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Abstract: This paper discusses opportunities to use remote sensing (RS) technologies in addressing 

the persistent global challenges related to the artisanal and small-scale gold mining (ASGM) sector. 

The paper uses a systematic literature review to identify, analyze, and synthesize various uses of 

RS on the detection and monitoring of ASGM activities across the globe. The study covers the use 

of spaceborne sensors and available opportunities for data access and processing and emphasizes 

the important role that freely-available data has played in understanding ASGM activities. It 

discusses applications and opportunities offered in assessing the geospatial and temporal 

characteristics of ASGM and its impacts on the surrounding environment. Furthermore, it examines 

different indicators for the detection of ASGM in the landscape. Finally, technological capabilities 

described in the study are illustrated with case studies in the Democratic Republic of Congo and in 

Colombia using cloud computing with the Open Data Cube. The case studies demonstrate the 

identification and quantification of impacts of ASGM activities on land degradation and water 

turbidity in remote areas and results are dissiminated using the MapX platform. This facilitates 

policy development, implementation, and evaluation in the ASGM context. 

Keywords: artisanal and small-scale gold mining; Landsat; Sentinels; Earth observations; sustaina-

ble land management; land degradation; land cover change 

 

1. Introduction 

In the last four decades, relevant discussions on artisanal and small-scale gold min-

ing (ASGM) have become prolific in the agendas of various international and regional 

development platforms in sub-Saharan Africa, Central and South America, and Southeast 

Asia [1]. Examples include the United Nations (UN) 1978 landmark conference held un-

der the theme: The Future of Small-Scale Mining, the Organisation of African Unity 1980 

Mombasa conference on Strategies for Small-Scale Mining and Mineral Industries, and a UN 

Interregional Seminar on Guidelines for Development of Small and Medium Scale Mining held 

in Harare, Zimbabwe, in 1993 [2]. Several guiding principles emanate out of these global 
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attempts towards monitoring ASGM subsector activities. Examples include the 2002 Ya-

oundé Vision on Artisanal and Small-scale Mining, the Africa Mining Vision of February 

2009, and the 2018 Mosi-oa-Tunya Declaration on Artisanal and Small-scale Mining, Quar-

rying, and Development [3–6]. All these guiding principles seek enhanced monitoring 

techniques for optimizing the critical benefits and mitigating the associated costs of the 

ASGM subsector on the environment. 

ASGM activities lead to the contamination of water bodies and soils, deforestation, 

and biodiversity loss [7,8]. As many as 19 million ASGM operators in the world use mer-

cury in ore processing, which makes the use of mercury in the subsector a global issue [9]. 

The entry into force of the Minamata Convention on Mercury in 2017 is a typical example 

of a renewed global effort to overcome the environmental challenges posed by the ASGM 

subsector. The UN Environment Programme (UNEP) estimates that ASGM operations 

alone release over 2000 tons of mercury per annum into the environment [10]. However, 

the informal nature of most ASGM operations makes it difficult to appraise its total im-

pacts on the economy, the people, and their environment. Besides, most monitoring initi-

atives on mitigating such impacts focus on land, water, vegetation, and society. However, 

unlike large-scale mining activities, it can be challenging to obtain reliable information 

about the location and spatial extent of ASGM activities as they are typically remote, dis-

persed, and often obscure [6,11]. To address this requires a holistic look at the form, shape, 

and nature of the variables affected by the ASGM activities in the landscape. This relies 

on a variety of direct and indirect information provided by a diverse array of tools and 

techniques. This paper, hereby, demonstrates that RS is one such promising approach for 

direct and indirect monitoring of the environmental impacts of the ASGM subsector [12].  

Examples of the use of RS on ASGM monitoring include the works of Barenblitt, et 

al. [13].  Their study in Ghana found that between 2014 and 2017, approximately 47,000 

ha (± 2218 ha) of vegetation were destroyed by ASGM activities at an average rate of ~2600 

ha yr−1. The World Database of Protected Areas also used RS tools to map about 700 ha of 

protected areas that have been disturbed by ASGM activities in Latin America and Africa 

[13]. Other examples include the works of Bruno, et al. [14], Isidro, et al. [15], Ibrahim, et 

al. [16], Lobo, et al. [17], de Lucia Lobo, et al. [18], Nyamekye, et al. [19], and Telmer and 

Stapper [20]. These studies have used both optical spaceborne RS data of high and me-

dium resolution to identify and follow the evolution of artisanal and small-scale mines 

across space and time. For instance, Forkuor, et al. [21] used annual time-series Sentinel-1 

and Sentinel-2 data to map and monitor ASGM activities along major rivers in south-

western Ghana. Such temporal analysis of spaceborne data provides decision-makers 

with an efficient monitoring system of ASGM operations.  

However, the applications of simple but efficient RS techniques for monitoring the 

spatial dimensions of ASGM activities in sub-Saharan Africa, Central and South America, 

Southeast Asia, and other developing regions are limited [22]. Although RS has contrib-

uted to prospecting for gold deposits in low-vegetated areas [23], its capability to contrib-

ute to the detection of the occurrences and monitoring the operations of small-scale gold 

mining has been under-explored, especially in highly vegetated areas. As proposed in the 

socio-economic ASGM research methodology of UNITAR [24], countries in which ASGM 

is practiced should be able to produce data on several aspects, including health and envi-

ronment, to have a clear understanding of the linked impacts of ASGM on their economy. 

