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Abstract: Many visual applications require high-resolution images for an adequate interpretation of
the data stored within them. In remote sensing, the appearance of satellites such as Sentinel or Landsat
has facilitated the access to data thanks to their free offer of multispectral images. However, the
spatial resolution of these satellites is insufficient for many tasks. Therefore, the objective of this work
is to apply deep learning techniques to increase the resolution of the Sentinel-2 Read-Green-Blue-NIR
(RGBN) bands from the original 10 m to 2.5 m. This means multiplying the number of pixels in the
resulting image by 4, improving the perception and visual quality. In this work, we implement a
state-of-the-art residual learning-based model called Super-Resolution Residual Network (SRResNet),
which we train using PlanetScope-Sentinel pairs of images. Our model, named SARNet (Spectral
Attention Residual Network), incorporates Residual Channel Attention Blocks (RCAB) to improve
the performance of the network and the visual quality of the results. The experiments we have carried
out show that SARNet offers better results than other state-of-the-art methods.

Keywords: remote sensing; image super-resolution; deep learning; channel attention; Sentinel-2;
PlanetScope

1. Introduction

Single Image Super-Resolution (SISR) is a classical problem of computer vision that
aims to obtain a high-resolution (HR) image from a low-resolution (LR) version. In other
words, the objective of SISR techniques is to make an image larger without losing details.
One of the biggest challenges of SISR is the existence of multiple solutions for the same
image. This makes the mapping between the LR space and the HR space unclear. The
second one is intractable in most cases [1,2].

All these techniques are used in many visual applications that require high-resolution
images to allow an adequate interpretation of the data stored within them. Examples are
found in medicine, security and remote sensing, among others. In the case of crops, for
example, satellite images are proving to be very interesting to optimize the efficiency and
profitability of farms [3]. However, the spatial resolution of these satellite images only
allows us to identify general features. For example, it is sufficient to monitor crop growth,
but not for early detection of the appearance of pests.

Among the most popular satellites are Sentinel-2, two twin satellites belonging to the
Sentinel missions [4] which provide free and global acquisitions of multispectral images
with a revisit frequency of 5 days. The objective of these missions is to supply data for
remote sensing tasks, such as land monitoring or disaster management. The multispectral
bands of the Sentinel-2 satellite sensors have up to 10 m spatial resolution, which is not as
much if we compare it with that provided by other commercial high-resolution satellites.
PlanetScope, a satellite launched by Planet [5], provides multispectral images with a
resolution of 3.125 m. Nevertheless, these HR satellite images are very expensive and this
makes them inaccessible for most people. This is the principal reason for increasing the
resolution of the Sentinel-2 satellites without any additional cost.
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There are three main methods for SISR: interpolation-based, reconstruction-based and
learning-based. Interpolation-based methods are very fast and easy to implement, but do
not provide very precise results. Among these methods, one of the most used is bicubic
interpolation [6]. On the other hand, reconstruction-based methods are more sophisticated
and often provide better results. However, their performance is severely limited by the
scaling factor, since the reconstruction degrades as fast as this factor increases [1].

Deep-learning-based methods have become very popular in the past few years. How-
ever, deep learning super-resolution algorithms cannot be applied universally and are
specific to the type of images they are trained with. Moreover, since most of the existing
SISR methods have been implemented using synthetic data, their super-resolution per-
formance is drastically altered when using real-world images [7]. There is also another
difficulty related with HR-LR image pairs needed for training. In order to create these
pairs, a HR image is usually downsampled to obtain the LR version of it. Nevertheless,
there are cases for which HR versions of the images to super-resolve do not exist. Despite
these drawbacks, deep learning methods have proven to be a much better alternative to the
original methods, offering great results both visually and in metric terms.

In this work, we propose a method for SISR of multispectral images using deep
learning techniques. Specifically, we present a residual network-based model which incor-
porates a spectral attention mechanism. Such a mechanism allows our network to consider
interdependencies among channels, highlighting the most informative ones.

The rest of the paper is arranged as follows. In Section 2, we explain some of the work
related to SISR, focusing on deep learning techniques. In Section 3, we present our model
for super-resolution of Sentinel-2 images. All the information of the used dataset and the
pre-processing of the images can be found here. The experiments that have been carried
out can be found in Section 4, including comparisons with other existing models. Finally,
the conclusion can be found in Section 5.

2. Related Work
2.1. Single Image Super Resolution (SISR) with Deep Learning

In recent years, deep learning techniques have proven to be superior to other state-of-
the-art methods. There are three main architectures for SISR using deep learning:

• Standard Convolutional Neural Networks (CNNs): The first CNN-based SISR was
the very well-known Super-Resolution Convolutional Neural Network (SRCNN)
proposed by Dong et al. [8,9]. This network demonstrated great superiority over other
methods and gained great success. However, it presented some issues principally
related to the use of the LR version upscaled with bicubic interpolation [1] and the
use of L1 loss function, which inspired the search for more effective solutions. The
problem with the L1 loss function came from its inability to focus on the perceptual
aspects of the images [10].

