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Abstract: Quadruped robots, an important class of unmanned aerial vehicles, have broad potential for
applications in education, service, industry, military, and other fields. Their independent positioning
plays a key role for completing assigned tasks in a complex environment. However, positioning based
on global navigation satellite systems (GNSS) may result in GNSS jamming and quadruped robots not
operating properly in environments sheltered by buildings. In this paper, a tightly coupled LiDAR
vision inertial odometer (LVIO) is proposed to address the positioning inaccuracy of quadruped
robots, which have poor mileage information obtained though legs and feet structures only. With this
optimization method, the point cloud data obtained by 3D LiDAR, the image feature information
obtained by binocular vision, and the IMU inertial data are combined to improve the precise indoor
and outdoor positioning of a quadruped robot. This method reduces the errors caused by the uniform
motion model in laser odometer as well as the image blur caused by rapid movements of the robot,
which can lead to error-matching in a dynamic scene; at the same time, it alleviates the impact of drift
on inertial measurements. Finally, the quadruped robot in the laboratory is used to build a physical
platform for verification. The experimental results show that the designed LVIO effectively realizes
the positioning of four groups of robots with high precision and strong robustness, both indoors or
outdoors, which verify the feasibility and effectiveness of the proposed method.

Keywords: positioning of quadruped robot; lidar visual inertial odometer; tightly coupled
nonlinear optimization

1. Introduction

Quadruped robots have broad potential for applications in education, service, industry,
military, and other fields, due to their advantages, such as good flexibility and strong
environmental adaptability [1]. The independent positioning of quadruped robots is key
factor in completing assigned tasks in a complex environment and has become a research
hotspot [2]. At present, the mainstream positioning technologies include map matching [3],
mileage estimation [4], satellite and beacon [5], and so on. The positioning based on
map matching requires expensive high-precision sensors to establish prior maps [6]. In
studies, satellite-based positioning accuracy is not high, and the signal under the shelter of
buildings is weak [7]. Beacon-based positioning is also limited to the layout of positioning
base stations [8]. As compared to the aforementioned methods, location-positioning based
on mileage estimation has advantages in both cost and the scope of application.

The design of the current odometer has mostly been applied to wheeled robots, whose
mileage data are obtained by measuring the rotation of the wheel using a built-in encoder
to achieve accurate positioning information. However, the wheel odometer has been shown
as idle on smooth ground and cannot measure wheel “skidding”, which adversely affects
the positioning accuracy [9]. However, as opposed to wheeled robots, legged robots are
driven by motorized leg joints, which cannot provide accurate mileage data when relying
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solely on its own structure. Consequently, the mainstream non-wheel and non-contact
odometer solutions have been based on vision and laser measurements [10].

In recent years, with the continuous development of vision, inertial measurement,
and multi-sensor fusion technology, visual inertial odometers (VIOs) have employed
simultaneous localization and mapping (SLAM) [11]. Image feature information has
been added to the tightly coupled vector state method so that the visual and inertial
data can provide complementary advantages, and this has become a focus of mainstream
research [12]. With the fusion of visual and inertial data, tightly coupled VIO has been
categorized as either a filtering (such as MSCKF [13]) or an optimization method (such as
ORB-SLAM [14] and VINS-Mono [15]).

The filtering method adopts extended Kalman filter (EKF), which is simple in form and
widely used, but it has many limitations. Firstly, the state at moment k in the filter method is
only relevant to the moment k − 1. The nonlinear optimization method, on the other hand,
tends to use all historical data, so that more information is used. Secondly, the filtering
method has nonlinear errors, which has been a significant challenge [16]. In optimization,
although linearized approximation may also be performed, the Taylor expansion has to be
recalculated after each iteration when the state estimate has changed [17]. The optimization
method can be applied even when the state changes are significant. Finally, the EKF must
store the mean and variance of the state values, as well as maintain and update them. A
large number of road signs, for example, in visual SLAM can increase the storage volume
considerably. Therefore, EKF is not suitable for such scenarios. MSCKF [13] missed details
in its observations when working in nonlinearized models, which resulted in information
loss, such as inaccurate continuous-time correlations when performing pose estimation
and inaccurate estimations of the sensor bias when handling IMU measurements alone.
ORB-SLAM2 [14] and VINS-Mono [15] have high requirements for the initial values of
the variables, poor robustness and accuracy for low texture environments, and are overly
sensitive to dynamic movements (e.g., track lost when rotating). Under a constant speed,
the IMU does not have an objective degree of freedom, causing drift. Most importantly, it
is more dependent on a closed loop, and its performance degrades more after closing the
loop. The significant challenges are the acceleration of feature point extraction, processing
objects in a dynamic environment, and the optimization and loopback of the trajectory for
front-end data. These will be discussed in this paper.

