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Abstract: Many effective and advanced methods have been developed to explore oceanic dynamics
using time series of raster-formatted datasets; however, they have generally been designed at a scale
suitable for data observation and used independently of each other, despite the potential advantages
of combining different modules into an integrated system at a scale suited for dynamic evolution.
From raster-formatted datasets to marine knowledge, we developed and integrated several mining
algorithms at a dynamic evolutionary scale and combined them into six modules: a module of
raster-formatted dataset pretreatment; a module of process-oriented object extraction; a module of
process-oriented representation and management (process-oriented graph database); a module of
process-oriented clustering; a module of process-oriented association rule mining; and a module
of process-oriented visualization. On the basis of such modules, we developed a process-oriented
spatiotemporal dynamic mining system named PoSDMS (Process-oriented Spatiotemporal Dynamics
Mining System). PoSDMS was designed to have the capacity to deal with at least six environments of
marine anomalies with 40 years of raster-formatted datasets, including their extraction, representation,
storage, clustering, association and visualization. The effectiveness of the integrated system was
evaluated in a case study of sea surface temperature datasets during the period from January 1982 to
December 2021 in global oceans. The main contribution of this study was the development of a
mining system at a scale suited for dynamic evolution, providing an analyzing platform or tool to
deal with time series of raster-formatted datasets to aid in obtaining marine knowledge.

Keywords: marine mining system; spatiotemporal dynamics; process-oriented; marine anomaly
variation; raster-formatted datasets

1. Introduction

The world is geographically dynamic [1,2], and this dynamism has drawn increasing
attention in recent years. This attention has focused on dynamic object extraction and
analysis, dynamic mining methods, mining frameworks and tools [3–6] and especially on
oceanic dynamics [3,7–10]. Series of images taken by advanced Earth-observing technolo-
gies over long periods of time, combined with historical climate records, constitute the main
source of continuous and consistent information about the marine environment [11,12]
and offer new opportunities for monitoring oceanic dynamics and understanding their
evolutionary patterns [10]. These evolutionary patterns generally have lifespans ranging
over generations through development, merging, splitting and dissipation [13,14], playing
significant roles in regional and global climate change [15,16].
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In recent decades, a large number of models and methods with time series of raster-
formatted datasets have been proposed to obtain geographical dynamics in the form of
objects, events or processes [17–21]. These have been proposed to analyze their dynamic
characteristics [22–24] and explore their clustering patterns, association patterns and evolu-
tionary patterns [8,25,26]. Differing from geographical dynamics, however, these methods
and models lacked effective and useful platforms or tools with which to obtain oceanic
dynamic knowledge directly from time series of raster-formatted datasets. Regarding this
hurdle, many object/event/process-oriented methods were proposed. Object-oriented
image analysis technologies were widely used to identify instantaneous geographical
change as a snapshot object [21,27]. As they were discrete, there were no evolutionary
relationships between successive snapshot objects. To overcome this deficiency, event-
oriented models were designed to handle the geographical dynamics, e.g., a rainstorm
event [17,28], a flood event [29], a 4-dust storm [18], a marine heatwave [20], etc. Generally,
a scale of geographical dynamic evolution is out of step with the scale of data observation;
some evolutionary relationships among geographical dynamics will be lost. To obtain true
evolutionary relationships, a process-oriented idea was proposed to obtain marine anoma-
lies [13,19,26]; to represent and analyze such dynamic changes, the graph-based model was
used for urban hot islands [30], rainstorms [17,31], land use and cover changes [12] and
oceanic eddies [3,9].