• Residual Networks: The next big contribution was provided by the residual learning
presented in [11]. Very Deep Super-Resolution (VDSR) was the first very deep model
used for SISR (with 20 layers) and the first one introducing residual learning. It was
inspired by the SRCNN model and was based on the VGG network [12]. The authors
demonstrated that this learning improves performance and accelerates convergence,
but the network uses an interpolated low-resolution image as input. To overcome
this problem, Shi et al. [13] proposed the Efficient Sub-Pixel Convolutional Neural
Network (ESPCN), an efficient subpixel convolution layer known as the Pixel Shuf-
fle layer. This method carries out the upsampling process in the last layers of the
architecture, instead of resampling the image prior to the network. Then, in [14] the
authors introduced Super-Resolution Residual Network (SRResNet), a network with
16 residual blocks [15]. Based on this model, Lim et al [16] presented a model called
Enhanced Deep Super-Resolution (EDSR), which has made different improvements on
the overall frame. The main ones consist of removing the Batch Normalization layers
to make the network more flexible and employing a residual scaling factor to facilitate
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the training. More recently, Zhang et al. [17] defined a network for super-resolution
formed by some residual blocks called Residual Channel Attention Block (RCAB),
which introduced a channel attention mechanism to study channel interdependencies.

• Autoencoder and Generative Adversarial Networks (GANs): Autoencoders and GANs
have attracted much attention in the past few years because of their great performance in
most computer vision tasks. An example is given by the encoder-decoder residual archi-
tecture in [18] for information restoration and noise reduction called Encoder-Decoder
Residual Network (EDRN). The authors prove that this super-resolution network offers
much better results compared to the state-of-the-art methods for SISR. On the other hand,
Ledig et al. [14] proposed the very well-known Super-Resolution Generative Adversarial
Network (SRGAN), a generative adversarial network for single image super-resolution
that mainly consists of residual blocks for features extraction.

All these models assume the LR images come from the HR ones through downsam-
pling techniques. Nevertheless, when trying to super-resolve multispectral satellite images,
as in our case, is very difficult to obtain these HR images. Some works related to super-
resolution of satellite images that have dealt with the same problem are [19–23] using
residual networks, [24] using autoencoders and [25,26] using GANs. Among the works
based on residual networks, we highlight the solution proposed by Galar et al. [19] for how
well structured and deeply studied their proposal is. Actually, it inspired our study and set
the basis for some of the work we have carried out. Regardless, it has to be noted that we
propose a different model to solve the problem of satellite image super-resolution.

2.2. SRResNet

SRResNet is a network proposed by Ledig et al. [14] for the problem of SISR. This
model set a new state-of-the-art for super-resolution, and was the basis of other models
such as EDSR [16]. The main point of this architecture is the use of ResBlocks [15], which
turned out to be very useful and exhibited excellent performance in many computer vision
tasks. The idea behind these blocks is that convolutional networks can be deeper, more
accurate and more efficient if they contain shorter connections between layers close to the
input and output. Through these skip connections, the information passes without being
altered. The authors of [16] went one step further and proposed a different structure for
ResBlocks removing the Batch Normalization layers. They argued that this modification
improves the performance of their model and reduces the GPU memory usage.

Figure 1 shows the difference between the two approaches. In [14], 16 residual blocks
are used, while in [16], the benefits of using different numbers of blocks are studied, starting
with a baseline of eight blocks.

Figure 1. Comparison between the residual blocks in SRResNet (left) and in EDSR (right). The Batch
Normalization layers from the left have been removed to create the residual blocks of EDSR (right).

Finally, regarding the upsampling layer, Ledig et al. [14] proposed using a layer
formed by a convolution, a Pixel Shuffle operator and a ReLU activation. The Pixel Shuffle
operator upscales the pixel of an image by a factor of two. So, in order to achieve the 4×
super-resolution, the upsampling layer is applied twice.
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3. Materials and Methods
3.1. Proposal

The agri-food sector is one of the engines of the Navarre’s economy. The European
Commission published the Green Deal in 2019, which was followed by two strategies that
will have a great impact in the coming years: the Biodiversity Strategy and the “From Farm
to Fork” Strategy. The latter deals with the transition of the European food system towards
an economically, socially and environmentally sustainable system, and is the one that will
mark the path of many of the policies that affect the agri-food sector, including the new
Common Agricultural Policy (CAP). This strategy will lead the sector to adopt measures for
a more sustainable production from an environmental point of view, achieving reductions
in the use of phytosanitary products and mineral fertilizers and promoting an increase in
organic production and the digitization of the food chain.