A visual odometer is easily affected by illumination changes in terms of attitude
estimation. With the development of multi-line LiDAR, odometers using LiDAR equipment
have become a focus of research. Due to its robustness to illumination changes [18],
LiDAR has been widely used for unmanned navigation. A laser odometer includes direct
matching as well as feature-based (such as LOAM [19]), and multi-sensor fusion (such as
LIO-SAM [20]). LOAM employs novel feature extraction methods (e.g., edge points and
plane points). It uses timestamps for motion compensation and incorporates scan-to-scan
odometry and map-to-map comparisons. However, there is no back-end optimization, and
it cannot handle large-scale rotational transformations. The direct matching algorithms
have included the iterative closest point (ICP) [21] algorithm and the normal distribution
transform (NDT) [22] point cloud registration algorithm. The ICP algorithm is a classical
data registration algorithm that is based on a simple principle and has good accuracy.
However, ICP relies on the initial position of the registration point cloud and has a slow
calculation speed due to the iterative operation. If the initial value is incorrect, the algorithm
may rely on local optimum [23]. The NDT registration algorithm converts the reference
point cloud into a normal distribution of multidimensional variables for registration. In
the process, it does not use the feature calculation and matching of corresponding points,
which reduces the time and resource costs involved. Moreover, this algorithm has little
correlation with the initial value [24]. However, NDT does not work in degraded scenes
and cannot remove the noise generated by dynamic obstacles in the map. Furthermore, it
has no loopback detection, which can result in drift in large environments. The algorithm
proposed in this paper performed a depth alignment of feature points by integrating
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laser and visual odometry and compensated for drift by incorporating re-localization and
loopback detection.

As shown in Figure 1, the moving track of the quadruped robot is not on a plane. It
also needs to maintain its balance through relatively intense movements such as lateral
movement and autochthonous rotation [25]. These factors have led to drift in IMU data,
blurred camera images, matching errors, feature point loss, and pose calculation failures
due to excessive motion speed, as well as other problems [26].
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Figure 1. The moving track of quadruped robot.

To ensure high stability and strong robustness in odometer-based location data for
quadruped robots, nonlinear optimization is combined with point cloud data obtained
by 3D LiDAR, the image characteristics obtained from binocular vision and IMU inertial
data, and loopback detection is used for repositioning to eliminate any cumulative error.
In addition, this study proposed a tightly coupled LiDAR vision inertia odometer (LVIO)
algorithm that could effectively resolve the errors caused by uniform motion models in a
LiDAR odometer, such as mismatching, feature loss, pose calculation failures, and data
drift, among others. Precise positioning with strong robustness is achieved for quadruped
robots, both indoors and outdoors.

This paper is arranged as follows. Section 2 introduces the LVIO algorithm and
describes the algorithmic flow of the proposed method. In Section 3, the experimental
platform and environment are briefly introduced, followed by the calibration of relevant
sensors, and then the experiments were conducted and analyzed. Section 4 discusses the
experimental results. Finally, Section 5 summarizes the experiment and conclusions as well
as provides direction for future research.

2. Method

In this section, we introduce the tightly coupled LiDAR visual inertia odometer algo-
rithm. Specifically, the front-end data processing algorithm will be introduced, including
feature extraction and tracking image data acquired by binocular camera through optical
flow method, pre-integration of acceleration and angular velocity data from IMU, and
alignment processing of LiDAR point cloud data. The current state quantity, including
position (p), speed (v), and attitude (q), can be obtained. Then the tightly coupled back-end
nonlinear optimization is performed using a sliding window, and the optimization vari-
ables are derived by minimizing the edge, visual, and IMU residuals to obtain pvq for all
frames of the sliding window. Finally, loopback detection and repositioning are performed,
and the LiDAR odometry, visual odometry, and IMU pre-integration constraints, as well as
the loopback detection constraint are jointly optimized for the global poses.

2.1. Optical Flow Feature Tracking

The front-end of visual odometer (VO) adopts a Lucas–Kanade (LK) optical flow for
feature tracking [27]. Optical flow is the projection of a moving object, which describes the
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moving direction and speed of the corresponding pixels of the object over time, and can be
used to track the movement of pixels in an image.

1. On the premise of constant brightness, short distance movement, and spatial consis-
tency (similar motion of adjacent pixels), the brightness of a pixel point on the image
is constant at the moment, and the basic equation of optical flow can be obtained
as follows:

I(x(t), y(t), t) = c (1)

2. Let the increments of coordinates be dx, dy, and the increments of time be dt, we attain
the following:

I(x, y, t) = I
(

x + dx, y + dy, t + dt
)

(2)

3. With small motion, the position does not change as much with time; then the Taylor
series of the image at I(x, y, t) is as follows:

I(x, y, t) = I(x, y, t) + Ixdx + Iydy + Itdt
Ixu + Iyv + It = 0

(3)

where Ix and Iy represent the image gradient, It is the time gradient, u =dx/dt, and
v = dy/dt represents the horizontal and vertical velocity components of the optical flow at
the pixel point.

