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Abstract: Anomaly detection of hyperspectral imagery (HSI) identifies the very few samples that do
not conform to an intricate background without priors. Despite the extensive success of hyperspectral
interpretation techniques based on generative adversarial networks (GANs), applying trained GAN
models to hyperspectral anomaly detection remains promising but challenging. Previous generative
models can accurately learn the complex background distribution of HSI and typically convert the
high-dimensional data back to the latent space to extract features to detect anomalies. However,
both background modeling and feature-extraction methods can be improved to become ideal in
terms of the modeling power and reconstruction consistency capability. In this work, we present
a multi-prior-based network (MPN) to incorporate the well-trained GANs as effective priors to a
general anomaly-detection task. In particular, we introduce multi-scale covariance maps (MCMs) of
precise second-order statistics to construct multi-scale priors. The MCM strategy implicitly bridges
the spectral- and spatial-specific information and fully represents multi-scale, enhanced information.
Thus, we reliably and adaptively estimate the HSI label to alleviate the problem of insufficient priors.
Moreover, the twin least-square loss is imposed to improve the generative ability and training stability
in feature and image domains, as well as to overcome the gradient vanishing problem. Last but not
least, the network, enforced with a new anomaly rejection loss, establishes a pure and discriminative
background estimation.

Keywords: anomaly detection; hyperspectral imagery; adversarial learning; multi-scale covariance
map; least-square; unsupervised learning

1. Introduction

Due to hundreds of continuous bands, hyperspectral imagery (HSI) obtains high spec-
tral resolution and abundant spectral information, which has been widely used in anomaly
detection, target detection, and classification [1,2]. Generally, anomaly detection refers
to identifying instances that do not conform to the expected normal distribution, which
plays an essential role in the computer version area [3,4]. Among various interpretation
techniques for earth observation and deep space exploration, hyperspectral anomaly detec-
tion aims to locate anomaly instances without any prior information in different spatial
and spectral features, i.e., spectral signatures discrimination or probability difference from
diverse backgrounds.

Traditional statistics- or representation-based detectors measure the observational data
under the normal condition from assumed probabilistic distribution or representations,
lacking the ability to characterize complex hyperspectral data [5,6]. The assumption of
Gaussian distribution may not be consistent with the actual scene, and cannot completely
cover the real-world data distribution in a complicated imaging environment. To address
these issues, fruitful research based on deep learning has appeared, which has powerful
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and unique advantages in modeling complex hyperspectral data and digging out the
underlying distribution [7–10]. To be specific, there are two main categories of employing
generative models in anomaly detection, including AE- and GAN-embedded architectures
to reconstruct in both latent and reconstructed domains according to minimizing the error
between the original and reconstructed spectra [11]. However, though GAN performs well
in anomaly-detection tasks according to the literature, the objective of GAN is supposed
to capture more separable latent features between background and anomalies rather than
minimizing the reconstruction error at the pixel level [12–14]. The gradient vanishing
problem is partly caused by the hypothesis of the discriminator acting as a classifier with
the sigmoid cross-entropy loss function in regular GANs, which is not conducive to the
generation of background and discrimination of anomalies.

For hyperspectral anomaly detection, existing works based on deep learning focus
mainly on feature extraction or dimension reduction [15–19]. With small input samples,
limited by difficulties in annotation and collection of label training, supervised or semi-
supervised methods aim to make a tradeoff between sample numbers and detection perfor-
mance [20–22]. However, they still require hard-to-attain pure background training samples
for representation [23–26]. Unsupervised learning has become a new trend, but detection
accuracy is unsatisfactory with insufficient prior knowledge [27–30]. Moreover, complex
characteristics of HSIs in real scenarios are not yet fully considered or plugged into the
network. In contrast, the proposed MPN aims to address these issues while maintaining
good performance. The contributions can be summarized as follows:

• To change the preconceptions of anomaly detection with insufficient samples, we
propose a multi-prior strategy to reliably and adaptively generate prior dictionaries.
Specifically, we calculate a series of multi-scale covariance matrices rather than tra-
ditional one-order statistics, taking advantage of second-order statistics to naturally
model the distribution with integrated spectral and spatial information.