NAITEC is a Technology Centre specialized in mechatronics. Thus, it wants to provide
professional farmers, advisers and organizations with a tool which allows them to under-
stand the evolution of crops in order to make predictive and precise decisions regarding
their management, saving costs and reducing their environmental footprint.

It is well known that, from Sentinel images, it is possible to calculate vegetation
indices such as the Normalized Difference Water Index (NDWI), the Normalized Difference
Vegetation Index (NDVI) and the Normalized Difference Snow Index (NDSI) that are
already being incorporated in different agricultural management software.

With this in mind, we propose a new model for super-resolution which is specifically
designed to work with multispectral images. This differentiates us from the state-of-the-art
models, since these are designed to work with RGB images. Additionally, our model
incorporates the idea of channel attention, which takes advantage of the spatial correlations
between bands. The result of this strategy is a model that not only meets its super-resolution
purpose, but also exceeds the state-of-the-art methods presented so far.

3.2. Satellite Images

The Copernicus program [27] is a joint initiative of the European Commission, the
Member States, the European Space Agency (ESA), the European Organization for the
Exploitation of Meteorological Satellites (EUMETSAT), the European Centre for Medium
Range Weather Forecasts (ECMWF), the EU Agencies and the Mercator Ocean. Such a
program provides operational information about our planet captured from space, which is
useful for multiple security and environmental applications. The information services are
free and openly accessible to users.

In this context, five different Earth observation missions, called Sentinels [4], have
been planned to guarantee the provision of data. Sentinel-2 is a mission with a constellation
of two multispectral polar-orbiting satellites monitoring the Earth. It provides images for
several applications, such as the study of vegetation, soil or water.

The constellation is based on two identical satellites (Sentinel-2A and Sentinel-2B)
located on the same orbit and separated by 180º for optimal coverage of the Earth. The
first Sentinel-2 satellite was launched on 23 June 2015.These satellites have a Multispectral
Instrument (MSI) with 13 spectral bands.

Table 1 shows the spatial and spectral characteristics of Sentinel-2A and Sentinel-2B satellites.
Sentinel-2 images can be obtained through the “Copernicus Open Access Hub” plat-

form [28]. This provides access to images from the constellations Sentinel-1, Sentinel-2,
Sentinel-3 and Sentinel-5P.

The other satellite we have used for the task of super-resolution is PlanetScope, a constella-
tion of approximately 130 satellites operated by Planet [5]. It has a coverage of 200 million km2

per day, which makes it capable of covering the entire Earth’s surface daily. Its multispectral
cameras capture four bands (Blue, Green, Read and Near-Infrared) and the ortho tile product
GeoTIFFs are resampled at 3.125 m. It has operated since 2017, after the successful launches of
88 Dove satellites in February and of a further 48 Dove satellites in July.
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Table 1. Spectral characteristics of Sentinel-2 satellites.

Spectral Bands

Sentinel-2A Sentinel-2B

Wavelength
(nm)

Spatial
Resolution (m)

Wavelength
(nm)

Spatial
Resolution (m)

B1—Coastal Aerosol 442.7 60 442.3 60
B2—Blue 492.4 10 492.1 10
B3—Green 559.8 10 559.0 10
B4—Red 664.6 10 665.0 10
B5—Red-edge 1 704.1 20 703.8 20
B6—Red-edge 2 740.5 20 739.1 20
B7—Red-edge 3 782.8 20 779.7 20
B8—NIR 1 832.8 10 833.0 10
B8A—NIR 2 864.7 20 864.0 20
B9—Water Vapor 945.1 60 943.2 60
B10—SWIR/Cirrus 1373.5 60 1376.9 60
B11—SWIR 1 1613.7 20 1610.4 20
B12—SWIR 2 2202.4 20 2185.7 20

3.3. Dataset

One of the main problems when trying to super-resolve the Sentinel-2 10 m spectral
bands is that there are not images of this satellite to use as ground truth. To overcome this
problem, two main solutions have been proposed:

• For a 2× super-resolution, a model to super-resolve Sentinel-2 20 m bands to 10 m is
trained and it is used for super-resolving from 10 m to 5 m [29,30].

• A high-resolution satellite as similar as possible to Sentinel-2 is selected and it is then
used as ground truth [19,20,25].

Nevertheless, learning 5 m images features from 10 m ones gives very poor results,
because the high-level components of a 5 m resolution cannot be found in a 10 m image.
Therefore, the models are not capable of generalizing. For this reason, we have decided to
find a satellite as similar as possible to the one we want to super resolve. The PlanetScope
satellite is a good candidate, because its high coverage frequency allows it to find images
referring to the same place and time as those of Sentinel-2. Not to mention that high-
resolution satellite images are very expensive and Planet offers different alternatives to
obtain the images for free.