4. The least squares method is used to solve the basic optical flow equation for all the
pixels in the neighborhood, so that the movement of each pixel in the time interval ∆t
of the two frames can be calculated. The formula is as follows:

[
u
v

]
=


n
∑

i = 1
I2
ix

n
∑

i = 1
Iix Iiy

n
∑

i = 1
Iix Iiy

n
∑

i = 1
I2
iy


−1−

n
∑

i = 1
Iix It

−
n
∑

i = 1
Iiy It

 (4)

The effect of using LK optical flow algorithm to track the image feature points is
shown in Figure 2.
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Figure 2. Feature tracking by optical flow method for binocular camera (where the green points
represent the characteristic points of tracking, the red points represent the low tracking times, and
the blue points represent the high tracking times).

2.2. IMU Pre-Integration

IMU pre-integration adopts the median method, that is, the pose of two adjacent
moments is calculated by means of the average value of IMU measurements at two mo-
ments [28]. The camera-IMU model is shown in Figure 3.
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The traditional IMU recursive calculation method obtains the state quantity pvq at the
current moment by using the measured linear acceleration

_
a and angular velocity

_
ω (the

real values are a and ω) through integral operation [29].

1. Calculation formula of IMU measurement is as follows:

_
ω = ωb + bg + ng
_
a = qbw(aw + gw) + ba + na (5)

where w is the world coordinate system, superscript b is the IMU coordinate system, qbw
represents the rotation quaternion (from world to IMU coordinates), g represents the gravity
vector, and b and n denote bias and noise of IMU accelerometer and gyroscope, respectively.

2. The derivative of pvq with respect to time can be written as follows:

.
pbt

= vw
t.

vt = aw
t

.
qwbt

= qwbt ⊗
[

0
1
2 ωbt

] (6)

3. By integrating the measured value of IMU for the state quantity at the i moment, the
value at the j moment is as follows:

pw
bj
= pw

bi
+ vw

t ∆t +
s

t∈[i,j]

(
qwbt a

bt − gw
)

δt2

vw
j = vw

i +
∫

t∈[i,j]

(
qwbt a

bt − gw
)

δt

qwbj
=
∫

t∈[i,j] qwbt ⊗
[

0
1
2 ωbt

]
δt

(7)

4. In VIO based on nonlinear optimization, to avoid repeated integration when absolute
poses are optimized, IMU needs to be pre-integrated [30], that is, the integration
model is converted into a pre-integration model, and the formula is as follows:

qwbt = qwbi
⊗ qbibt (8)
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5. When qwbi
is separated from qwbt outside the integral operation, the integral term

of the attitude quaternion in the integral formula of pvq becomes the attitude qbibt
relative to the i moment. According to the acceleration and angular velocity obtained
by IMU sensor, ptvtqt can be obtained by continuous integration on the basis of initial
p0v0q0. Equation (7) can be written as follows:

pw
bj
= pw

bi
+ vw

t ∆t− 1
2 gw∆t2 + qwbt

s

t∈[i,j]

(
qbibt a

bt
)

δt2

vw
j = vw

i − gw∆t + qwbi

∫
t∈[i,j]

(
qbibt a

bt
)

δt

qwbj
= qwbi

∫
t∈[i,j]

qbibt ⊗
[

0
1
2 ωbt

]
δt

(9)

6. In the process of each optimization iteration, the attitude adjustment is adjusted
relative to the world coordinate system, that is, qwbj

is adjusted outside the integral
while qbibt is relatively unchanged, so as to avoid the problem of repeated calculation
of integral. In Equation (9):

αbibj
=

s
t∈[i,j]

(
qbibt a

bt
)

δt2

βbibj
=
∫

t∈[i,j]

(
qbibt a

bt
)

δt

qbibj
=
∫

t∈[i,j] qbibt ⊗
[

0
1
2 ωbt

]
δt

(10)

we find the pre-integral of IMU, corresponding to position (p), velocity (v), and attitude
(q) respectively.

2.3. LiDAR Point Cloud Registration

Before registration, feature primitives were extracted from the LiDAR point cloud and
synchronized with camera frames and IMU timestamps to optimize all sensors at once [31].
The processing includes point cloud distortion removal, timestamp synchronization, filter-
ing, primitive extraction, and tracking. The motion distortion compensation and timestamp
synchronization of the laser frame point cloud are shown in Figure 4.
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The point cloud registration adopts ICP algorithm to transform the point convergence
into the point convergence with similar local geometric features. The traditional point-to-
point ICP algorithm [32] has the following disadvantages: noise or abnormal data may
lead to algorithm convergence or error. The selected initial iteration value will have an
important influence on the final registration result, and if the initial iteration value is not
properly selected, the algorithm may be limited to the local optimum. Point-to-plane ICP
algorithm [33], as shown in Figure 5, uses the distance from the measuring point to the
plane as the objective function. It converges faster than point-to-point and approximates
nonlinear problems through linear optimization.
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Figure 5. Point-to-plane ICP algorithm.