Despite the fact that applicable RS techniques are considered context specific, it is widely 

acknowledged that the identification of ASGM activities through RS should be the starting 

point [25]. This helps in identifying ASGM hotspots, defining sensitive areas where na-

tional laws and policies are poorly enforced, and initiating local participation.  

Despite the broad availability of Earth observation data and the feasibility of RS tech-

niques, there has been limited overall progress and success on the applications of these 

technologies for characterizing and monitoring the ASGM subsector activities in develop-

ing countries. Thus, this paper seeks to encourage the adoption of RS in policy guidelines, 

which can provide consistent and effective data, upon which discussions on the 
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environmental protection, sustainability, and livelihood security of the ASGM subsector 

can be built in developing countries. To this end, the paper assesses the specific applica-

tions of RS in monitoring ASGM activities in developing countries and demonstrates the 

potential and opportunities in the adoption of RS for guiding and informing sustainable 

practices in ASGM. The paper further assesses the existing methods used and examines 

different indicators, including the presence of mercury, water pollution, and land degra-

dation, for the detection of ASGM in the landscape. It identifies the possible algorithms 

for effectively detecting the presence of ASGM, especially in remote areas, and provides 

guidance for monitoring the use of mercury as a special indicator of ASGM in an area. The 

paper tests and implements these algorithms through case studies in Africa and Latin 

America. Finally, the paper recommends the policy needs for adopting such technologies 

in developing countries. These countries generally have human capacity challenges with 

regards to the manipulation of relevant RS software, access to data, data security, and 

interpretation.  

2. Materials and Methods 

2.1. Literature Review 

This study presents the role of RS with respect to the detection, mapping, and moni-

toring of ASGM activities and their effects. The paper reviews literature including aca-

demic and scientific publications, reports emanating from numerous initiatives on ASGM, 

laboratory methods, and technology manuals. Thus, the review is organized as follows: 

(1) spaceborne sensors utilized for studying ASGM activities; (2) approaches of RS for the 

detection and mapping of ASGM impacts on land, vegetation, and water; (3) findings ob-

tained from these approaches; (4) techniques for the detection of mercury in ASGM set-

tings; and (5) an illustration of the use of spaceborne data in a cloud-computing environ-

ment to detect all of the above in ASGM operation areas.  

The literature review focuses on the last three decades. The approach taken for 

searching the relevant literature [26–28] consisted of a set of keywords used to query dif-

ferent repositories such as scientific libraries (e.g., Science Direct, Web of Knowledge, 

Google Scholar) and personal databases of the researchers and their research groups. The 

following list of keywords were used individually and combined with each other for each 

query: “Remote sensing for detecting small-scale mining”, “Satellite for monitoring illegal 

mining activities”, “Detection of informal mining activities”, “Impacts of artisanal and 

small-scale mining activities on water and forest”, “Mines detection in forest areas”, 

“Monitoring Artisanal and small mining along water bodies”, and “the use of RS in de-

tecting artisanal and small-scale mining”. This search produced a comprehensive list of 

articles. To refine the results, three additional criteria were used: articles should address 

ASGM activities and should include the use of RS as a key tool or supporting tool; the 

scope of articles considered were those written in either English, French or Spanish (The 

literature review conducted in French and Spanish was conducted following the same 

methodology used the beforementioned keywords translated accordingly. That is to say 

“Télédétection”, “Satellite”, “Détection”, “Imagerie”, “Mines”, “Minier”, “Minière”, “Or”, 

“Aurifère”, “Extractif”, “Extractive”, “Extraction”, “Artisanal”, “Artisanale”, “mercure”, 

“Minamata” et “Orpaillage” in French, and “MAPE”, “Minería de oro artesanal y de 

pequeña escala”, “EVOA”, “explotación de oro de aluvión”, “mina”, “minería “, “mina 

artisanale”, “minería artisanale”, “mina de oro”, “minería de oro”, “sensores remotos”, 

“imágenes satelitales”, “teledetección”, “mercurio”, and “Minamata” in Spanish); the first 

50 records were screened within online scientific libraries to identify the most relevant 

publications addressing applications of RS for the monitoring and assessment of ASGM 

activities. An additional 100 publications with main objectives focusing on the applica-

tions of RS and or GIS for the monitoring of formal or informal, small- or large-scale min-

ing activities were also consulted for relevance. The combined results of these various 

searches account for more than 150 references over the last three decades. This list was 
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further screened to select only those satisfying the study constraints. In addition, other 

publications were used to illustrate the concepts, arguments, or examples presented in 

this article, leading to a total of 67 references used for this work.  

2.2. Assessment of RS Methods Applied to ASGM Sector 

2.2.1. Overview 

ASGM activity has different forms of impacts on the environment including air and 

water pollution, land degradation, as well as land use and land cover changes. All of these 

impacts can be detected by RS tools and techniques [29,30]. RS tools and techniques are 

mostly applied to monitor three major variables in the ASGM context: 

 The evaluation of deforestation or land cover change caused by the mining processes 

(generally related to alluvial mines and open pit mines) [31]. 