As an important component of dynamic mining, spatiotemporal clustering analysis
aims to find clusters of the same properties in both time and space, and recently gained
attention as a means to discover oceanic patterns [32–34]. Popular clustering algorithms,
such as K-Mean, DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
and SRNN (Shared Reciprocal Nearest Neighborhood), were expanded and widely used to
obtain oceanic clustering patterns [35–38]. To obtain oceanic dynamic information within
successive time snapshots, Liu et al. proposed a process-oriented clustering method of treat-
ing spatiotemporal dynamics as a trajectory [26], with the trajectory clustering representing
an evolutionary pattern. Regarding geographical association rule mining: the quantitative
Apriori algorithm is a classical algorithm for obtaining richer information [39]. Combining
this algorithm with geographical spatiotemporal characteristics, several algorithms were
expanded on the basis of the quantitative Apriori, e.g., a cluster-based association rule
(CBAR) [40] and a mutual-information-based quantitative association rule-mining algo-
rithm (MIQarma) [41]. Meanwhile, FP-Tree (a non-Apriori algorithm) and its expansions
were also developed for mining association patterns [42]. For oceanic dynamic associa-
tion patterns, Saulquin et al. designed an event-based mining algorithm to deal with SST
anomalies (SSTA) relative to El Niño–Southern Oscillation (ENSO) events [7].

In the field of spatiotemporal mining frameworks, Lee and Lee’s proposal included
a two-tier knowledge discovery model that integrated a foundation model and an exe-
cuting model [43]. Compieta et al. and Bertolotto et al. designed a three-layer mining
and visualizing architecture that included a data layer, an application layer and a visual-
ization layer to reveal spatial and temporal patterns of natural phenomena [44,45]. Yoo
and Bow designed different mining frameworks to deal with two-parameter constraints
and find spatially interesting colocation patterns [46]. Xue et al. discussed pixel- and
object-based spatiotemporal mining frameworks to deal with marine abnormal association
patterns [8]. To reveal the dynamic characteristics of geographic phenomena and discover
their association patterns, they proposed an event-based spatiotemporal association rule
mining framework with two strategies; a sequence and an episode [47]. To visualize ma-
rine dynamic environments, the three-dimensional temporal-spatial process visualization
component based on particle system was designed [48], also the interactive multi-scale,
multivariate visualization system with a unified visual data service and a component-based
visualization structure was developed [49].

On the basis of the aforementioned mining models, algorithms and frameworks, sev-
eral considerable mining systems and operational tools have been developed to transform
raster-formatted datasets into geographical knowledge. For example, Korting et al. pro-
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posed and designed a new toolbox, GeoDMA (Geographic Data Mining Analyst), which
integrated a series of modules, including segmentation, feature extraction, feature selection,
landscape and multi-temporal features, as well as data mining for pattern recognition
and multi-temporal analysis of remote sensing imagery [50]. GeoDMA used decision-
tree strategies adapted for spatial data mining and connected remotely sensed imagery
with other geographic data types using access to local or remote database. The Argo-
MIS designed a service module, a knowledge discovery module, an operational storge
module, a notificaion module, a graphical user interface and an environmental decision
module to support marine environmental monitoring [51]. Romani et al. developed the
RemoteAgri system to discover the Plateau–Valley–Mountain (P–V–M) association pat-
terns, used for monitoring sugar cane fields via time series of remote sensing images [52].
The main function of RemoteAgri consisted of time series of extraction and time series
of pattern exploration. Xue et al. developed the image-driven remote-sensing mining
system RSMapMining to explore marine knowledge from remote sensing images, which
integrated an image preprocessing module, a pattern mining module and a knowledge
visualization module [53].