As shown in the figure, two points converged (source surface and destination surface),
source point si and target point di, as well as target plane. ni is the normal vector of the
target plane, and li is the distance from the source point to the target plane. The objective
function is shown as follows:

Mopt = argminM∑ ((M ∗ si − di) ∗ ni)
2 (11)

where M is a 4 × 4 3D rigid body transformation matrix composed of rotation (R) and shift
(T), which is shown as follows:

M = T(tx, ty, tz)R(α, β, γ) (12)

Point cloud data were collected by 3D LiDAR. We calculate a point-to-plane ICP
algorithm. Red was the source point clustering, and green was the target point clustering.
Algorithm results are shown in Figure 6.
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After point cloud registration, a sparse depth map is created. By stacking several
frames together, a dense depth map can be obtained for the visual feature points [34].

2.4. Tightly Coupled Nonlinear Optimization

As opposed to the loosely coupled method, which assumes image processing as a black
box and integrates IMU data until visual odometry (VO) is calculated, the tightly coupled
method adds image feature information into the state vector. The filter-based tightly
coupled VIO state vector has a lower dimension as its calculation method is relatively
simple. The calculation consisted of two parts: one predicts and updates the status data,
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and the other measures the data from the other sensors. The positioning accuracy is
relatively low [35].

The tightly coupled back-end nonlinear optimization based on sliding windows can
achieve high accuracy. An objective function is used to unify visual constraints, IMU
constraints, and closed-loop constraints to implement bundle adjustment (BA), minimize
edge residuals, visual residuals, and IMU residuals, and calculate the Jacobian matrix
by differentiating the optimization variables. The bias, external parameters from IMU to
camera, and pvq of all frames in the sliding window were obtained.

minX

{∥∥rp − HpX
∥∥2

+ ∑
k∈B

∥∥∥rB
(

ẑbk
bk+1

,X
)∥∥∥2

p
bk
bk+1

+ ∑
(l,j)∈C

ρ
∥∥∥rC
(

ẑ
cj
l ,X

)∥∥∥2

p
cj
l

 (13)

The above formula consists of three objective items, namely, marginalization residual,
IMU measurement residual, and visual reprojection error. X is all states in the sliding
window. xk is the IMU state (pvq and acceleration bias ba, gyroscope bias bg) captured
in the image of frame k. xb

c is the external parameter of the camera, which is expressed
as follows:

X =
[

x0, x1, · · · , xn, xb
c , λ0, λ1, · · · , λm

]
xk =

[
pw

bk
, vw

bk
, qw

bk
, ba, bg

]
, k ∈ [0, n]

xb
c =

[
pb

c , qb
c

] (14)

where n is the number of key frames, and m is the total number of all observed landmark
points in the sliding window. rp in the optimization term is the marginal residual, and Hp
is the new information matrix after Schur complement, where p refers to prior, that is, the
measurement information is transformed into prior information.