 The evaluation of water pollution caused by the mining activity in proximity to rivers 

or on river channels by detecting water turbidity levels in stream channels. 

 Detecting and estimating mercury presence using spectral signatures and assay la-

boratory confirmations. 

2.2.2. Utilized Platforms and Sensors 

Optical RS data are obtained from sensor systems mounted on platforms, such as 

satellites, to detect solar radiation that is reflected from targets on the Earth’s surface. Data 

for optical image processing are commonly available at the top of the atmosphere (TOA) 

level or as surface reflectance after considering atmospheric influences. As the availability 

of surface reflectance data varies depending on location and date, the end user may need 

to carry out atmospheric correction. Depending on the methodology used for image anal-

ysis, certain indices have been designed for a specific processing level or perform better 

at certain processing levels [32,33].  

There are several sources of primary RS data. Image-based primary sources of data 

include multi-spectral satellites such as the United States Geological Survey (USGS) Land-

sat sensors, European Space Agency (ESA) Sentinel sensors, SPOT-2, CBERS-4, QuickBird, 

the Japanese Aeronautics Exploration Agency (JAXA), Digital Earth Africa, and the Global 

Earth Observation System of Systems (GEOSS). Individual scenes can be downloaded 

from various hubs, e.g., the Copernicus hub (https://scihub.copernicus.eu/, accessed on 10 

February 2022) for Sentinel-1 and Sentinel-2 and USGS’s Earth Explorer platform 

(https://earthexplorer.usgs.gov/, accessed on 10 February 2022) for Landsat data and Sen-

tinel-2 worldwide. Copernicus and/or USGS data are also available in hubs such as the 

Theia data and service center (https://catalogue.theia-land.fr/, accessed on 10 February 

2022), Terrascope (https://terrascope.be/, accessed on 10 February 2022), and INPE—Insti-

tuto Nacional de Pesquisas Espaciais (http://www.dgi.inpe.br/, accessed on 10 February 

2022). To facilitate access to the data, platforms such as AppEEARS 

(https://lpdaac.usgs.gov/tools/appeears/, accessed on 10 February 2022) allow easier ac-

cess to analysis ready data while R programming packages and python libraries facilitate 

the access to the API of various hub; e.g., getSpatialData (https://github.com/16EA-

GLE/getSpatialData, accessed on 10 February 2022), sentinelloader 

(https://github.com/flaviostutz/sentinelloader, accessed on 10 February 2022), and Senti-

nelsat (https://sentinelsat.readthedocs.io/en/master/install.html, accessed on 10 February 

2022). 

2.2.3. Approaches and Tools for Data Analysis 

Optical imagery can be analyzed using diverse approaches such as image classifica-

tion, image transformation using indices, and feature targeting approaches. Image classi-

fication models in RS applications sometimes use machine-learning (ML) algorithms, 

which are suitable for modeling complex class signatures, accept a variety of input pre-

dictor data, and do not necessarily require knowledge of the data distribution (i.e., are 
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non-parametric) [34]. ML algorithms can operate supervised and unsupervised learning 

with the former requiring labelled training data while the latter operate through cluster-

ing and association techniques [35]. For supervised learning the user must feed the model 

with interpreted (i.e., labelled) training data. The ML algorithms that are most frequently 

used in multispectral image-classification are the random forest (RF) classifier, support 

vector machines (SVMs) (supervised), decision trees (DT), and artificial neural networks 

(ANN) [31]. It is important to note that there is no stand alone, one-size-fits-all methodol-

ogy for image classification. The choice of techniques is contingent upon but not limited 

to: (1) the objective of the study, (2) image data accessibility for the area of interest and 

objectives, and (3) availability of and access to relevant image processing software. 

Where atmospheric conditions (e.g., cloud cover and seasonal burning) disturb the 

use of even high-resolution satellite imagery to observe ASGM areas, the use of radar may 

be able to overcome the challenges of optical satellite imagery. Radar can penetrate cloud-

cover to detect pit subsidence as well as land use and land cover changes. Nevertheless, 

high precipitations have been proven to affect the accuracy of satellite data [21]. Radar 

interferometry uses multiple radar images of the same area, which have been taken on 

different dates and times for change detection. Historical images show the host region and 

its existing conditions before the emergence of ASGM, while current scenes reveal the 

growth of ASGM and its related effects. In this regard, two general approaches can be 

used. These are: (1) InSAR, which typically uses succeeding radar images to increase the 

information in a scene or to develop a digital elevation model (DEM), and (2) repeat-pass 

interferometry, which also uses radar scenes of the same area but on different passes of 

the satellite.  

The main software and tools for the processing of spaceborne imagery and spectral 

geospatial data include ArcGIS, ERDAS IMAGINE, ENVI, ILWIS, IDRISI, Orfeo ToolBox 

(OTB), SNAP, Multispec, and QGIS. Among these, OTB, SNAP, Multispec, and QGIS are 

free software. Furthermore, open-source packages in R [36] and Python are available [16]. 