• The twin least-square loss in both the feature and image domains and differential
expansion loss are jointly introduced into the architecture to fit the characteristics of
high-dimensional and complex HSI data, which can overcome the gradient vanishing
and training stability problem.

• To lease the generation ability of the model and reduce the false-alarm rate by an order
of magnitude, we design a weakly supervised training pattern to enlarge the distri-
bution diversity between background regions and anomalies, aiming to distinguish
between background and anomalies in reconstruction. Experimental results illustrate
that the AUC score of

(
Pf , τ

)
in MPN is one order of magnitude lower than other

compared methods.

We divide the remainder of this paper into four sections. The hyperspectral anomaly
detection and generative adversarial networks are reviewed in Section 2. The MPN method-
ology is concretely described in Section 3. In Section 4, we represent experiments and
discuss the results. In Section 5, we draw our conclusions.

2. Related Work
2.1. Hyperspectral Anomaly Detection

Recently, plenty of anomaly-detection methods have been developed. The statistics-
based methods and sparsity-based methods are two representative categories [31,32]. There
are mainly two categories for traditional hyperspectral anomaly detection approaches,
the first of which comprises RX-based algorithms [33]. The RX detector is based on the
assumption that each spectral channel obeys Gaussian distribution. The non-RX-based
methods include collaborative representations, sparse representations, and low-rank rep-
resentations. The ADLR method obtains abundance vectors by spectral decomposition.
It constructs a dictionary based on the mean value clustering of abundance vectors [34].
The low-rank and sparse constraints are imposed in the PAB_DC model in consideration of
the homogeneity of background and the sparsity of anomalies to construct the background
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and potential anomaly dictionaries [35]. The emerging typical algorithm for background
removal is AED, which removes the background by attribute filtering and difference
operation [36]. Additionally, unlike single distribution modeling in traditional LSDM,
the LSDM–MoG method combines the mixed-noise models and low-rank background to
characterize complex distributions more accurately [37].

2.2. Generative Adversarial Networks (GANs)

By improvement of generation quality and training stability, generative adversarial
networks (GANs) perform advanced image generation ability [38–41]. The capability
of high-quality image generation accounts for the application of GANs to many image
processing tasks [42,43]. For hyperspectral anomaly detection, existing works based on
deep learning focus mainly on feature extraction or dimension reduction. With small input
samples, limited by difficulties in annotation and collection of label training, supervised or
semi-supervised methods aim to make a tradeoff between sample numbers and detection
performance. However, they still require hard-to-attain pure background training samples
for representation. Unsupervised learning has become a new trend, but detection accuracy
is unsatisfactory with insufficient prior knowledge. Moreover, complex characteristics of
HSIs in real scenarios are not yet fully considered or plugged into the network. In contrast,
the proposed MPN aims to address these issues while maintaining a good performance.

3. Proposed Method

In this work, we elaborate on MPN for hyperspectral anomaly detection. The whole
process is shown in Figure 1. We denote the HSI as H ∈ Rh×w×d

. The number of the
spectral bands is denoted by d. The spatial size of the data is described by h and w.
For convenience, as the input of the network, the 3D cube H is converted into a 2D matrix
H = {hi}n

i=1 ∈ Rd×n
. Each column of H is a spectral pixel vector in the HSI. n = h× w

is the number of the pixels. The HSI data matrix can be decomposed into two parts—
background and anomaly—which are denoted as Y = [y1, y2, . . . , ynB ], X = [x1, x2, . . . , xnA ],
respectively, where nA + nB = n. yi represents the ith vector in Y , i = 1, 2, · · · , nA. xi
represents the ith vector in X, i = 1, 2, · · · , nB. Furthermore, the reconstructed background
spectral is denoted as Ŷ = σ

(
WWTY + B

)
, where σ(·) represents the activation function.

Ŷ is the output of the network, and W is the weight of the encoder. B is the bias of the
whole network. The pixel can be represented by the combination of other surrounding
background pixels since there is a correlation between background pixels. The linear
decomposition model of HSI is formulated as

H = B0W + A0 + N, (1)

where B0W is the background component; B0 = [b1, b2, . . . , bnB ] are the background dic-
tionaries; W = [w1, w2, . . . , wn] are the corresponding representation coefficients; and
A0 = [a1, a2, . . . , ana ] is anomaly component. For simplicity, we consider N as zero.