1. Marginalization residual: Briefly, to remove the information of pose and feature point
constraints in the sliding window and retain the image information constraints for
optimization through Ceres Solver (nonlinear optimization library) [36], as shown in
Figure 7.
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3. Visual residual: The visual reprojection error of the feature point in the sliding win-
dow is the error between the observed value and the estimated value of the same 
landmark point in the normalized camera coordinate system, namely r  in the op-
timization term. The calculation formula is as follows: 
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points may be large, it is difficult to optimize, so inverse depth parameterization is per-
formed to align with the Gaussian system and reduce the parameter variables of actual 
optimization. Coordinate relations of feature points in the normalized camera coordinate 
system are as follows: 
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3. Visual residual: The visual reprojection error of the feature point in the sliding win-
dow is the error between the observed value and the estimated value of the same 
landmark point in the normalized camera coordinate system, namely r  in the op-
timization term. The calculation formula is as follows: 
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The feature quantity to be estimated is the three-dimensional space coordinate 
( , , )Tx y z  of the feature point, and the observed value ( , )Tu v  is the coordinate of the fea-
ture point under the camera normalized plane. Since the observation depth of feature 
points may be large, it is difficult to optimize, so inverse depth parameterization is per-
formed to align with the Gaussian system and reduce the parameter variables of actual 
optimization. Coordinate relations of feature points in the normalized camera coordinate 
system are as follows: 
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represents the old key frame,
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3. Visual residual: The visual reprojection error of the feature point in the sliding win-
dow is the error between the observed value and the estimated value of the same 
landmark point in the normalized camera coordinate system, namely r  in the op-
timization term. The calculation formula is as follows: 
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The feature quantity to be estimated is the three-dimensional space coordinate 
( , , )Tx y z  of the feature point, and the observed value ( , )Tu v  is the coordinate of the fea-
ture point under the camera normalized plane. Since the observation depth of feature 
points may be large, it is difficult to optimize, so inverse depth parameterization is per-
formed to align with the Gaussian system and reduce the parameter variables of actual 
optimization. Coordinate relations of feature points in the normalized camera coordinate 
system are as follows: 
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represents the latest frame,
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3. Visual residual: The visual reprojection error of the feature point in the sliding win-
dow is the error between the observed value and the estimated value of the same 
landmark point in the normalized camera coordinate system, namely r  in the op-
timization term. The calculation formula is as follows: 
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The feature quantity to be estimated is the three-dimensional space coordinate 
( , , )Tx y z  of the feature point, and the observed value ( , )Tu v  is the coordinate of the fea-
ture point under the camera normalized plane. Since the observation depth of feature 
points may be large, it is difficult to optimize, so inverse depth parameterization is per-
formed to align with the Gaussian system and reduce the parameter variables of actual 
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3. Visual residual: The visual reprojection error of the feature point in the sliding win-
dow is the error between the observed value and the estimated value of the same 
landmark point in the normalized camera coordinate system, namely r  in the op-
timization term. The calculation formula is as follows: 
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The feature quantity to be estimated is the three-dimensional space coordinate 
( , , )Tx y z  of the feature point, and the observed value ( , )Tu v  is the coordinate of the fea-
ture point under the camera normalized plane. Since the observation depth of feature 
points may be large, it is difficult to optimize, so inverse depth parameterization is per-
formed to align with the Gaussian system and reduce the parameter variables of actual 
optimization. Coordinate relations of feature points in the normalized camera coordinate 
system are as follows: 

1( , , ) ( , ,1)T Tx y z u v
λ

=  (17) 

represents visual feature,
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3. Visual residual: The visual reprojection error of the feature point in the sliding win-
dow is the error between the observed value and the estimated value of the same 
landmark point in the normalized camera coordinate system, namely r  in the op-
timization term. The calculation formula is as follows: 
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The feature quantity to be estimated is the three-dimensional space coordinate 
( , , )Tx y z  of the feature point, and the observed value ( , )Tu v  is the coordinate of the fea-
ture point under the camera normalized plane. Since the observation depth of feature 
points may be large, it is difficult to optimize, so inverse depth parameterization is per-
formed to align with the Gaussian system and reduce the parameter variables of actual 
optimization. Coordinate relations of feature points in the normalized camera coordinate 
system are as follows: 
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(15) 

3. Visual residual: The visual reprojection error of the feature point in the sliding win-
dow is the error between the observed value and the estimated value of the same 
landmark point in the normalized camera coordinate system, namely r  in the op-
timization term. The calculation formula is as follows: 

,
Tx yu v

z z
r  = − − 

 


 (16) 

The feature quantity to be estimated is the three-dimensional space coordinate 
( , , )Tx y z  of the feature point, and the observed value ( , )Tu v  is the coordinate of the fea-
ture point under the camera normalized plane. Since the observation depth of feature 
points may be large, it is difficult to optimize, so inverse depth parameterization is per-
formed to align with the Gaussian system and reduce the parameter variables of actual 
optimization. Coordinate relations of feature points in the normalized camera coordinate 
system are as follows: 

1( , , ) ( , ,1)T Tx y z u v
λ

=  (17) 

represents estimated state.

Marginalization ensures the sparsity of the system and the continuity of pre-integration,
ensures enough parallax between key frames, and can triangulate enough feature points.

2. IMU measurement residual: It is generated by IMU data between adjacent frames,
including state propagation prediction and residuals of IMU pre-integration, namely
rB in the optimization term. Optimization variables are IMU state (pvq and bias). The
calculation of rB is shown as follows:
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(15)

3. Visual residual: The visual reprojection error of the feature point in the sliding window
is the error between the observed value and the estimated value of the same landmark
point in the normalized camera coordinate system, namely rC in the optimization
term. The calculation formula is as follows:

rC =
( x

z
− u,

y
z
− v
)T

(16)

The feature quantity to be estimated is the three-dimensional space coordinate (x, y, z)T

of the feature point, and the observed value (u, v)T is the coordinate of the feature point
under the camera normalized plane. Since the observation depth of feature points may be
large, it is difficult to optimize, so inverse depth parameterization is performed to align with
the Gaussian system and reduce the parameter variables of actual optimization. Coordinate
relations of feature points in the normalized camera coordinate system are as follows:

(x, y, z)T =
1
λ
(u, v, 1)T (17)

where λ = 1/z is called inverse depth.