As datasets can be large, especially in the case of time-series analysis, cloud computing 

has become a critical component of RS data storage especially in the case of wide area and 

long-term monitoring of ASGM activities. Various solutions using Python, R, and Javas-

cript APIs are available and include Google Earth Engine, the Open Data Cube, OpenEO, 

and SentinelHub, all of which have their benefits and constraints [37]. 

2.2.4. RS for Deforestation and Landcover Change 

Pixel-based and object-based approaches have greatly contributed to studying 

ASGM activities and changes on land. The most common approach is pixel-based, alt-

hough this sometimes comes with a new form of challenge regarding misclassification in 

mapping mining-related landcover [24,38]. Approaches utilizing pixel-based classifica-

tion followed by post-classification improvements through the appropriate knowledge of 

the mining setting have been successful in overcoming these limitations and reducing 

omission and commission errors [16,39]. It is important to take note of periods within a 

given year where the differences between mining sites and bare soils are more evident 

and unambiguous. An example is the dry season [40]. Medium resolution multispectral 

imagery has also been used in combination with nighttime light and precipitation data to 

identify the emergence of expansions in built-up remote areas. This can serve as a proxy 

for dwellings of miners, indicating the presence of ASGM activities in a particular locality 

[41]. Combinations of both high resolution and medium resolution data have been used 

to also improve the detection and details of specific areas of interest [42,43].  

Recent studies on deep learning (DL) techniques (i.e., neural network algorithms in-

volving a higher number of hidden layers) suggest that the convolutional neural network 

(CNN) is a valid candidate for land cover classification purposes and can outperform 

those with omission and commission errors as low as 8% in the context of ASGM mapping 

[44]. However, the literature showing how CNN should be applied for land cover tasks 

related to ASGM is still limited [44].  
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On the other hand, object-based image classification comprises two procedures, 

namely, segmentation and classification, usually performed on high resolution images 

[45]. In image segmentation, image objects are delineated based on the homogeneity of 

pixels and spatial contingencies, continuous and contiguous objects [38], overcoming the 

limitations of pixel-based approaches. Yet, errors in the segmentation process could 

highly reduce the quality of the output [46]. A subset of these methods, used primarily in 

deforestation studies, can detect sub-pixel changes, which eventually reduces the prob-

lems caused by spectral mixture analysis [47–49].  

Classification models do not necessarily need the total spectral information. An ef-

fective band/feature selection process would result in enhanced performance of the model 

in terms of costs and accuracy of the results [45]. For instance, it has been shown in a case 

study in Ghana that the Sentinel-2 Band 5 (band center 705 nm) was the highest contribu-

tor to a land cover classification and, more importantly, it contributed most to delineating 

mining sites [19]. Classification models can also use multi-band indexes as input data such 

as the normalized difference vegetation index (NDVI) [13,19,31]. However, note that 

NDVI is influenced by many environmental factors such as topography, bare soil condi-

tions, atmospheric conditions, vegetation association, rainfall, and non-photosynthetic 

materials [50]. Other indexes such as the soil-adjusted vegetation index (SAVI), the mod-

ified soil-adjusted vegetation index (MSAVI) and the transformed soil-adjusted vegeta-

tion index (TSAVI) are used to feed the classification models with enhanced performance 

especially in low vegetation areas [31]. Finally, NDVI could also be used in post-classifi-

cation steps to reduce the uncertainty over land cover changes after the determination of 

a threshold that separates seasonal change influence from artificial influence on land cover 

change. The images produced using classification methods can eventually be used to de-

termine where land cover has changed over time and to calculate areas that have evolved 

into artisanal mining sites. This can be achieved by performing a change detection process 

over pairs of images and determining the evolution of land cover between two time 

points. 

The approach is slightly different in the alluvial wetland setting where deforestation 

is less of a concern than wetland and riparian area destruction and its impacts on water 

quality. As the multispectral signature of bare soil, especially river-bank sediment, and 

open mines are relatively similar, the detection of mining sites can be challenging [31]. 

Furthermore, such a setting is very challenging for cloud and shadow detection in satellite 

imagery, thus leading to potential errors in the mapping of the mining sites [16]. One ap-

proach applied in this context is morphological profiling, which is run on the output of 

the classification model to differentiate mining sites from bare soil. The success of the 

morphological profile can be attributed to its ability to isolate bright and dark structures 

in images, and by exploring a range of different spatial domains as well as brightness and 

darkness contrast [31]. This approach facilitates distinguishing non-vegetated areas that 

could have been identified quite simply with a classifier that is relatively insensitive to the 

illumination and albedo effects that are common in rugged terrains [31]. The spectral an-

gle mapper (SAM) is another approach that enables high quality detection of cloud and 

shadows in the context of ASGM analysis [18]. A third method involved is the classifica-

tion of landcover followed by a post-processing step to distinguish mining sites and min-

ing ponds due to the required condition of their simultaneous occurrences [39]. 

The feasibility of the intermittent small baseline subset (ISBAS) interferometric syn-

thetic aperture radar (InSAR) method together with Sentinel-1 imagery for monitoring 

ASGM activities has been explored by Ding, et al. [50]. The study found a high level of 

subsidence based on surface motion values, which is a clear indicator of mining activity. 