Different from the previous single-distribution-based anomaly-detection method RX,
we calculate the covariance between the two vectors by estimating the probabilities of
the testing pixel belong to the anomaly class by calculating the Mahalanobis distance
with neighboring pixels. Inspired by the distance-based method and the multi-scale ap-
proach [44,45], we consider that, through background dictionaries modeling, the con-
structed covariance maps can reuse the MCMs and represent the spatial and spectral
information of HSI as the prior for GAN training. Thus, the decomposition can be regarded
as a nonlinear problem, which has the following expression:

H = fMCM(B, A) (2)

where fMCM(·) represents the learning process of MCM algorithm. A and B denote the
background and anomaly dictionaries, respectively.
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Figure 1. Flowchart of the detection algorithm based on MPN, including covariance maps generation,
multi-prior-based background modeling, and differential expansion constraint-imposed network.

3.1. Network Architecture

Instead of single-scale Gaussian distribution with a generative adversarial network
method, we present a deep network, i.e., MPN, to directly model the complex HSI and its
dictionary, which characterizes the essential attribute of HSI implicitly. In this way, both
the multi-prior dictionary scheme and the jointly separable loss can contribute to detecting
the anomalies from the complex HSI data in a weakly supervised pattern. Thus, according
to the defined dictionaries, the anomaly-detection task can be formulated as

L(Y, X) = LTLS(Y) + Lau
(
Y, Ŷ

)
+ Len

(
Ŷ, X

)
= LLS1(Z) + LLS2

(
Y, Ŷ

)
+
∥∥Y− Ŷ

∥∥− α
∥∥Ŷ− X

∥∥,
(3)

s.t.


Z = Enc(Y; arg(G))

Ŷ = Dec(Z; arg(D))
α ∼ N(0, I)

,

where Ŷ is decoder output, and Z is the latent feature as encoder output. The twin least-
square loss LTLS added for the two discriminators are denoted by LLS1 and LLS2 , respec-
tively, which make up the whole least-square-based loss LTLS. Lau represents the spectral
reconstruction loss, which is aimed at mapping the input to the output space. Len denotes
the separability loss between background and anomaly dictionary which aims to enlarge
the difference, respectively.

∥∥Y− Ŷ
∥∥ denotes the reconstruction error of basic generative

adversarial network. Enc and Dec represent the encoder and decoder, respectively.

3.2. Multi-Prior for Background Construction

We generate pseudo priors for GAN training through multi-scale covariance map
construction. This strategy was inspired by the estimation of the Mahalanobis distance
between the test pixels and the constructed pixels on one scale. Thus, we can obtain
sufficient prior information and take advantage of both the spatial and spectral information
of HSI. The progress of multi-prior construction strategy is shown in Figure 2.
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Figure 2. The progress of multi-prior construction strategy.

3.2.1. Multi-Scale Localizing

For each central pixel, we try to realize multi-scale localizing first based on the Eu-
clidean distance with a classical classifier, i.e., K nearest neighbors (KNN), to obtain the
local pixel cubes at different scales. Then, we generate a series of gradually increasing cubes
of different scales. For each of the cubes, we transfer it to a vector. After that, the covariance
matrix is calculated between the vectors. Furthermore, we take into account the situation
of M scales Tk, k = 1, · · · , M. Thus, the extraction of M covariance maps are attained to
represent the center pixel xk, denoted by Ck, respectively. Additionally, for the central pixel
hi, taking the scale R× R as an example, the covariance map of hi on the fixed one scale is
extracted as

Ck =
1

R2 − 1

R2

∑
i=1

(hi − µ)(hi − µ)T ∈ RL×L, (4)

where µ represents the mean of input HSI vectors {hi|i = 1, 2, · · · , R}. Furthermore,{
hi|i = 2, · · · , R2} represents the corresponding adjacent pixels in a window of R × R

pixels. In addition, we extend to M scales of Rk , i.e., k = 1, · · · , M. We denote the co-
variance maps of other scales as Ck, k = 1, · · · , M, which make up the covariance pool to
construct the background.