4. Jacobian residual matrix: The value of the feature point in frame i projected to the
camera coordinate system in frame j is:

xcj

ycj

zcj

1

 = T−1
bc T−1

wbj
Twbi

Tbc


1
λ uci
1
λ vci

1
λ
1

 (18)

Its three-dimensional coordinate form is:

fcj =

xcj

ycj

zcj

 = R>bcR>wbj
Rwbi

Rbc
1
λ

uci

vci

1

+ R>bc

(
R>wbj

((
Rwbi

Pbc + Pwbi

)
− Pwb>j − Pwbj

)
− Pbc

)
(19)

To solve the Jacobian matrix is to differentiate the above state variables by visual
residuals. The derivative of visual residual to reprojected 3D point fcj is as follows:

∂rc

∂ fcj

=

 1
zcj

0 − xcj

z2
cj

0 1
zcj
− ycj

z2
cj

 (20)
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The derivative of each optimization variable of reprojected 3D point fcj is as follows:

J[0]3 × 7 =

[
∂ fcj
∂pw

bi
,

∂ fcj
∂qw

bi

]
J[1]3 × 7 =

[
∂ fcj
∂pw

bj
,

∂ fcj
∂qw

bj

]
J[2]3 × 7 =

[
∂ fcj

∂pb
c

, ∂ fcc
∂qb

c

]
J[3]3 × 1 =

∂ fcj
∂λl

(21)

2.5. Relocation

Even though marginalization and sliding windows reduce computational complexity,
the cumulative drift errors of the system are still inevitable where the errors are the global
position (XYZ coordinates) and yaw angle (rotation around the direction of gravity). The
purpose of introducing relocation is to move the local sliding window to align the current
pose with a past pose [37]. Specific steps include loopback detection and feature matching
between loopback candidate frames and tightly coupled relocation, as shown in Figure 8.

1. First, visual word bag position recognition method (DBoW2) [38] is used for loop
detection. During this period, only pose estimation is performed (blue part), and the
past state (green part) is always recorded. After time and space consistency test, the
visual word bag returns loopback detection candidate frames, and the red dotted line
in the figure represents loopback association.

2. If loopback is detected in the latest frame, the multi-constraint relocation is initiated,
the corresponding relationship is matched by BRIEF descriptors [39], and the outer
points are removed by two-step geometric elimination method (2D–2D, 3D–2D) [40].
When the inner point exceeds a certain threshold, the candidate frame is regarded
as the correct loopback detection and relocation is performed. Feature matching of
loopback candidate frames is shown in Figure 9.
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As shown in Figure 9, loopback is detected in frame 1334 and frame 1387, relocation is
started, and feature matching of loopback candidate frame is performed in frame 949 and
frame 27, respectively. The matching effect is good without feature matching failure. The
specific calculation method is as follows:
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The difference between the above formula and the previous tightly coupled nonlinear
optimization model lies in the addition of the loopback term, that is, the loopback frame
attitude obtained from the pose diagram.

3. Finally, key frames were added to the pose map, and the global 4-DOF (coordinate
XYZ and yaw angle) pose optimization of the past pose and closed loop image frames
are performed by minimizing the cost function:

minp,ψ

 ∑
(i,j)∈S

∥∥ri,j
∥∥2

+ ∑
(i,j)∈L

ρ
(∥∥ri,j

∥∥2
) (23)

where S is the set of all sequential edges (the relative transformation between two key
frames in the local slide window directly obtained from VIO), L is the set of all loopback
edges (the connection between the latest marginalized key frame i with loop connection
and the previous key frame j), and another Huber norm ρ(·) is added to the loopback
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edge. The impact of error loops can be further reduced. ri,j represents the minimal residual
between i and j:

ri,j

(
pw

i , ψi, pw
j , ψj

)
=

[
R
(
φ̂i, θ̂i, ψi

)−1
(

pw
j − pw

i

)
− pi

ij

ψj − ψi − ψ̂ij

]
(24)

where φ̂i and θ̂i are the estimation of roll angle and pitch angle obtained directly from
VIO, respectively.

2.6. Algorithm Flow

The flow of LiDAR vision inertial odometer (LVIO) algorithm based on tight coupling
optimization is shown in Figure 10. The program inputs are image data obtained by binoc-
ular camera, IMU data, and point cloud data obtained by LiDAR. The specific algorithm
flow is as follows:

1. The input image data is used for feature point tracking by optical flow method,
that is, the motion of the previous frame is used to estimate the initial position of
feature points in the current frame. The positive and negative matching of both eyes
was performed by LK optical flow method, and its error must be less than 0.5 pixel;
otherwise, it is regarded as outlier. Then, the fundamental matrix (F) is calculated by
using tracking points, and outliers are further removed using polar constraint [41]. If
feature points are insufficient, corner points are used to replace them, and the tracking
times of feature points are updated. Then the normalized camera coordinates of
feature points and the moving speed relative to the previous frame are calculated.
Finally, the feature point data of the current frame (including normalized camera
plane coordinates, pixel coordinates, and normalized camera plane moving speed)
are saved.