Other indicators include surface deformation, bare soils, and water pollution. Several sim-

ulation results show that the European Space Agency Copernicus Sentinel-1A/B constel-

lation is capable of mapping rapid ASGM activities in the landscape. For instance, 

Forkuor, et al. [21] used annual time-series Sentinel-1 data to map and monitor ASGM 

activities along major rivers in south-western Ghana. A change detection approach based 
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on three time-series features was used to compute a backscatter threshold value suitable 

for detecting mining-induced land cover changes. 

2.2.5. RS for Detecting Impact on Rivers 

The impacts on rivers can be either due to the direct dredging activities in the water 

channel or due to runoff from land excavations. Detection of dredging in rivers is chal-

lenging, yet can be achieved either through detecting a plume of sediments using medium 

resolution imagery [43] or through detecting the dredging vehicles using high resolution 

data [46]. Various bands and indexes have proven useful in detecting water turbidity and 

suspended sediment and can be used to identify the impacts of ASGM along rivers, espe-

cially, when considering long time series of satellite data [17,51]. Examples include the 

modified normalized difference water index (MNDWI), the Band 8A-VRE 4 and the Band 

3 (Green) in Sentinel-2-A data [19]. Another example is the combination of Landsat 8 

bands; (4,3,2) to distinguish deep water from shallow water, (5,6,4) to distinguish water 

from ground and, (6,5,2) to distinguish bare ground from ponds [43]. The effects of pre-

cipitation on water turbidity, and on the values of the index that is used to infer it, can be 

minimized by determining the threshold between naturally and human-induced turbidity 

[43]. In the case studies, the MNDWI values were collected at different times within the 

dry season, at specific locations along a river in proximity to a known ASGM site to iden-

tify the effects of ASGM activities. Collected values could be analyzed using unsupervised 

techniques or using manual approaches [43]. Features with similar spectral properties that 

are potentially misinterpreted by the classification model can be corrected in the post-

classification stage with different methods handling manual to automated operations [21].  

2.2.6. RS Supporting Mercury Presence Estimation 

RS data can be integrated with environmental data to better analyze the influence of 

the mining process on the biota/mercury content in the environment. For instance, the 

location of mining sites from existing datasets or from field work can be utilized to create 

reference data that train supervised classification models or to refine model results with 

the assumption that a non-existing mine in recent high-resolution images implies that 

there was no mine present in the same location even in the past [19,44,52–54]. Similarly, 

the turbidity of water may be used as a proxy for mercury content in water if the RS data 

are combined with in-situ water sample data that are taken on specific dates that corre-

spond with the available RS data [17,20]. In a case study in Colombia by UNODC [43], 

additional data were derived from the results of the RS approaches such as: (1) the direc-

tion of expansion of the mining sites through time, (2) the amount of people being affected 

by the polluted waters resulting from the mining activity, and (3) the coexistence of illegal 

cultivations and ASGM sites. This could be achieved by: (1) analyzing time-series data on 

mines size and location, and (2) integrating external GIS data such as the delimitation of 

watersheds, the gridded population data, and the location of illegal cultivation spots. The 

information obtained could be used to orient government policies and actions towards 

specific directions that deserve the highest priority. 

3. Case studies Using the Open Data Cube and MapX 

3.1. Overview 

Two case studies are considered to illustrate the opportunities provided by satellite 

data for the detection of ASGM and its impacts. They make use of the Data Cube on De-

mand (DCoD) for data access and processing, and MapX for data sharing. DCoD [55] is 

an Earth observations Data Cube (EODC) concept that facilitates the generation and use 

of an EODC instance virtually anywhere in the world. It requires the user to specify an 

area of interest, select the spaceborne sensors of which data is required, and choose a de-

sired temporal window. For the case studies, Sentinel-2 scenes from Google Cloud were 

indexed in the DCoD using Python and R scripts. The attained results were published 
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using MapX; an online open-source platform for mapping and visualizing geospatial data 

on natural resources [56]. MapX has been developed by UNEP and UNEP/GRID-Geneva 

(https://unepgrid.ch, accessed on 10 February 2022), and is anchored as a key component 

of the World Environment Situation Room, which is the UNEP data, information and 

knowledge platform.  

3.2. The Case of Land Cover/Land Use Monitoring 

This case study considers two study areas located in the province of South Kivu in 

eastern Democratic Republic of the Congo. The first focuses on the Bipasi and Kazibe 

mines located in the western part of the mining town of Kamituga, while the second co-

vers a wider area including Kamituga as well as the region to the south where several 

dozen mines are located [57].  