3.2.2. Generating Covariance Maps

Aiming at the original pixel, we construct a series of increasingly larger cubes in
consideration of the increasing window size of the spatial neighborhood around each
one. Furthermore, for each of these cubes, after vectorizing, we calculate the CM of the
two vectors to represent the information contained in the central pixel and enhanced by
considering gradually expanding neighborhoods. Such CMs obtained from increasingly
larger spatial proportions are denoted by MCM, which can be used to train the detector
more effectively.

3.3. Two-Branch Cascaded Architecture with Least-Square Losses

Though GAN performs well in anomaly-detection tasks according to the literature [45],
the real objective of GAN is supposed to capture more separable latent features between
background and anomalies instead of minimizing the pixel-wise reconstruction error.
Additionally, conventional GAN style architectures obtain blurry reconstructions because of
multiple modes in the actual normal distribution falsifying reconstruction errors. Moreover,
the unstable training process and limitation of the capacity of GAN-style architecture
remain to be improved.

Therefore, we propose a twin least-square GAN under the semi-supervised pattern
with background vectors reconstructed to address the above issues. Compared with
conventional GANs, an auxiliary discriminator, anomaly rejection loss, and least-square
losses are adopted to the framework. The anomaly rejection loss aims to gather the latent
background dictionaries and make them more concentrated. Thus, the differentiation
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between the background and anomalies can be enlarged. Additionally, the auxiliary image
discriminator plays a role in achieving a better balance in the training process.

3.3.1. Stability Branch

When the generator is updated, the non-saturation loss and min–max loss will hardly
lead to gradients to false samples since the fake samples still differ from the real data [40].
To solve the problem, we consider the least-squares loss to penalize the samples which
are far from the decision boundary, even if they are on the right side. We introduce least-
squares loss to move false vectors to the decision boundary. The least-square loss added
network can reconstruct vectors that are similar to the real data. Furthermore, the vanishing
gradient is alleviated while the GANs learning is more stable. Thus, we introduce least-
square losses to the architecture and define them in both the two discriminators with
enhanced background anomaly discrimination from the input space to the reconstructed
one. Consequently, the background spectral vectors are adequately and stably estimated
with better performance. The objective function of the least-squares-loss-based network
can be expressed as follows.

min
G

VLS(G) =
1
2

Ex∼pdata(x)[(D(x)− n)
2
] +

1
2

Ez∼pz(z)[(D(G(z))−m)
2
] (5)

min
D

VLS(D) =
1
2

Ex∼pdata(x)[(D(x)− l)
2
] +

1
2

Ez∼pz(z)[(D(G(z))− l)
2
] (6)

where m and n are the labels for fake and real data, respectively. Furthermore, l denotes
the value that G wants D to believe for fake data. As shown in Figure 1, the MPN architec-
ture contains one generator and two discriminators. The generator network includes the
encoder En and decoder De. Firstly, the mapping relationship between input background
dictionaries and the network output can be regarded as the mapping function. The training
objective of L(Y, DR, DF, G) is to capture the distribution of background dictionaries in
both the reconstructed and deep-spectrum vector space. Motivated by this, L(Y, DR, DF, G)
intends to produce a minimum anomaly score for background, but a higher score for the
anomaly. To achieve this goal, in addition to the basic reconstruction loss in the equation,
we also add spatial adversarial loss, potential spatial adversarial loss, and anomaly rejection
loss, which all contribute to the whole learning objective.