2. After IMU data is input, IMU median integration is performed to calculate the current
frame pose and update pvq. The specific steps are using the IMU data between the
previous frame and the current frame; if there is no initialization, the IMU acceleration
between this frame is averaged, and the gravity is aligned to obtain the initial IMU
attitude. Then the pose of the previous frame is applied it to IMU integral to obtain
the pose of the current frame.

3. The LiDAR odometer is obtained by extracting point cloud features and matching
them with visual features. The feature graph is optimized in real time by sliding window.

4. The estimation results of the laser odometer were used for initialization, and the
depth information of the visual features was optimized using the LiDAR measure-
ment results. The visual odometer was obtained by minimizing the visual residuals,
IMU measurement residuals and marginalization residuals, and the pose estimation
was performed.

5. Key frame check: The criteria for confirming key frames is that there are many
new feature points or the parallax of feature points in the first two frames is large
enough [42]. After the keyframe check, the visual word bag method is used for
loop detection.

6. Global pose joint optimization: The whole state estimation task of the system is
expressed as a maximum estimation posterior probability problem, and the global
pose joint optimization is performed by IMU pre-integral constraint, visual odometer
constraint, radar odometer constraint, and loopback detection constraint.
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3. Results
3.1. Experimental Platform and Environment

The experimental platform is a quadruped robot in our laboratory. The processor
is an embedded controller (Jetson Xavier NX), and the software environment is Ubuntu
operating system and Robot Operating System (ROS). The LiDAR used is Velodyne 16-line
three-dimensional LiDAR VLP-16. The camera used is Intel sense-depth camera (RealSense
D455). They are shown in Figure 11.
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Figure 11. Experimental platform, (a) VLP-16 LiDAR, (b) quadruped robot, and (c) RealSense
D455 camera.

Among them, the image of the RealSense D455 camera includes the global shutter and
the integrated IMU (BMI055). The experimental image and IMU data are processed by time
synchronization. The image acquisition frequency is 30 Hz, the resolution is 848 × 480, and
the IMU data acquisition frequency is 100 Hz.

The indoor and outdoor experimental environment is shown in Figure 12.
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3.2. The Sensor Calibration

To obtain the internal parameters, such as the distortion parameters of camera, the
noise density, and the random walk parameters of the IMU as well as the rotation and
translation matrix of binocular camera to IMU, Kalibr (visual inertial calibration toolbox) is
used to perform the joint calibration. The process is shown in Figure 13.
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As shown in the figure, the reprojection errors of both the left and right target are
within one pixel; therefore, the calibration effect is good.

The calibration of the external rotation parameters of the 3D LiDAR and binocular
camera is a key factor as the calibration results would directly affect the stability and posi-
tioning accuracy of LVIO. In this study, the LiDAR–camera joint calibration is performed
using the calibration toolbox Autoware. After calibration, we obtained parameters such as
“camera extrinsic mat”, “camera mat”, “distcoeff”, and reprojection error. The calibration
process is shown in Figure 15.
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3.3. The Indoor Experiment

In the indoor environment, the proposed LVIO method is conducted, which involved
marching the quadruped robot in the hall for one week. The total distance of the loop is
18 m. At the same time, LVI-SAM [43], which is the latest LiDAR vision inertial odometer
calculation method, is used in a comparative experiment. The trajectory is shown in
Figure 16.
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Figure 16. Odometer operating trajectory in indoor environment.

The blue line is the trajectory drawn by a wheeled odometer, the green is drawn by our
algorithm, and the red is drawn by LVI-SAM. The trajectory error referred to the absolute
error between the estimated trajectory and the output trajectory of the wheeled odometer,
which is shown in Table 1.



Remote Sens. 2022, 14, 2945 16 of 21

Table 1. The operating trajectory error of the proposed LVIO algorithm and comparison algorithm in
indoor environment.

Algorithm LVIO Algorithm Comparison Algorithm

Minimum error/m 0.030335 0.000000
Maximum error/m 1.168070 1.728709
Average error/m 0.290409 0.306697
Median error/m 0.219200 0.131016

Root mean square error/m 0.358962 0.523203
Standard error/m 0.210989 0.423884

The above results may have different operating effects in different situations, depend-
ing on the operating environment and motion model of the quadruped robot.

In this study, absolute positional error (APE) is used to measure the accuracy of the
trajectory. The track errors of the LVIO algorithm and LVI-SAM algorithm are shown in
Figure 17.
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Figure 17. The track error visualizations of the LVIO algorithm and LVI-SAM algorithm: (a) the
trajectory error of the LVIO algorithm and (b) the trajectory error of LVI-SAM algorithm.

