) accuracies between F/TS1 and F/Tnew

at a 1 km resolution.

Table 7. Classification accuracy (%) statistics for F/TS1 and F/Tnew.

Area FF FT TT TF F_Right T_Right Total_Right

F/TS1

Genhe 357 28 486 55 92.73 89.83 91.04
Saihanba 221 16 229 62 93.25 78.69 85.23
Naqu 558 38 555 206 93.62 72.93 82.02
RISMA 236 60 365 80 79.73 82.02 81.11

F/Tnew

Genhe 368 17 505 36 95.58 93.35 94.28
Saihanba 221 16 242 49 93.25 83.16 87.69
Naqu 552 44 649 112 92.62 85.28 88.5
RISMA 247 49 417 28 83.45 93.71 89.61

5.3. F/T Classification Accuracy Comparisons between F/Tnew and F/TAMSR2

Figure 22 provides comparisons of the thaw (a), frozen (b), and total (c) accuracies
between F/T detected from AMSR2 (F/TAMSR2) and SSInew at the site level. Table 8 pro-
vides the classification accuracy statistics for F/TAMSR2 and F/Tnew. The total accuracy of
F/Tnew was higher than that of F/TAMSR2, while F/TAMSR2 had a higher thaw accuracy.
The theoretical soil penetration depth of the C band is 1–5 cm [83]. Unlike the F/T detection
algorithm of AMSR2, which could reflect the 5 cm depth F/T state because it was param-
eterized by the 5 cm depth soil temperature, the F/Tnew detected F/T using the C band,
which cannot reflect the soil F/T at the 5 cm depth. Even though the soil at the 5 cm depth
was thawed, it could not be detected by F/Tnew with the C band. Thus, F/Tnew detected
more frozen soil than F/TAMSR2. Figure 23 shows the frozen days calculated from the
F/Tnew (a) at 1 km and F/TAMSR2 (b) at 25 km from June 2017 to May 2018 over the Genhe
watershed area as an example. The white color in Figure 23a indicates artificial surfaces and
water bodies that were masked. Additionally, the spatial patterns of frozen days calculated
from the F/Tnew and F/TAMSR2 data were similar over the study area, with the spatial
trend of fewer frozen days in the southwestern part and more in the northeastern part of
the study area. The frozen days calculated from the F/Tnew obviously have more details
than that of AMSR2.
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Figure 22. Comparisons of thawed (a), frozen (b), and total (c) accuracies between F/TAMSR2 and
F/Tnew at the site level.

Table 8. Classification accuracy (%) statistics for F/TAMSR2 and F/Tnew.

Area FF FT TT TF F_Right T_Right Total_Right

F/TAMSR2

Genhe 4529 725 6897 134 86.2 98.09 93.01
Saihanba 2262 311 3819 392 87.91 90.69 89.64
Naqu 4868 513 5958 1024 90.47 85.33 87.57
RISMA 2891 795 5083 386 78.43 92.94 87.1

F/Tnew

Genhe 4888 366 6555 476 93.03 93.23 93.29
Saihanba 2823 189 4353 539 93.73 88.98 90.79
Naqu 6729 541 8136 1384 92.56 85.46 88.53
RISMA 3273 570 5088 559 85.17 90.1 88.1
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Figure 23. Frozen days calculated from the F/Tnew (a) at 1 km and F/TAMSR2 (b) at 25 km from June
2017 to May 2018.

6. Conclusions

This paper investigated a new approach for detecting daily land surface F/T at 1 km
with AMSR2, S1 and LAI data over the Genhe watershed, the Saihanba and Naqu area
located in China and the RISMA network located in Canada, respectively. The proposed
approach is derived based on a logistic relationship between the SSIS1 derived from Sentinel-
1 SAR data and AMSR2 FTI. The logistic relation was confirmed by AIEM simulations
and observational data. Since vegetation affects microwave signals and the freezing time
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of the land surface, LAI data were introduced to express the influence of vegetation and
provide spatial patterns at the kilometer scale for F/T status determination. The daily
F/T state at 1 km could be estimated from the SSInew obtained from FTI and LAI data.
The in situ 5 cm depth soil temperature data from four soil temperature measurement
networks were used to evaluate the classification accuracies of F/Tnew. The mean total
accuracies obtained from in situ sites are 93.29%, 90.79%, 88.53%, and 88.1% over the
Genhe watershed, Saihanba, Naqu and RISMA, respectively. By introducing LAI data, the
classification accuracies of F/Tnew over the vegetation-covered surface maximum increased
by 7.6%. The results comparison between F/Tnew and F/TS1 at 1 km showed that this
method could reduce some S1 data anomalies and obtain higher accuracies. Additionally,
the accuracy comparison results between F/Tnew at 1 km and F/TAMSR2 at 25 km showed
that the high-resolution results could more accurately reflect the land surface state. In this
study, daily 1 km land surface F/T could be detected by combining with Sentinel-1 SAR,
AMSR2, and LAI data. The accuracy increased by 5.17% and 0.85%, reaching 90% and
90.18% when compared with the stand-alone S1 F/T results at 0.01◦ and the AMSR2 F/T
results at 0.25◦ resolution. Despite this method may be affected by the change in roughness
over cultivated areas caused by agricultural activity, leading to false detection flags for thaw
surfaces. The overall accuracy over cultivated areas was still above 90%. This indicated
that combined SAR and passive microwave remote sensing can monitor relatively high
spatial resolution surface F/T at 1 km with high accurately than through passive satellite
sensors. The accuracies have improved over vegetation-covered surfaces by considering
the effect of vegetation.

The combination of S1 and AMSR2 has the potential to detect land surface F/T states
with high spatial and temporal resolutions over a large scale, even at the global scale. In
future work, we will apply a temperature-based filter to remove false detections during
winter caused by the snow effect. In addition, the new approach developed in this work is
established based on time series data for each pixel, and the algorithm coefficients obtained
from the available Sentinel-1 data could be used to estimate the SSInew during periods
before Sentinel-1 was launched. Thus, the daily land surface F/T state at 1 km before the
launch of Sentinel-1 could be estimated. It is expected to derive a long series of daily land
surface F/T states at a spatial resolution of 1 km since 2002.
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