In this case study, land cover changes were monitored using the vegetation fractional 

cover (VFC) [58] that estimates the fractions of photosynthetic vegetation (PV), non-pho-

tosynthetic vegetation (NPV), and bare soil (BS) for each pixel. Although originally devel-

oped for Landsat 5/Landsat 7 products, Sentinel-2 products were used as their 10m reso-

lution is more suitable for monitoring artisanal mining activities than Landsat products 

(30m resolution). A first visual inspection has been conducted to assess the performance 

of the VFC classification. A first check was made using reference satellite images com-

bined with the location of the mines visited by International Peace Information Service 

(IPIS). IPIS has previously compiled various maps and dashboards on ASGM in the area 

[59]. This assessment showed a good correspondence between the model and the obser-

vations where it was realized that non-photosynthetic vegetation corresponds to the min-

ing area, and bare soil corresponds to the built-up areas consisting of towns and villages 

appeared. For each of the study areas, a layer with a dashboard 

(https://app.mapx.org?project=MX-IY9-QCF-ILZ-UVO-07Y&views=MX-BD2ZB-CPRZ6-

ISSWP,MX-QSNYV-VWM4T-1T4NT,MX-RQ6YP-SP29M-Z01X6&lat=-

3.899&lng=20.376&z=5.256&viewsListFlatMode=true&language=en, accessed on 2 June 

2022) was developed in MapX to visualize land cover changes in an interactive and com-

prehensive way (Figure 1). 

 

Figure 1. Screenshot of the MapX layer developed for the study area covering the Bipasi and Kazibe 

mines. 

Although the VFC algorithm was not developed specifically to monitor ASGM activ-

ities, it produced results that enable the quantification of the evolution of surfaces 
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exploited by the mines, the gain or loss of vegetation, and urban growth. Based on a first 

visual inspection of the results, the classification is robust when the study area is defined 

at site level. At this level, the land cover is more homogeneous, and the findings confirm 

the hypothesis that NPV is a suitable tool for analyzing mining areas. Calculating VFC at 

the larger scale in heterogeneous landscapes introduces misclassification of some fields 

and river sections that are rich in alluvium. This decreases confidence in the results.  

3.3. The Case of Water Turbidity 

Here, a case study was carried out in two study areas to monitor the impact that 

ASGM could have on river water quality. The first area was centered on the mine of 

Mambo Bado south of Nia-Nia, a small town located in the Orientale Province in the Dem-

ocratic Republic of the Congo, and the second covers the city of El Bagre, in the depart-

ment of Antioquia in Colombia [39]. In the analysis, total suspended matter (TSM) was 

investigated in the DCoD and used as a proxy to monitor water turbidity in rivers where 

artisanal mines are located upstream [60,61]. Sentinel-2 scenes were indexed in the DCoD 

for the two study areas. Before calculating the TSM, an algorithm was used to classify 

water. Then a filter was applied to keep only pixels with a water content greater than or 

equal to 50% thus retaining only rivers and water bodies for the calculation of TSM [62]. 

The quality of the results depends on the cloud cover, the width of the river, and the veg-

etation along the river (Figure 2). For the two study areas, some results have been dis-

carded as their quality was not sufficient to monitor suspended matter. Then, a visual 

inspection of the results showed that the mines in both areas could be contributing to a 

local increase in TSM. Such preliminary observations are encouraging enough to explore 

further case studies and conduct a comprehensive accuracy assessment.  
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Figure 2. Water classification results over the period 1 January 2021/31 October 2021 around the 

town of El Bagre showing variability in Sentinel-2 image quality. Results are classified as follows: 

blue = water; green = not water, and white = pixel removed by the clean mask for the analysis. 

A layer (https://app.mapx.org?project=MX-IY9-QCF-ILZ-UVO-07Y&views=MX-

BD2ZB-CPRZ6-ISSWP,MX-PN6KV-LIFUJ-BSO8R,MX-XTX2N-M6GRE-QZZB0&view-

sListFlatMode=true&language=en&, accessed on 12 May 2022) was developed in MapX 

for each study area to visualize suspended matter changes over time using a slider (Figure 

3). 
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Figure 3. Screenshot of the MapX layer developed for the study area covering the city of El Bagre 

overlaid on high resolution satellite imagery. 

4. Discussion 

4.1. Observations 

The use of satellite imagery for mapping changes attributed to ASGM activities and 

as an indication of the use of mercury by ASGM practitioners have been demonstrated in 

the series of case studies conducted as part of this study. According to the UN (95th Ple-

nary meeting, 3 December 1986), the general purpose of Earth observation and RS is to 

improve natural resource management, environmental protection, and land use. The pos-

itive results documented in the literature and the case studies presented in this article 

show that a variety of RS techniques can be used for ASGM monitoring depending on the 

objectives, on data availability, and on the geographical and morphological contexts. In 

particular, the technology can help determine spatial dynamics (everything mappable on 

the Earth’s surface) and biogeochemical parameters like mercury concentrations and tur-

bidity in biotic and abiotic matrixes. If field data collection is planned and performed in a 

coordinated manner, it becomes easier to connect the three parameter classes.  

Given the nature of ASGM, governments require extensive data resources and anal-

ysis to monitor, implement, and enforce laws and policies. Recently, the availability of 

satellite imagery has been increasing not only in the number of images, the frequency of 

available images per region, and image resolution, but also in terms of platforms that offer 

pre-processed, cloud-free data that is analysis-ready. These include Google Earth Engine 

(GEE) [63], Microsoft Planetary Computer, Food and Agriculture Organization, and SE-

PAL [64]. The increasing availability of platforms that offer ready-to-use RS data and 

server-side calculation power could facilitate the use of RS techniques for ASGM moni-

toring in application projects. They could also promote the development of replicable 

methodologies which would produce more harmonized information/indicators at differ-

ent geographical scales and promote the use of RS techniques for policy making.  