The PlanetScope’s images used in our experiments are the Ortho Tile Analytic Surface
Reflectance products. These are orthorectified, radiometrically corrected and atmospher-
ically corrected to Bottom of Atmosphere (BOA) reflectance images. This is the image
processing level we are interested in, because it represents the real reflectance of the ground,
removing the distortions created by the gases of the atmosphere. The images have been
obtained using the “Education and Research Standard Plan” of Planet [31], which has a
download quota of 5000 km2 per month.

On the other hand, the Sentinel-2 images are free to access and they are also provided as
BOA reflectance images. The images we have used are the available Sentinel-2 Level-2A images.

The study focuses on Navarre. This region is committed to the use of new techniques
that allow sustainable agriculture. Satellites’ data are essential to determine the state of
agroecosystems, monitor vegetation and humidity in all productive areas. However, the
images precision is not valid for woody crops (vines, fruit trees, etc.) or small farms such as
those that abound in Navarre.

The dataset consists of 31 pairs of Sentinel-PlanetScope images that were taken in this
area during the years 2020–2022. An example of the images used in the study can be seen in
Figure 2. The area of study has been separated into four parts: the north-east of the region
(NE), the north-west (NW), the south-west (SW) and the south-east (SE). Table 2 shows the
images used for the analysis and the set they have been assigned to.
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Figure 2. LR-HR pairs from the dataset. On the left an image from Navarre; on the right some tiles of
the same image in high and low resolution.

Table 2. Sentinel-2 and PlanetScope pairs.

Location Date Hour Set
Number

of Patches
2×

Number
of Patches

4×
Sentinel-2 PlanetScope

NE

06-08-2020 10:56:19 11:06:14 Train 1651 1651
06-08-2020 10:56:19 11:06:13 Train 1180 1200
06-08-2020 10:56:19 11:06:10 Train 1136 1131
06-08-2020 10:56:19 11:06:10 Train 1717 1736
06-08-2020 10:56:19 11:06:06 Test 2259 2273
21-11-2020 10:53:49 11:00:13 Train 1407 1407
21-11-2020 10:53:49 11:00:13 Train 2535 2538
21-11-2020 10:53:49 11:00:08 Train 2676 2675
07-10-2021 10:48:29 10:50:47 Train 1106 1106
07-10-2021 10:48:29 10:50:47 Train 2698 2662
07-10-2021 10:48:29 10:50:43 Test 2704 2650
07-10-2021 10:48:29 10:50:40 Train 2654 2631
07-10-2021 10:48:29 10:53:53 Validation 1763 1762
07-10-2021 10:48:29 10:53:51 Train 2306 2280
07-10-2021 10:48:29 10:53:49 Test 1244 1244
07-10-2021 10:48:29 10:53:49 Train 2691 2693
23-01-2022 11:09:16 11:31:20 Train 1259 1279
23-01-2022 11:09:16 11:31:17 Test 842 842

NW

30-10-2020 11:02:11 11:13:25 Train 2534 2501
30-10-2020 11:02:11 11:13:21 Validation 1994 1993
30-10-2020 11:02:11 11:13:21 Test 722 743
30-10-2020 11:02:11 11:13:18 Test 1286 1300
05-09-2021 10:56:21 10:57:15 Train 2652 2704
05-09-2021 10:56:21 10:57:15 Test 998 988

SW

22-07-2021 10:56:21 10:34:19 Validation 2469 2487
22-07-2021 10:56:21 10:34:16 Train 2480 2459
16-08-2021 10:56:21 10:40:59 Train 1678 1697
18-04-2021 10:56:11 10:58:49 Test 1144 1144

SE
19-11-2021 11:09:28 10:52:06 Test 1506 1502
19-11-2021 11:09:28 10:52:06 Train 2537 2552
19-11-2021 11:09:28 10:52:06 Validation 993 993
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3.4. Image Pre-Processing

The next step after downloading the images is to properly co-register them. The
Sentinel-2 images cover a much larger area, so we crop them following the bounding box of
the corresponding PlanetScope image. However, since the images come from two different
sensors, some misregistrations still exist. In order to correct them, we use the publicly
available python package AROSICS [32], a library created to perform automatic subpixel
co-registration of two satellite images. Before the corrections, the PlanetScope images are
resampled to 5 m resolution for the case of 2× and to 2.5 m resolution for the case of 4×
using bicubic interpolation [6].

Next, the PlanetScope images are divided in patches of 96× 96 and 192× 192 for 2×
and 4× super-resolution, respectively, while the images of Sentinel-2 are divided in patches
of 48× 48. We obtain 56,821 pairs of patches for 2× super-resolution and 56,823 for 4×
super-resolution.