Considering the discriminator as a classifier, the sigmoid cross-entropy loss function
is adopted in regular basic GANs. When updating the generator, the loss function will
cause vanishing gradients because the samples on the correct side of the decision boundary
are still far from the real data. To remedy this problem, we introduce the least-square loss
function into the architecture. As shown in Figure 1, the MPN network consists of two
discriminators and a generator. The twin least-square loss can be expressed as

LLS1 =
1
2

Ey∼pdata(y)[(DF(y)− 1)
2
] +

1
2

Ez∼pz(z)[(DF(G(z)) + 1)
2
], (7)

LLS2 =
1
2

Ey∼pdata(y)[(DR(y)− 1)
2
] +

1
2

Eŷ∼pŷ(ŷ)[(DR(G(ŷ)) + 1)
2
], (8)

From the binary classification point of view, we introduce the twin least-square loss
to move false samples to the decision boundary of being anomaly or background. Thus,
we perform adversarial training on the two least-square-loss imposed discriminators DR
and DF against the generator. Consequently, the problem of gradient vanishing can be
overcome and the consistency with the distribution of the reconstructed ŷ and the input
data y can be ensured.
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3.3.2. Separability Branch

As mentioned earlier, we impose the spectral reconstruction loss using mean squared
error (MSE) so that the deviation between the reconstructed and the input can be optimized:

Lau
(
Y, Ŷ

)
=
∥∥Y− Ŷ

∥∥
=
∥∥∥Y− σ

(
WWTY + B

)∥∥∥,
(9)

To ensure that the learning samples come entirely from the background, we introduce
the following distance function based on Lau. The second item of this is expected to be as
large as possible:

Lan
(
Y, Ŷ

)
= Lau

(
Y, Ŷ

)
+ Len

(
Ŷ, X

)
=
∥∥Y− Ŷ

∥∥− α
∥∥Ŷ− X

∥∥
=
∥∥∥Y− σ

(
WWTY + B

)∥∥∥
− α
∥∥∥σ
(

WWTY + B
)
− X

∥∥∥,

(10)

Let xi and yi represent the ith component in X and Y, respectively. x̄ denotes the mean
of all the xi in X. When the distance between the reconstructed spectrum vector ŷi and
the average spectrum vector x̄ are small, yi is suspected to be an anomaly vector. Then,
the suppression coefficient α of the function aims to reduce it rapidly for adjustment.
When the distance between x̄ and yi is large, from a statistical point of view, yi is the
background dictionary to be estimated. Then, the value of the suppression coefficient α is
approximately 1.

3.4. Solving the Cascaded Model

The twin least-square loss, spectral reconstruction loss, and differential expansion
loss are jointly learned with the weighting coefficient of 1 by carrying out alternative
updates of each component as follows. Subsequently, we obtain the detection maps by
Gaussian-statistics-based discrimination.

• Minimize LLS1 by updating parameters of DF.
• Minimize LLS2 by updating parameters of DR.
• Minimize Lan by updating parameters of En and the decoder De.

where the first discriminator DF with the least-square loss aims to reduce gradient vanishing
in the latent space. The second DR with the least-square loss tries to reconstruct images
to approximate the input in the reconstructed image space. The model is trained using
the Adam optimization algorithm by carrying out alternative updates of each component.
Then we re-adopted the multi-prior algorithm on reconstruction results as follows.

J = (ŷi − µ)TC(ŷi − µ). (11)

where µ denotes the mean vector and C represents the multi-prior of the reconstructed
Ĥ, respectively.

4. Experimental Results and Discussion

We design and execute experiments to verify the effectiveness of the proposed model.
We qualitatively and quantitatively compared and analyzed the detection results of the
MPN method with six state-of-the-art algorithms.

4.1. Datasets Description

The tested HSIs captured at different scenes are described for performance evaluation
of the MPN and compared methods. The pseudo-color images and ground truth of the
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datasets are shown in Figure 3. There are part of the datasets provided online to access
(http://xudongkang.weebly.com/data-sets.html (accessed on 6 May 2022)).

Figure 3. Pseudo-color images and ground truth for (a) HYDICE, (b) ABU-urban1, (c) ABU-urban2,
(d) EI Segundo, and (e) Grand Island.

4.1.1. HYDICE

Captured by the hyperspectral digital image acquisition experiment (HYDICE) air-
borne sensors above the city, the first dataset describes urban scenes in the United States.
There are 162 spectral channels in the original image with a wavelength from 400 to
2500 nanometers (nm). From the entire original image, a sub-image with a space size of
80× 100 is cropped. In the spectral band, 162 bands are reserved. The total number of
anomalous pixels is 19. The anomaly pixels represent cars and roofs.