Techniques such as photography from unmanned aerial vehicles (e.g., drones) and 

sediment, vegetation, and water samples can be used additionally to train image classifi-

cation models. Statistical data resulting from these classifications can be used to assess the 

presence and levels of use of mercury for gold production in a locality. For instance, in 

one of the case studies presented in this article, fieldwork was conducted in Kamituga in 

eastern Democratic Republic of the Congo by the IPIS. This fieldwork included the collec-

tion of geologic and geomorphic data through measurement, observation, and sampling 

of ASGM sites. Sampled sites were then studied using satellite imagery to identify the 
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extent of environmental changes. The use of unmanned aerial system (UAS) imagery 

(such as those captured by drones) to map alluvial deposits in ASGM regions has also 

been explored in recent scientific studies [65]. However, these methods require significant 

expertise on the ground to handle the equipment before meaningful knowledge can be 

acquired. RS techniques allow a detailed mapping and monitoring of ASGM activities and 

the development of high-resolution geomorphic models for identifying resource deposits. 

A combination of these technologies can enhance the capacity for rapid assessment and 

mapping of environmental, social, and economic impacts of the ASGM activities. The di-

agram proposed below summarizes how RS techniques can be combined with in situ in-

puts to monitor ASGM (Figure 4). 

 

Figure 4. Proposed methodology for ASGM monitoring. 

Important end goals could be the focus of the analysis, such as protected areas, criti-

cal ecosystems, and vulnerable populations, as demonstrated in the case study in DR 

Congo. This can make it easier for governments to demarcate concessions for miners in 

the formalization processes of their activities. In the previous studies, few have considered 

the relevance of such algorithms for harnessing the opportunities of RS towards address-

ing the critical global challenge of ASGM.  

Study Limitations and Prospects  

As explained by Hintjens [2], mining issues are location-specific and cannot be gen-

eralized. This study had limited access to all developing countries specific issues with 

regard to ASGM. Therefore, this study dwells on general issues common to most 
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countries. However, applications of the RS techniques are adaptive and can address most 

local and context-specific monitoring issues. Meanwhile, more case studies should be con-

ducted across all countries hosting more than significant ASGM activities [3]. This would 

generate relevant data for the detection of nuanced biophysical and spectral differences, 

which would further help in data calibration and signature segmentation for the varied 

environments. With this data, the applications of RS would provide robust information to 

address the location-specific needs of every locality with its unique biophysical character-

istics. To achieve this requires dedicated funding from local government agencies and rel-

evant ministries. Thus, funding is required for the building of robust spectral libraries for 

regions with similar biophysical features. However, a foreseen challenge in this regard is 

data storage and protection. To address this would require investments in cloud compu-

ting storage facilities. Hence, one limitation identified in this study is the capacity of de-

veloping countries to store and manage large volumes of RS data at the same time. Cloud 

storage is an ideal solution but with the cost involved, different data management systems 

for the storage of RS data to address developing countries specific needs should be ex-

plored. Also, the study could not explore the capabilities of RS for linking the impacts of 

ASGM to socio-economic activities of local areas directly. More studies are required to 

demonstrate how RS can be used to quantify the direct socio-economic impacts of ASGM 

rather than using proximate analysis. 

4.2. Recommendations 

Governments are encouraged to adopt RS methods into their ASGM monitoring 

plans and policies, including national action plans for ASGM under the Minamata Con-

vention on Mercury [66]. The most appropriate techniques should be selected, however, 

based on contextual factors such as: (1) the objective of the study, (2) image data accessi-

bility for the area of interest, and (3) availability of and access to relevant image processing 

software. The integration of different RS techniques with field data in the monitoring pro-

cess is encouraged as it can increase the reliability of the results. Specifically, the integra-

tion of in-situ measurements, Indigenous knowledge, and socio-economic data helps to 

provide better quality data, improve understanding of causal relationships between dif-

ferent factors, and could also be used for training and validating the outputs of ML/DL 

algorithms.  

The broad availability of free satellite data and platforms offering ready-to-use data 

and processing capabilities should be seen as an opportunity for governments to adopt 

RS techniques in their ASGM monitoring and policy strategies [67]. Similarly, the same 

should encourage software developers to continue offering these services and to facilitate, 

where possible, their use through well-designed interfaces for end users. Since RS tech-

niques require technical competences, public sector staff such as the responsible personnel 

of mining regulatory agencies are encouraged to: (1) build their capacities and competence 

in the manipulation and operations of RS software, and (2) collaborate with the scientific 

community and local universities for such capacity-building endeavors and consultations. 

International organizations and funding agencies are encouraged to engage in discussions 

and dissemination of the opportunities of RS. Similarly, international organizations are 

encouraged to facilitate the use of RS on monitoring ASGM activities in remote areas. Ca-

pacity-building of local stakeholders (researchers, government officials, local communi-

ties’ representatives, artisanal miners) must be harmonized and enhanced to facilitate a 

participatory and partnership approach with local communities and Indigenous peoples 

in ASGM monitoring policies. 