Histogram Matching [33] is applied to the PlanetScope patches to match with the
corresponding Sentinel-2 images, while maintaining the high-frequency components. This
is a very common pre-processing step used in many computer vision tasks, and in particular
it has already been used in super-resolution tasks for remote sensing [19]. Additionally, in
Section 5 we show that this is a fundamental step to preserve the spectral information of the
original LR image. Finally, we match the PlanetScope patches to the bicubically upsampled
versions of Sentinel-2 and normalize them.

3.5. Network Architecture

We propose a network for the super-resolution of multispectral satellite images named
Spectral Attention Residual Network (SARNet). The model is based on SRResNet, a network
proposed in [14] which introduced the use of ResBlocks [15] for SISR for the first time.

Following the argumentation given in [16], we decide to study the effects of the Batch
Normalization layer [34]. As mentioned before, the authors argue that these layers reduce
the flexibility of the network and increase the GPU memory for training. On the contrary,
in [18] the authors find that for real super-resolution the Batch Normalization could be
beneficial due to the amount of noise in the images and the small size of the datasets. After
having carried out our own experiments, we conclude that this layer helps to stabilize our
training process.

One of the main differences with respect to the SRResNet network is that, instead
of the ResBlocks, we propose the use of RCAB [17], a residual block that incorporates a
channel attention mechanism. The latter makes the network focus on the most informative
components of the input and leads to notable performance improvements over previous
state-of-the-art methods. Furthermore, the attention block is used to extract the spectral
dependencies that standard residual networks are not capable of.

The architecture of a RCAB is shown in Figure 3. A Global Average Pooling is applied
as an information extractor which is then passed to a channel descriptor. At the end of the
block, there is a sigmoid activation followed by an element-wise multiplication to distribute
the importance among channels.

With the rise of deep learning, many studies focused on the improvements achieved
by increasing the depth of the models [1]. The authors of SRResNet proposed the use of 16
ResBlocks. In our experiments, a baseline model with eight RCABs is considered, but the
benefit of using 16 blocks is also tested. We experimentally show in Section 4 the effects
of working with a deeper network in terms of Peak Signal to Noise Ratio (PSNR) and
Structural Similarity (SSIM).
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Figure 3. Comparison between the residual blocks in SRResNet (left) and RCAB in our model (right).
As can be seen, the Batch Normalization layers have been removed. A channel attention block formed
by a Global Average Pooling, convolution layers, a ReLU layer and a sigmoid activation function are
also added.

After the residual blocks, we use an upsampling layer to increase the resolution of
the images as in SRResNet. Each layer increases the resolution by a factor of two, so two
upsampling layers are concatenated for the case of 4× super-resolution. Each upsampling
layer is originally formed by a convolutional layer to increase the number of filters, a Pixel
Shuffle transformation to obtain a bigger image reorganizing the low-resolution image
channels and a ReLU activation. Then, as proposed in [35], we introduce an Average
Pooling layer for blurring the output of the Pixel Shuffle operator, in order to prevent
checkerboard artifacts [36]. Our upsampling layer can be seen in Figure 4.

Figure 4. Upsampling layer architecture.

Finally, we introduce Short Skip Connections (SSC) inside each RCAB and a Long Skip
Connection (LSC) to help stabilize the network. This way, the low-frequency information
goes through the skip connections and the main network can focus on learning high-
frequency information.

Our model architecture is showed in Figure 5.
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Figure 5. Architecture of SARNet. The baseline model uses 8 RCABs followed by a convolutional
layer and a batch normalization layer to stabilize the training. The upsampling block is formed by
one upsampling layer in the case of 2× super-resolution and by two upsampling layer in the case of
4× super-resolution.

3.6. Loss Function

Regarding the loss function, our starting point is the L1 metric instead of the commonly
used L2. In [16], the authors prove that L1 loss provides better convergence than L2. Neverthe-
less, this loss function only relies on pixel-wise differences and it is not capable of capturing
other important aspects based on content or style of the images. To overcome this issue, the
authors of [10] propose a metric based on features extracted from the pre-trained VGG-16
network [12]. We briefly describe the VGG-16 network in order to explain our final choice.