4.1.2. Airport–Beach–Urban (ABU) Database

The airplane, city, and most beach scenes of the second dataset are recorded by the
airborne visible/infrared imaging spectrometer (AVIRIS) sensors. One of the datasets in
the beach scene is captured by the Reflective Optics System Imaging Spectrometer (ROSIS-
03) sensor. The AVIRIS instrument contains 224 different detectors, each with a spectral
bandwidth of approximately 10 nm, allowing it to cover the entire range between 380 and
2500 nm (http://aviris.jpl.nasa.gov/ (accessed on 6 May 2022)). The sample image with a
size of 100× 100 is manually extracted from the large image. The datasets are available
online and can be downloaded from the AVIRIS website.

4.1.3. Grand Island

The Grand Island dataset was also acquired by the AVIRIS sensor. It was cap-
tured at the location of GrandIsland on the Gulf Coast. In spatial domain, it contains
300× 480 pixels. While in spectral domain, it contains 224 spectral channels with a wave-
length range of 366–2496 nm.

4.1.4. EI Segundo

The EI Segundo dataset was captured by AVIRIS sensors. The structure of the refinery
is regarded as an anomaly to be detected. It has 250× 300 pixels in the spatial domain.
In the spectral domain, the band number is 224, ranging from 370 to 250 nm.

4.2. Evaluation Metrics

Let Pd, Pf , and τ represent the true positive rate, false positive rate, and threshold,
respectively. We introduce the receiver operating characteristic curve (ROC) together with
the area under it to quantitative evaluation. The area under the ROC curve of

(
Pd, Pf

)
demonstrates the detection accuracy. The closer this value is to 1, the better the detection
capability. In contrast, the closer the area value under the

(
Pf , τ

)
is to 0, the better the false

alarm rate.

http://xudongkang.weebly.com/data-sets.html
http://aviris.jpl.nasa.gov/
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4.3. Experiment Setup

Our model is built on the basic GAN model, which is composed of encoder, decoder,
and discriminators. We set the training iteration to 5000. The learning rate is chosen to
be 0.0001 to balance the performance and iteration speed. There are three layers for each
part. We set the number of the extracted feature to 20 after ranging the value from 10 to
100 for all the datasets. With a proper number of 20, the proposed model can represent
an extracted feature well for the input spectral and promote the detection performance.
We optimize all parameters by the Adam optimization algorithm with backpropagation.
Varying from 30 to 50, the size of windows make the detection results differ from each other.
It achieves the optimal accuracy when the size is set to between 15 and 25. Similarly, we set
the value of the scales of multi-scale covariance maps as 5 to make a balance between the
performance and the computation costs for the tested datasets. For the parameter settings of
compared methods, the RX method is parameter-free by design. Other algorithms require
parameters tuning to achieve upper bounds on the performance. For the Grand Island
and Segundo datasets, the main parameters s is set to 10, and r is set to 0.6. There are two
main parameters in the ADLR method. We set the c between 20 and 30. The bw varies from
0.2 to 0.55. Furthermore, lambda is set between 0.01 and 0.1. In the PAB_DC method, we
select the parameters according to [35]. The LSDM–MoG algorithm uses a combination of
mixed-noise models and low-rank backgrounds to more accurately characterize complex
distributions. The parameter setting is consistent with [37]. In AAE, the three layers of each
sub-network obtain 500, 500, and 20 units, respectively, [38]. In SAFL, the batch size is set
as the number of spatial pixels of HSI. The training epoch is set to 10,000. The learning rates
are set to 0.001 and 0.0001, respectively, for the encoder, decoder, and discriminator [39].

4.4. Ablation Study

To better understand the effect of each component on output detection result in MPN,
we analyzed the performances under the following four scenes of training models: (1) MPN
without multi-prior module; (2) MPN without twin least-square loss module; (3) MPN
without differential expansion loss; (4) MPN.

From Tables 1 and 2, it can be concluded that the MPN achieves a higher AUC score of(
Pd, Pf

)
and a lower AUC score of

(
Pf , τ

)
than other models. The AUC score of

(
Pd, Pf

)
on average compared with other configurations are improved by about 0.276%, 0.266%,
and 0.156%, respectively. Furthermore, the AUC score of

(
Pf , τ

)
on average are optimized

by about 10.425%, 6.950%, and 1.351%, respectively. The results indicate the effectiveness
and necessity of multi-prior, twin least-square loss, and differential expansion loss, which
contribute effectively to improve the detection performance.