Oceanic dynamics reveal not only when and where marine environmental parameters
change, but also how they evolve in space and time [3,19,25], and these dynamics can
help to better understand global climate change, e.g., via an evolution of SSTA in space to
define a new ENSO index for identifying ENSO types [54,55]. In spite of the considerable
achievements in mining frameworks, methods and tools [8,43,44,50], there is still the great
challenge of addressing when, where and how the evolution of oceanic dynamics occurs
with time series of raster-formatted datasets. Thus, this paper developed a mining system
at a scale of dynamic evolution by integrating existing popular techniques and methods.
The integrated system was called PoSDMS (Process-oriented Spatiotemporal Dynamics
Mining System). A scale of dynamic evolution refers to the lifespan of oceanic phenomena,
or an object, from production through development to dissipation. This is a time duration
and differs from a scale of data observation, which is generally a time snapshot. The main
aim of PoSDMS as a platform was for the end user to be able to explore oceanic dynamic
knowledge from raster-formatted datasets. The three main contributions of PoSDMS to
marine spatial information science were as follows:

• Using a scale of dynamic evolution, rather than a scale of data observation, as a unit
to integrate popular mining algorithms and models, PoSDMS ensured the integrity of
spatial structure, temporal evolution and thematic characteristics when dealing with
oceanic dynamics.

• PoSDMS developed an automatic/semi-automatic technical workflow of obtaining
oceanic dynamics knowledge from time series of raster-formatted datasets.

• Providing an analyzing platform capable of dealing with marine anomalies at a scale
of dynamic evolution, PoSDMS supported data-driven mechanisms in research of
marine environmental changes.

The remainder of this paper is organized as follows. Section 2 introduces basic
concepts about the marine spatiotemporal process, describes the process-oriented mining
architecture and discusses its key technologies. Section 3 outlines the design of the modules
and their logics, gives their technical workflows and integrates the modules in order to
develop PoSDMS. Section 4 considers a monthly sea surface temperature (SST) dataset as a
case study to evaluate the functions and performances of PoSDMS. Finally, discussions and
conclusions are presented in Section 5.

2. Process-Oriented Mining System Architecture and Key Technologies
2.1. Basic Concepts

PoSDMS was aimed at developing a semi-/auto-analyzing system for exploring
oceanic dynamics at an evolutionary scale with time series of raster-formatted datasets. As
the evolution scale is generally different from the data observation scale, before designing
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the PoSDMS, some concepts about oceanic dynamics and evolution needed to be addressed
from the perspective of system development.

Marine anomaly variation refers to the abnormal increase or decrease of marine
environmental parameters relative to the mean status of long time series, which cover a
specified spatial domain for a specified time range [8], e.g., monthly SSTA, seasonal sea
surface salinity anomalies, etc.

Marine evolution process refers to the lifespan of a marine anomaly variation, which
has a property of evolution from production through development to dissipation in space
and time [13].

Marine process object refers to an object abstracted from a marine evolution process,
which consists of marine snapshot objects and their evolutionary relationships among
successive time snapshots.

Marine snapshot object refers to an object of marine anomaly variation at a specified
time snapshot, generally a time of data observation, e.g., a snapshot object of SSTA at a
snapshot time of satellite passing territory.

Marine evolution relationship refers to one of four relationships between successive
time snapshots, i.e., a development, a merging, a splitting and a splitting–merging [14].

2.2. Spatiotemporal Dynamic Mining System Architecture with Raster-Formatted Datasets

Based on raster-formatted datasets, PoSDMS aimed to offer a platform for the discov-
ery of dynamic evolutions and association patterns of marine environmental parameters at
global and regional scales. Thus, PoSDMS was designed with four layers. From bottom
to top, these were: a data layer, a technology layer, a function layer and an application
layer, as shown in Figure 1. The data layer was responsible for data management from
raster-formatted datasets through the middle datasets, and to the vector-formatted object
datasets in a database, the data foundation of PoSDMS. The technology layer included
raster processing technologies, GIS (Geographic Information System) spatial and temporal
analysis technologies, process-oriented object extraction, representation, storage and data
mining technologies and graph-based database technologies. These technologies supported
the designs of the functions in the function layer, which included data pretreatment of
raster-formatted datasets, extraction, representation, storage and management of process
objects, clustering and association rule mining of process objects and visualization of pro-
cess objects. In the application layer, PoSDMS explored the dynamic evolution patterns of
marine environmental parameters, i.e., SST, sea surface salinity, sea surface precipitation
and their association patterns with typical signs of global climate change, e.g., ENSO, PDO
(Pacific decadal oscillation).
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2.3. Key Technologies and Their Implementations