• Pixel loss (L1): The pixel loss, also known as Mean Absolute Error (MAE), is defined
as the sum of the absolute differences between the pixel values of the true image Y
and predicted image Ŷ:

L1
(
Y, Ŷ

)
=

1
HWC

H

∑
h=1

W

∑
w=1

C

∑
c=1

∣∣Yh,w,c − Ŷh,w,c
∣∣. (1)

Here, H ×W is the size of the images and C the number of channels.
• Feature loss [10]: Instead of matching predicted image pixels with target image pixels,

the feature loss (also known as content loss) encourages them to have similar feature
representations. These features are usually extracted with a pre-trained VGG network.
Let φj(X) be the feature map of size Cj × Hj ×Wj of the jth convolutional layer of the
VGG network when processing the image X. This loss computes the mean absolute
error between the feature maps of each target image Y and predicted image Ŷ:

L f eature
(
Y, Ŷ

)
=

1
HjWjCj

‖φj(Y)− φj
(
Ŷ
)
‖2

2. (2)

• Style loss [10]: The style loss focuses on making the styles of the target and predicted
image as similar as possible, penalizing differences in colors, textures, etc. As for
feature loss, let φj(X) be the feature map of size Cj × Hj ×Wj of the jth convolutional
layer of the VGG network when processing the image X. The Gram Matrix is defined
as a Cj × Cj matrix whose elements are given by:

Gφ
j (X)c,c′ =

1
HjWjCj

Hj

∑
h=1

Wj

∑
w=1

φj(X)h,w,cφj(X)h,w,c′ . (3)

Then, the style loss is defined as:

Lstyle
(
Y, Ŷ

)
= ‖Gφ

j (Y)− Gφ
j (Ŷ)‖

2
F, (4)

where ‖‖F denotes the Frobenius norm.
• Total variation Regularization (LTV) [10,37]: The authors of [10] justified the use of

this regularizer in super-resolution tasks to favour spatial smoothness in the predicted
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image. However, this loss does not consider the spectral correlation between bands of
multispectral and hyperspectral images. To overcome this issue, Aggarwal et al. [37]
proposed a spatial–spectral total regularization. In order to reduce noise in the output
images, we follow the same idea.

Finally, the loss function we propose is a combination of the previous ones. The α, β
and γ values in Equation (5) represents the weights.

Ltotal
(
Y, Ŷ

)
= L1

(
Y, Ŷ

)
+ αL f eature

(
Y, Ŷ

)
+ βLstyle

(
Y, Ŷ

)
+ γLTV

(
Ŷ
)
. (5)

Therefore, as in the original SRResNet model, we study the benefit of using perceptual
losses in the case of images coming from two different sensors. We also implement these
losses with the VGG-16 network as feature extractor. The results are presented in Section 4.

3.7. Evaluation Metrics

To measure the differences between target and predicted images, two standard metrics
are considered.

• Peak Signal to Noise Ratio (PSNR): PSNR is one of the most used metrics for quality
evaluation of a reconstructed image. The term is used to define the relationship
between the maximum possible energy of a signal and the noise that affects its faithful
representation. In Equation (6), MAXY corresponds to the maximum pixel value of
the original image, and MSE is the Mean Squared Error between the original image Y
and the reconstructed image Ŷ:

PSNR
(
Y, Ŷ

)
= 20 · log10

(
MAXY

MSE
(
Y, Ŷ

)), (6)

MSE
(
Y, Ŷ

)
=

1
HWC

H

∑
h=1

W

∑
w=1

C

∑
c=1

(
Yh,w,c − Ŷh,w,c

)2. (7)

The error is the amount by which the values of the original image differ from the
degraded image. Generally, the higher the PSNR, the better the quality of the recon-
structed image.

• Structural Similarity (SSIM): SSIM is a metric that measures the similarity between two
images considering the luminance, contrast and structure. It is closer to the idea that
humans have of similarity. The range of the metric values is [−1,1], where 1 means
that the images are identical. If Y is the original image and Ŷ the reconstructed image,
the structural similarity between them is defined as follows:

SSIM
(
Y, Ŷ

)
=

(2µYµŶ + C1)(σY,Ŷ + C2)

(µ2
Yµ2

Ŷ
+ C1)(σ

2
Yσ2

Ŷ
+ C2)

, (8)

where µY and µŶ are the average of Y and Ŷ, σY,Ŷ is the covariance of Y and Ŷ, σ2
Y and σ2

Ŷ
are the variances of Y and Ŷ and C1 and C2 are constants introduced to avoid instability.
The latter are defined as C1 = (K1L)2 and C2 = (K2L)2, where L is the images maximum
pixel value and K1 and K2 are usually set to 0.01 and 0.03, respectively.

3.8. Training Details

We train our model with Adam optimizer [38] by setting β1 = 0.9 and β2 = 0.999. The
initial learning rate is 10−4 and is halved at every 25 epochs. We set the batch size as 16.
The α, β and γ values in Equation (5) are 10−8, 10−8 and 10−3, respectively. Finally, our
baseline model has a total of 848 K trainable parameters for the case of 2× super-resolution
and 994 K for 4× super-resolution.
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We implement the proposed model with TensorFlow and train it using NVIDIA A100.
Results are evaluated using the metrics PSNR and SSIM.