An integrated use of high-resolution optical imagery, current and historical aerial 

photographs, SAR images, and DSMs could be helpful in situations where mines are not 

easily distinguishable from the surrounding areas. Image classification models of the RS 

data should ideally be fed with training data consisting of a large set of labelled data based 

on: (1) existing and historical geographical datasets of mine extents at a given time; (2) 

existing and historical water, air, soil, and vegetative cover data; (3) collaborative 
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mapping of artisanal mine sites on high resolution true-color images by local people; and 

(4) evidence from fieldwork such as soil, vegetative, and water samples, as well as notes, 

pictures, videos, and local knowledge. Post-classification imagery processing can improve 

the distinction of classes that are difficult to separate in certain environments such as bare 

soil and mines in dry land. 

Location association is a spatial analysis technique which can estimate the amounts 

of water or soil mercury contamination with respect to the distance from an identified 

ASGM site. This technique is based on the hypothesis that the existence of ASGM activities 

in a particular place may be an indicator of the presence of mercury in nearby waterbod-

ies, soils, food crops, and plants. If seasonality has a role in land cover changes in the area 

throughout the selected series of images, its role could be quantified with statistical meth-

ods using the RS data after the classification. In case of dry environments, a morphological 

analysis could be helpful in further separating bare soil from mining sites. This might be 

useful in the case of hard rock mines as they are likely to feature a depressed morphology 

compared to the surroundings, but it would not make a significant difference when look-

ing for alluvial mining sites which are generally located along rivers. 

Laboratory analysis of field samples can help us understand the physical and chem-

ical properties, including contamination with mercury. This can help to determine: (1) 

spectral reflectance and signatures in a given geological area; (2) the extents of surface, 

subsurface, and structural contamination in the environment; (3) estimates of the associ-

ated potential health and/or environmental impacts; and (4) decisions on mitigation, re-

mediation, and reclamation measures needed at ASGM sites. This process requires a basic 

knowledge of the geology of the area (rocks and soils) and an analysis of the mercury 

concentration, healthy vegetation, healthy soils, and clear water (indices such as NDVI, 

NDWI, MNDWI, and SAVI are mostly used to aid analysis and understanding).  

Using historical data, it is possible to identify areas which have been mined for a long 

time or that were previously mined and abandoned. Such places with a long history of 

ASGM operations can be mapped as potential hotspots due to the accumulation of mer-

cury in the soils and the presence of both underground and surface water reservoirs. This 

is an important mechanism for detecting hotspots and building mitigation and restoration 

algorithms. This requires linking RS data with field sampling as described in objectives 

two and three above. A reverse analysis of historical RS data baseline conditions of exist-

ing and previous sites would facilitate linking the spectral signatures of samples from 

trees and shrubs to satellite data as mercury contamination may produce a unique color-

ation in the spectra. 

There is a unique opportunity for regulatory agencies to directly collaborate with RS 

data providers for real-time monitoring of ASGM activities to facilitate the adoption of 

the proposed algorithms. This may be done, for example, by setting up sub-stations across 

ASGM zones to transmit high resolution satellite data to the main receiver station. These 

data should be processed on the spot for: (1) mercury hazard identification, (2) monitoring 

the emergence of new activities and/or expansions of existing activities and spillage be-

yond standard thresholds, and (3) real-time feedback mechanism to regulators, Indige-

nous peoples and local communities, and miners. To sustain the robustness of real-time 

monitoring algorithms, it is important to train local regulatory operations and supervisory 

teams in ASGM areas on the use of GPS and mechanized mobile phones for prompt re-

porting to sub-stations and onward transmission to the main station. Monitoring based 

on real-time RS data can also serve as early warning systems to support governments ad-

dressing the observed changes and preventing the harmful effects of mercury on health 

and the environment.  

5. Conclusions 

This work assesses the use of RS technologies for monitoring ASGM activities in de-

veloping countries. RS techniques are a valuable means to provide consistent information 

on ASGM activities and provide complementary quantitative data to field measurements 
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to support national priorities such as policy making and implementation, public health 

interventions, baseline setting, and monitoring. It also helps to have harmonized infor-

mation/indicators at different geographical scales. Following the algorithms introduced 

in this paper, policymakers can efficiently and effectively support monitoring activities 

and further policy developments. 

From a research perspective, efforts should be directed towards improving land 

use/land cover methodologies applied to ASGM. In particular, the use of ML/DL tech-

niques together with data fusion techniques (e.g., optical, radar, UAV, lidar, in-situ, 

crowded-sourced), time-series analysis and stack of analysis ready data organized in Data 

Cubes are relevant means to reliable and consistent land use/land cover information.  

Finally, international organizations, and donors and other relevant stakeholders are 

encouraged to build on and integrate these algorithms into projects and monitoring pro-

grams for policy development, implementation, and evaluation in the ASGM sector. This 

approach is recognized to be particularly useful, especially in remote areas where ASGM 

may be widespread but difficult to detect. Collaborative efforts with RS scientists through 

ASGM monitoring projects would facilitate development and refinement of the method-

ologies to provide relevant information to support policy making and implementation.  
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