PoSDMS aimed to explore oceanic dynamics with time series of raster-formatted
datasets. As oceanic dynamics require much more attention to be paid to evolutionary
relationships rather than to static patterns, during the development of PoSDMS, two key
technologies needed be addressed: first, how to represent and store marine snapshot
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objects and their evolutionary relationships, which determine the performance and effi-
ciency of oceanic dynamics management; second, to design a process-oriented mining
method to support the extraction, clustering, association rule mining and visualization of
oceanic dynamics.

To deal with the first technology, PoSDMS integrated a process-oriented graph model
to represent and store oceanic dynamics and their evolutionary relationships. The process-
oriented graph model defined four types of nodes, i.e., a process node, a sequence node, a
linked node and a state node, to represent and store marine objects, and two types of edges,
i.e., an inclusionary and an evolutionary relationship, to represent and store a relationship
between two objects [14]. During development, the Neo4j-based process-oriented graph
database was built. Using an index-free adjacency to describe the relationships between
objects [56], the process-oriented graph database performed one order of magnitude better
in querying the spatial evolution of marine anomaly variations than Oracle, the object-
relational database.

Regarding dynamic mining technology, the PoSDMS design involved a hierarchical
mining strategy based on the process semantics of the marine process–evolution sequence-
snapshot state [13]. The hierarchical mining strategy provided a foundation for the designs
of the module used to obtain marine process objects and their evolutions [19], the module
for integrating process-oriented similarity measuring functions and expanding cluster-
ing algorithms [26], and the module for constructing process-oriented mining transaction
tables and expanding association rule mining algorithms [10], and the module for visual-
izing oceanic dynamics and their evolutionary relationships. Taking spatial information,
thematic characteristics and their evolution in time into full consideration, the process-
oriented mining technology improved the investigative capacity of PoSDMS to deal with
oceanic dynamics.

3. Design and Implementation of PoSDMS
3.1. Modules and Their Logics

From raster-formatted datasets to marine knowledge, the principal capabilities of the
PoSDMS were as follows:

1. It offered a set of tools to deal with large amounts and types of raster-formatted
datasets with different spatial resolutions and different temporal resolutions. The data
formats included, but were not limited to, the common GeoTiff, NetCDF (network
Common Data Form), HDF4 (Hierarchical data format), HDF5 and HFA (Erdas
imagine img).

2. It built a workflow through which to obtain marine anomaly variations in the form of
process objects at global scale and efficiently managed them.

3. It explored dynamic evolution patterns and association patterns among marine en-
vironmental parameters, which included, but were not limited to, SST, sea surface
salinity, sea surface precipitation, sea level anomaly, sea surface chl_a concentration
and marine primary productivity.

4. It offered a flexible visualization component for the display of spatial and thematic
characteristics of oceanic dynamics at a scale from process and sequence to snapshot
in time, as well as their evolutionary relationships.

To achieve the aforementioned functions, PoSDMS developed six modules on the
basis of marine spatiotemporal process semantics and graph database technologies: raster-
formatted dataset pretreatment, process-oriented object extraction, data management,
i.e., process-oriented graph database, process-oriented object clustering, process-oriented
association rule mining and process-oriented visualization. These modules and their logics
are shown in Figure 2.



Remote Sens. 2022, 14, 2991 6 of 18Remote Sens. 2022, 14, 2991 6 of 19 
 

 

 
Figure 2. Modules and their logics. 