4. Results
4.1. Loss Functions

As previously mentioned, the choice of an appropriate loss function is a very important
task because it can affect the results. It has been widely demonstrated that using only the
L1 loss function leads to blurry results [10]. Indeed, this metric depends only on low-level
pixel information and is not able to retrieve high-frequency content, resulting in smooth
textures [10,37]. Therefore, we investigated the most suitable metric for the task.

After some research, we chose a perceptual loss which uses the feature and style losses
proposed in [10] and incorporates a total variational loss to encourage spatial and spectral
smoothness in the output image.

As can be seen in Table 3, the performances are similar. However, when visually
comparing the predictions of each model, the blurring effect appears when only the L1
metric is used.

Table 3. PSNR and SSIM metrics obtained for the test set with different loss functions.

Model Loss Function

2× 4×
PSNR SSIM PSNR SSIM

Mean Std Mean Std Mean Std Mean Std

SARNet8 L1 33.103 1.728 0.989 0.018 33.533 1.837 0.989 0.030
SARNet8 Ltotal 33.350 1.877 0.987 0.035 33.578 1.864 0.990 0.026

Figure 6 shows the visual differences between our model trained with L1 loss and
trained with the proposed perceptual loss.

(a) L1 (b) Ltotal

Figure 6. Comparison between our baseline proposal SARNet8 trained with (a) L1 metric and
(b) Ltotal metric. The results obtained with the second approach are sharper.

4.2. Depth of the Network

The objective of this section is to study the benefits of using a deeper network. We
analyze two different ways of increasing the network’s depth. Firstly, we add eight more
RCAB layers to the original model. Then, following the idea of residual groups used in [17],
we organize the blocks into two groups of eight blocks, instead of putting them one after
the other. There are two SSC in each residual group and one LSC to stabilize the training.
Figure 7 shows the architecture of the second approach.
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Figure 7. Residual structure of the model using two residual groups, each of them formed by 8
residual channel attention blocks. These residual groups are followed by a convolutional layer.

Table 4 shows the results obtained with SARNet8, our baseline proposal with 8 RCABs,
with SARNet16, our proposal with 16 RCABs and with SARNet16-RG, our proposal with
residual groups.

Table 4. PSNR and SSIM metrics obtained for the test set with different number of RCABs.

Model

2× 4×
PSNR SSIM PSNR SSIM

Mean Std Mean Std Mean Std Mean Std

SARNet8 33.350 1.877 0.987 0.035 33.578 1.864 0.990 0.026
SARNet16 33.493 1.931 0.987 0.034 33.718 1.998 0.991 0.022
SARNet16-RG 33.560 1.910 0.987 0.043 33.740 1.947 0.990 0.027

We conclude that deeper models perform better, especially in terms of PSNR. Addi-
tionally, the results show that the residual group strategy helps the model learning and
offers better metrics.

4.3. Comparison with Existing Models

In order to test the performance of our model, we compare it with different state-of-
the-art networks, such as the well known SRCNN [8], EDSR [16] and SRResNet [14]. We
also implement a simple autoencoder for image super-resolution as proposed in [24] and
the commonly used bicubic interpolation. Table 5 shows the results of the experiments.

Table 5. PSNR and SSIM metrics obtained with different models for the test set.

Model

2× 4×
PSNR SSIM PSNR SSIM

Mean Std Mean Std Mean Std Mean Std

Bicubic 31.218 1.510 0.979 0.018 29.471 1.320 0.936 0.046
SRCNN 31.798 1.550 0.987 0.012 31.824 1.527 0.987 0.012
Autoencoder 32.497 1.620 0.990 0.010 32.415 1.587 0.990 0.010
EDSR 32.791 1.661 0.985 0.036 32.881 1.650 0.987 0.034
SRResNet 33.001 1.706 0.985 0.040 33.197 1.741 0.989 0.024
SARNet8 33.350 1.877 0.987 0.035 33.578 1.864 0.990 0.026
SARNet16 33.493 1.931 0.987 0.034 33.718 1.998 0.991 0.022
SARNet16-RG 33.560 1.910 0.987 0.043 33.740 1.947 0.990 0.027

The differences between the models in terms of SSIM are very small. This is something
we expected, since the original images are very similar. Nevertheless, there is a notorious
difference in the PSNR metric.
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Our three proposals overpass the other state-of-the-art models. Regardless, in order
to reduce computation times, we use the baseline SARNet8 model for the rest of the
experiments. Figure 8 shows the visual differences between the most used interpolation
methods and SARNet8. More examples are given in Appendix A.

(a) (b) (c) (d)

Figure 8. Visual comparison between images from the test set. (a) HR; (b) LR with nearest neighbour
interpolation; (c) LR with bicubic interpolation; and (d) SARNet8. The results obtained with SARNet8
are clearly sharper.