Table 1. Evaluation AUC scores of
(

Pd, Pf

)
for different scenes on different datasets.

Configuration HYDICE Urban-1 Urban-2 Grand Island EI Segundo Average

Scene1 0.99716 0.99839 0.99234 0.99940 0.98943 0.99534
Scene2 0.99804 0.99805 0.99305 0.99990 0.98816 0.99544
Scene3 0.99790 0.99778 0.99302 0.99991 0.99372 0.99654
MPN 0.99945 0.99816 0.99312 0.99991 0.99982 0.99809

The best result is shown in bold.

Table 2. Evaluation AUC scores of
(

Pf , τ
)

for different scenes on different datasets.

Configuration HYDICE Urban-1 Urban-2 Grand Island EI Segundo Average

Scene1 0.02059 0.00193 0.00090 0.00311 0.00207 0.00572
Scene2 0.02169 0.00124 0.00159 0.00071 0.00246 0.00554
Scene3 0.01965 0.00146 0.00088 0.00257 0.00178 0.00525
MPN 0.01540 0.002 0.00145 0.00069 0.00218 0.00518

The best result is shown in bold.
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4.5. Discussion
4.5.1. Baseline Methods

We compare the performance with five commonly used methods according to their
open-source codes and literature, including RX, PAB_DC, AAE, ADLR, SAFL, and LSDM–
MoG. To further validate the effectiveness of the multi-scale covariance maps (MCMs)
and least-square loss, the experiments were conducted on several public and widely used
real-world HSI datasets, i.e., HYDICE, ABU datasets, Grand Island, EI Segundo datasets.

4.5.2. Quantitative Comparison

The quantified AUC scores of
(

Pd, Pf

)
, and

(
Pf , τ

)
are listed in Tables 3 and 4,

respectively. Relative to the AUC score of
(

Pd, Pf

)
, MPN exceeds the well-performed

methods ADLR and RX for about 0.493% and 1.063% on average, respectively. More notably,
its AUC score of

(
Pf , τ

)
is mostly an order of magnitude less than that of others. Specifically,

the average AUC score of
(

Pd, Pf

)
of the proposed method is 0.99809. In comparison,

the result of the second best method ADLR of 0.99321, with lower AUC scores of
(

Pf , τ
)

of
0.00518 compared with 0.05096. It can be concluded that the MPN method shows promising
background suppression ability for most of the scene and better detection accuracy for
small and embedded anomalies. Generally speaking, the comparison methods may achieve
good results for some specific datasets, while MPN can achieve promising detection results
in both indexes for all the datasets, which can also be reflected on the ROC curves of(

Pd, Pf

)
in Figure 4, respectively. To further verify the background suppression and target

detection ability, we also perform the separation analysis through a boxplot. The detection
results of all the detectors on different datasets are shown in Figure 5. The distance between
the upper boundary of the yellow box and the lower boundary of the gray box indicates the
separability of the background anomaly, in which the MPN obtains better discrimination
results on most datasets among the compared methods.

Table 3. Evaluation AUC scores of
(

Pd, Pf

)
obtained by MPN and six compared methods.

Dataset MPN ADLR LSDM–MoG RX AAE PAB_DC SAFL

HYDICE 0.99945 0.99471 0.95643 0.97637 0.92185 0.99760 0.99621
Urban-1 0.99816 0.98774 0.99321 0.99463 0.96806 0.98327 0.99800
Urban-2 0.99312 0.99284 0.97504 0.98874 0.99284 0.54635 0.97188

Grand Island 0.99991 0.99993 0.99989 0.99990 0.99940 0.98768 0.99804
EI Segundo 0.99982 0.99145 0.96798 0.97826 0.99260 0.75911 0.99231

Average 0.99809 0.99321 0.97851 0.98757 0.97495 0.85480 0.99141
The best result is shown in bold, and the second best result is underlined.