3.2. Module Development and Integration 
3.2.1. Raster-Formatted Dataset Pretreatment Module 

The objective of this module transformed different types of datasets with different 
spatial resolutions and different temporal resolutions into time series of raster-formatted 
datasets within a uniform spatial and temporal resolution. The marine raster-formatted 
dataset mainly came from remote sensing images and historical climate records, which 
were stored in many formatted types, e.g., NetCDF, HDF4, HDF5, GeoTiff, etc. Addition-
ally, the initial data were gathered at greatly different intervals, ranging from daily to 
annual; their spatial resolutions varied from meters to kilometers and even to global 
scales. To produce uniform datasets, PoSDMS developed a spatiotemporal transforming 
module by integrating a middle plug-in GDAL (Geospatial Data Abstraction Library) and 
defining a custom-defined data format based on HDF4 as a final file format. This module 
included four core algorithms, i.e., a spatiotemporal slicing algorithm, a spatiotemporal 
resampling algorithm, a spatiotemporal interpolating algorithm and a standard monthly 
averaged anomaly algorithm. Based on the GDAL plug-in, this module dealt with widely 
used raster formats including, but not limited to, NetCDF, HDF4, HDF5, GeoTiff, RST 
(Idrisi Raster format), HFA and GRASS Raster format. Figure 3 shows the workflow of the 
raster-formatted dataset pretreatment module, and Figure 4 gives an example showing a 
function and an interface of the spatial resampling algorithm. 

 
Figure 3. Workflow of raster-formatted dataset pretreatment module. 

Figure 2. Modules and their logics.

3.2. Module Development and Integration
3.2.1. Raster-Formatted Dataset Pretreatment Module

The objective of this module transformed different types of datasets with different
spatial resolutions and different temporal resolutions into time series of raster-formatted
datasets within a uniform spatial and temporal resolution. The marine raster-formatted
dataset mainly came from remote sensing images and historical climate records, which
were stored in many formatted types, e.g., NetCDF, HDF4, HDF5, GeoTiff, etc. Additionally,
the initial data were gathered at greatly different intervals, ranging from daily to annual;
their spatial resolutions varied from meters to kilometers and even to global scales. To
produce uniform datasets, PoSDMS developed a spatiotemporal transforming module by
integrating a middle plug-in GDAL (Geospatial Data Abstraction Library) and defining a
custom-defined data format based on HDF4 as a final file format. This module included
four core algorithms, i.e., a spatiotemporal slicing algorithm, a spatiotemporal resampling
algorithm, a spatiotemporal interpolating algorithm and a standard monthly averaged
anomaly algorithm. Based on the GDAL plug-in, this module dealt with widely used
raster formats including, but not limited to, NetCDF, HDF4, HDF5, GeoTiff, RST (Idrisi
Raster format), HFA and GRASS Raster format. Figure 3 shows the workflow of the raster-
formatted dataset pretreatment module, and Figure 4 gives an example showing a function
and an interface of the spatial resampling algorithm.
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3.2.2. Process-Oriented Extraction Module

From a time series of marine raster-formatted datasets within a uniform spatial and
temporal resolution, this module utilized an integrated process-oriented extraction method
to generate marine process objects and their evolutionary relationships. The idea of a
process-oriented mining method was proposed by Xue et al. [13,14] and used to obtain
rainstorm objects [31] and evolutionary objects of SSTA [19]. According to the marine
process semantics of “marine process-evolution sequence-snapshot state”, this module was
divided into four algorithms, step by step. The four algorithms consisted of an extraction
of snapshot objects from time series of raster-formatted datasets, a track of snapshot objects
at successive time snapshots in an evolutionary sequence object, a reconstruction of process
objects from sequence objects and an identification of evolutionary relationships from
process objects. Figure 5 shows the workflow of the process-oriented extraction module.
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3.2.3. Process-Oriented Graph Database