Finally, in order to gain a better sense of the models, we study their convergence.
Figure 9 shows the loss curves for each model during training. Once more, SARNet8
performs better that the state-of-the-art architectures.
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Figure 9. Network convergence comparison. SARNet8 provides the best results.

4.4. Spectral Validation

One of the main reasons to super-resolve Sentinel-2 images is to use them in applica-
tions where high-resolution images are needed. At the same time, the reflectance values
have to be preserved while super-resolving not to alter the information provided by the
image. In this section, we present the analysis to verify that the spectral content of the
original image is preserved.

Figure 10 compares the LR, HR and super-resolved histograms of an image from the
test set. As it can be seen, when we train our baseline model with all the pre-processing
steps mentioned in Section 3 and use it to super-resolve a whole image, the histograms
remain almost the same. This indicates that our model is able to maintain the reflectance
values in the super-resolution process. However, when training a model without applying
Histogram Matching to the PlanetScope images to match the reference Sentinel-2 images,
the reflectance values of the prediction are closer to those in the PlantScope image. This
shows the importance of a proper pre-processing to ensure that the original and target
images are as similar as possible.

Figure 10. Normalized histograms of the LR, HR, super-resolution applying histogram matching in
the pre-processing (SR_HM) and without applying Histogram Matching (SR_Non-HM) for the four
bands of an image from the north west of Navarre.
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5. Conclusions and Future Work

Super-resolution of multispectral satellite images is a complex task, since usually the im-
ages come from different sensors. In this context, the pre-processing step has lot of importance.
We have demonstrated that an appropriate co-registration can make a big difference in the
results. For example, it avoids pixel misalignments that affect loss functions, such as L1.

In this paper, we have presented a new model for the super-resolution of the RGBN
bands of the Sentinel-2 Multispectral Instrument from the original 10 m to either 5 m or 2.5 m.
Our model, named SARNet, has proven to be superior to the rest of state-of-the-art networks
used for SISR. By incorporating a spectral channel attention mechanism, SARNet focuses
on the spectral dependencies between bands, achieving improved results. We have also
shown that standard loss functions such as L1 fail to pay attention to the image’s perceptual
characteristics, while other perceptual losses are a far better option. We have studied the
benefits of using deeper models. Our results show that deeper models take advantage of skip
connections in the training process. Moreover, we have ensured that the spectral information
of the images is preserved after the upsampling process through Histogram Matching.

In addition, we have deal with the lack of data, one of the most common problems
in deep learning. Even if there were more data, we would still take images from two
different satellites. Then, the images should be as similar as possible, committing the
dataset size again. Transfer learning could be a possible solution: a model is pre-trained
only with images from the HR satellite, obtaining the corresponding LR images through
downsampling, and then is trained with PlanetScope-Sentinel pair of images.

Another alternative is performing data augmentation, one of the most used methods
when implementing a model with few data. However, the classical approach may not be
the best choice for this task, mainly because the properties of the multispectral satellite
images are very different from the standard RGB images used in most of the studies. The
authors of [39] advise about this issue and propose different approaches for using data
augmentation with satellite images.

This study focuses on Navarre, but other areas could be studied to create a more
generalized model. Finally, other architectures could be analyzed. For example, GANs
have proven to be a very powerful tool for the task of SISR [14,25].
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Abbreviations
The following abbreviations are used in this manuscript:

BOA Bottom of Atmosphere.
CNN Convolutional Neural Network.
ECMWF European Centre for Medium Range Weather Forecasts.
ESA European Space Agency.
EUMETSAT European Organization for the Exploitation of Meteorological Satellites.
GAN Generative Adversarial Network.
HM Histogram Matching.
HR High-resolution image.
LR Low-resolution image.
LSC Long Skip Connection.
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MAE Mean Absolute Error.
MSE Mean Square Error.
PSNR Peak Signal to Noise Ratio.
RCAB Residual Channel Attention Block.
RGB Red-Green-Blue.
SISR Single Image Super Resolution.
SSC Short Skip Connection.
SSIM Structural Similarity.
std Standard Deviation.
TOA Top of Atmosphere.

Appendix A. Visual Comparison of Super-Resolved Sentinel-2 Images

This appendix section is added with the objective of showing some results obtained
with the proposed models. It allows visual comparison of the predictions and complements
the figures shown in Section 4.3.

(a) (b) (c) (d)

Figure A1. Visual comparison (RGB) between images from the test set. (a) HR; (b) LR with nearest
neighbour interpolation; (c) LR with bicubic interpolation; (d) SARNet8. The results obtained with
SARNet8 are sharper than those obtained with the other models.
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(a) (b) (c) (d)

Figure A2. Visual comparison (NIR) between images from the test set. (a) HR; (b) LR with nearest
neighbour interpolation; (c) LR with bicubic interpolation; (d) SARNet8. The results obtained with
SARNet8 are sharper than those obtained with the other models.
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