The specific mean error, median error, root-mean-square error, standard error, and the
error of the trajectory in the x, y, and z directions, as well as the error of the trajectory in
pitch, roll, and yaw direction angles, are shown in Figure 18.

Positioning accuracy is an important criterion for the operational effectiveness of the
LVIO algorithm. To evaluate the measurement accuracy of the visual inertial odometry,
the mean error and root-mean-square error are selected to measure the trajectory error. As
shown in Table 1 and Figure 15, the average error between the estimated trajectory and the
actual trajectory of the method proposed is 0.290409 m, and the root-mean-square error is
0.358962 m. The average error of the trajectory of the LVI-SAM algorithm is 0.306697 m, and
the root-mean-square error is 0.523203 m. The proposed method has a higher localization
accuracy. The significant error in the figure is due to the lack of texture on the indoor white
wall, which resulted in the deviation of feature matching, as shown in Figure 19.
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1 
 

 
Figure 18. Specific error curve: (a) mean error, median error, RMSE error, and STD error of the
proposed method; (b) mean error, median error, RMSE error, and STD error of LVI-SAM algorithm;
(c) the error trajectory in the x, y, and z directions; and (d) the error trajectory in pitch, roll, and yaw
direction angle.
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Figure 19. The lack of texture in an interior white wall.

In the indoor environment, the light intensity is moderate, and the variation is weak,
so our algorithm operates as expected. Though there is some deviation in feature matching
caused by the lack of wall texture, the algorithm still shows good robustness and accuracy.

3.4. The Loop Detection Experiment

In an indoor environment, the quadruped robot travels several laps around a circular
path with a certain radius. The operation effect of the algorithm is shown in Figure 20.
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Figure 20. LVIO loop experiment running track in indoor environment: (a) before adding loopback
detection and (b) after adding loopback detection.

Before loopback detection was added, the trajectory of the quadruped robot deviated
from the established path due to the accumulated drift error of the system after several laps.
However, after loopback detection is added and the loopback candidate frame matching
is performed, the accumulated drift error can always be eliminated in time after the track
drift occurs, so as to realize relocation and form a closed loop.

3.5. The Outdoor Experiments

To verify the positioning effect of our algorithm when applied to the quadruped
robot, relevant experiments need to be performed in an environment with high outdoor
lighting intensity and unstable lighting conditions. In the outdoor test, the surrounding
environment of the building is used as the experimental object, and the quadruped robot
marches around it. Using ROS and Leaflet (open-source interactive map for mobile devices),
the trajectory output by our algorithm was displayed in an offline map through a series of
coordinate transformations. The total distance of the loop is 550 m. The effect is shown in
Figure 21.
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In the experiment, in addition to the high light intensity and unstable light conditions,
there is also the interference of the dynamic environment (e.g., pedestrians and vehicles
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passing, etc.). However, the performance of our visual inertial odometer algorithm shows
good accuracy and robustness.

4. Discussion

Since the trajectory of a quadruped robot is not in a plane, and the robot must maintain
its balance during rigorous motion, the robustness and stability of the visual inertial
odometer are required. The LiDAR vision inertial odometer calculation used in this
experiment has a good effect on the quadruped robot platform. There is no feature point
loss or pose calculation failure occurring under either a static indoor environment or a
dynamic outdoor environment. After adding loopback detection and relocation, the track
forms a closed loop, which illustrates the improved positioning effect. Although the
experiments show that the proposed method works well both indoors or outdoors, we
should clearly recognize that there are also some fluctuations in the trajectories of LVIO due
to the limitations of sensor accuracy and degraded environments (e.g., no texture, highlight
changes, etc.) and dynamic environments. As a result, how to overcome such undesirable
phenomenon by improving the accuracy of the sensor and increasing the constraints on the
degradation and dynamic environments can be a topic of our future work.

5. Conclusions

In this study, based on nonlinear optimization, point cloud data obtained by LiDAR,
image characteristics of binocular vision, and IMU inertial data are effectively integrated,
leading to the LVIO algorithm. A loopback detection and repositioning method is also used
to eliminate accumulated errors and improve the positioning accuracy and stability. Finally,
the average error of indoor positioning is 0.290409 m. In comparison, the positioning error
of LVI-SAM [43], which is the latest LiDAR vision inertial odometer calculation method, is
0.306697 m. The experimental results demonstrate the feasibility and effectiveness of the
proposed method. The next step is to study the cumulative drift error of IMU and further
improve the real-time performance as well as the large range of positioning accuracy in our
algorithm. We plan to use the state-of-the-art MEMS inertial sensors (e.g., Xsens) in future
research, and we will improve the feature extraction algorithm, either by adding quadtree
or fusing point-line features, to ensure the uniformity and robustness of feature extraction.
We will integrate the absolute positioning information of GPS and Beidou into the system
to compensate for the cumulative errors of relative positioning in large scenes.
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