According to the process-oriented node-edge storage structure [14], PoSDMS built
the Neo4j-based graph database to store, manage and display marine process objects
and their evolutionary relationships. Based on the process-oriented graph database, we
developed an inputting and updating algorithm, an inquiring and searching algorithm,
and the process-oriented visualizing strategy to manage and display marine process objects
and their evolutions. Figure 6 shows their technical workflow.
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The inputting and updating algorithm input process objects into the graph database
with the node-edge structure, which included sub-algorithms for inputting process objects,
labeling node types (i.e., a process node, a sequence node or a snapshot node) and building
evolutionary relationships between nodes. The inquiring and searching algorithm designed
the interfaces based on spatial structure, temporal evolution, thematic characteristics and
their combinations to obtain user-interested process objects from the graph database. The
visualization module designed a strategy for displaying process objects, sequence objects
and snapshot objects using time series of spatial views, as well as a strategy for displaying
evolutionary relationships using a node-edge view.

3.2.4. Process-Oriented Clustering Module

To discover clustering patterns of oceanic dynamics from marine process objects, this
module expanded the clustering idea by defining new concepts about process neighbor-
hoods and process similarities. The process-oriented clustering method included process-
oriented similarity measurement functions and process similarity-based clustering algo-
rithms. All these functions and algorithms were based on marine process semantics [13].
Figure 7 shows the workflow of the process-oriented clustering module.
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During the implementation of process-oriented similarity measurement functions,
this module designed four types of similarity measurements according to marine process
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semantics, i.e., snapshot similarity, sequence similarity, process similarity and evolutionary
structure similarity. Meanwhile, each type of similarity measurement could consider spatial,
temporal and thematic characteristic or their different combinations. Thus, this module
developed 28 similarity measurement functions in total. Using these process similarity
indicators, the module expanded four process-oriented clustering algorithms based on K-
mean, DBSCAN [57], SRNN [37] and DcSTCA (Dual-constraint SpatioTemporal Clustering
Approach) [38].

3.2.5. Process-Oriented Association Rule Mining Module

This module was aimed at discovering the association rules among marine environ-
mental parameters or between signals of global climate changes, e.g., ENSO and PDO. In
the technical implementation of association rule mining, there were two key issues. One
was the need to construct a mining transaction table, and the other was to design a mining
algorithm. To achieve dynamic association patterns, this module fully considered marine
process semantics to redefine concepts of support, confidence and lift. It also designed a
process-oriented mining transaction table and process–sequence–state mining strategies.
Figure 8 shows the workflow of the process-oriented association rule mining module.
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During the construction of the mining transaction table, in order to discover dynamic
association patterns at different evolutionary phases (e.g., before, after, or within the
lifespan), this module designed an interactive rule mining strategy to store a process object,
a sequence object or a snapshot object as one record. This included spatial, temporal and
thematic information. Regarding the mining algorithm, this module redefined the concepts
of support, lift and confidence using the lifespan of an object, not a snapshot in time, and
expanded four process-oriented association rule mining algorithms based on the idea of
popular algorithms, i.e., Apriori [39], CBAR [40], FP-Tree [42] and MiQarma [41].

3.2.6. System Functions of PoSDMS

All the modules described in this paper were developed by Visual Studio 2018 and
the third-party plug-ins GDAL version 2.0.2, Neo4j version 4.1.3 and ArcGIS runtime
version 10.0. The tested hardware environment included an Intel core i7 CPU at 2.80 GHz,
a 500 GB hard disk and 4.0 GB of memory. PoSDMS integrated all the modules to design
six system functions for: graph database management and visualization, spatiotemporal
scale transformation, spatiotemporal anomaly detection, marine process object extraction,
marine process object clustering and marine process object association rule mining. The
logics between these functions and their corresponding modules are shown in Figure 9.
PoSDMS is a Windows-based standalone software which was developed by the authors and
registered by the National Copyright Administration of P.R. China (No. 2022SR0406836).
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4. Case Study of Dynamic Analysis of SSTA in Global Ocean

PoSDMS buildt a process-oriented graph database based on Neo4j, named PoGDB,
which stored 6 kinds of process objects of marine environmental parameters, i.e., SST, sea
surface salinity, sea surface precipitation, sea level anomaly, sea surface chl_a concentration
and marine primary productivity. PoSDMS was also capable of dealing with the six marine
environments from their dynamic representation and storage through extraction, analysis,
exploration and visualization. This paper took SST as a case study to evaluate the function
and performance of PoSDMS.