Table 4. Evaluation AUC scores of
(

Pf , τ
)

obtained by MPN and six compared methods.

Dataset MPN ADLR LSDM–MoG RX AAE PAB_DC SAFL

HYDICE 0.01540 0.00316 0.18799 0.03798 0.00962 0.10525 0.00310
Urban-1 0.00200 0.08011 0.04555 0.01351 0.04229 0.16974 0.00216
Urban-2 0.00145 0.07451 0.01338 0.01140 0.06192 0.32350 0.01045

Grand Island 0.00069 0.00079 0.02848 0.00738 0.04818 0.06799 0.01126
EI Segundo 0.00218 0.09622 0.14127 0.00952 0.04355 0.10506 0.01864

Average 0.00518 0.05096 0.08333 0.01596 0.0328 0.15431 0.00912
The best result is shown in bold, and the second best result is underlined.
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Figure 4. The ROC curves comparison of different methods for (a) HYDICE, (b) ABU-urban1,
(c) ABU-urban2, (d) Grand Island, (e) EI Segundo models . When the curve is higher, the detection
performance is better.

Figure 5. The separability analysis of different methods for (a) HYDICE, (b) ABU-urban1, (c) ABU-
urban2, (d) Grand Island, (e) EI Segundo. The larger the distance, the more obvious discrimination.

4.5.3. Qualitative Comparison

For the ABU-urban1 dataset, the MPN performs well in detection, especially in some
small-sized anomalies with higher intensity. Meanwhile, the false-alarm rate is restricted
to a lower level in urban scenes. The RX, AAE, and ADLR methods can exactly locate the
anomalies. However, the spatial shape preservation is not good enough. As for LSDM–
MoG and PAB_DC methods, the anomalies are detected although the edges information
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around anomalies is not well obtained. For the ABU-urban2 dataset, the ADLR and the
MPN can detect anomalies well and lower false-alarm rate. The AAE method presents
a good ability in detecting all anomalies, but the intensity is relatively high. In RX and
ADLR methods, the background suppression ability performs well but some pixel-level
anomalies are relatively blurred. For the LSDM–MoG method, some of the anomalies
are lost and cannot be figured out visually. The RX, LSDM–MoG, and PAB_DC methods
perform well on the Grand Island dataset in detection accuracy, but they suffer from the
interference of the complex background. The ADLR method can avoid false alarms, but
some edge details are not obtained. Both AAE and the MPN method can protect anomalies
with high detection accuracy and low false-alarm rates. In Figure 6, it can be observed
that the PAB_DC method for HYDICE dataset keeps targets relatively clearly although
some part of anomalies is missed. In ADLR and LSDM–MoG methods, most anomalies
are visually mixed with the background. RX can detect almost all anomalies with high
intensity. However, the suppression ability of background interference is not effective.
Both PAB_DC and the MPN method can suppress the background well and obtain high
detection accuracy. For the Segundo dataset, MPN can well detect the anomalies in the
scene among the compared methods with the best results. The RX, AAE, and ADLR
methods have favorable identification of the location of the anomalies but lost some of the
shape information. In conclusion, the MPN represents promising performance with the
detection maps closest to the ground truths.

Figure 6. Detection results of MPN and the compared methods for (a) HYDICE, (b) ABU-urban1,
(c) ABU-urban2, (d) EI Segundo, and (e) Grand Island.

5. Conclusions

In this work, a novel multi-prior strategy and joint separable loss scheme embedded
network is proposed for anomaly detection of HSI. Some points of our work deserve
consideration. For the first time, we propose the multi-prior strategy to construct multi-
scale prior information and reuse the covariance map at multiple scales to adaptively create
reliable and stable priors. Therefore, we can solve the lack of priors with pseudo-labeling
and fully take advantage of spectral and spatial information. To overcome the problem of
gradient vanishing and improve the generative ability during training, we introduce twin
least-square loss to the network in both feature and image domains. Finally, the differential
expansion loss added MPN establishes a pure and discriminative background estimation,
separating the background and the anomalous spectral vectors to a greater extent. Through
experiments, we have proved that the MPN exhibits superior performance in background
reconstruction and outperforms the state-of-the-art methods.
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