4.1. Raster-Formatted SST Dataset and Its Pretreatment

The SST remote sensing dataset covered the period from January 1982 to December
2021 with a spatial resolution of 1◦ and a temporal resolution of 1 month; it was obtained
from the NOAA Optimum Interpolation Sea Surface Temperature V2.0 provided by the
NOAA/OAR/ESRL Physical Sciences Division, Boulder, Colorado, USA, and is available
at http://www.esrl.noaa.gov/psd/ (accessed on 1 March 2022) [58]. The function Standard
temporal anomaly analysis, based on a standard monthly average anomaly algorithm,
denoted as the z-score [59], was used to remove seasonal variations of SST that were
mainly dominated by solar radiance. Thus, the monthly global SSTA dataset during the
period of January 1982 to December 2021 was generated within a uniform of spatial and
temporal resolution.

4.2. Process Objects of SSTA, Process-Oriented Graph Database and Visualization

Using the raster-formatted SSTA dataset aforementioned, the function SSTA process
object, in which the parameters were set similarly to PoAIES (Process-oriented Approach
to Identify Evolution of SSTA) [19], was carried out to generated 417 process objects,
1108 sequence objects and 3687 snapshot objects, as well as 2738 development relationships,
275 merging relationships, 309 splitting relationships and 28 splitting-merging relationships.
All the objects and relationships were stored into the PoGDB through the function Object
Input. Figure 10 shows the hierarchical view of process objects in PoGDB.

In Figure 10, there were six marine environmental parameters; each parameter was
divided into two categories according to whether the anomaly variation was higher or
lower than the mean value. Thus, there were 12 nodes of marine environmental parameters.
The node WSST (Warmer SST, in which the SSTA value was higher than the mean value)
consisted of 230 nodes of process objects of SSTA (partial shown in Figure 10). The process
object SSTA with POID = 782 (Process Object ID) included 13 sequence objects. The

http://www.esrl.noaa.gov/psd/
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sequence object with SOID = 782_10 included 8 snapshot objects. Among sequence objects
and snapshot objects, their evolutionary relationships were clearly shown.

Based on the PoGDB, PoSDMS designed two visualization interfaces, the Object
visualization and the Evolution visualization. Object visualization displayed dynamic
information of SSTA in a time series of snapshots, which focused more on changes of SSTA
in space than evolution in time, while Evolution visualization took a node-edge to display
the evolution of SSTA in time, with no consideration of the spatial structure of SSTA. Thus,
the combination of two visualization interfaces integrated their respective advantages to
displace the evolution of SSTA in space and time. Figures 11 and 12 display the dynamic
evolutions of process objects of SSTA with POID = 782 using the object visualization
interface and evolution visualization interface.
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4.3. Clustering Pattern of SSTA Evolutions

To more thoroughly explore and analyze evolution patterns of SSTA, a process object
of SSTA was generalized into a trajectory of SSTA in space and time. Thus, we developed
a process-oriented spatiotemporal trajectory clustering method named PoSCM (Process-
oriented Spatiotemporal Clustering Method). PoSCM calculated similarity measurements
according to combinations of spatial, temporal and thematic characteristics of process
objects of SSTA, and used a DBSCAN-based clustering algorithm to obtain evolution
patterns of SSTA. Figure 13 shows the interface of the process-oriented trajectory clustering
algorithm. Here, the clustering parameters were set the same as in Ref [26].
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Different combinations of similarity measurements based on spatial, temporal and
thematic characteristics will meet with different scientific problems. Figure 14 shows
clustering patterns in the Pacific Ocean while only considering thematic similarities of
process objects of SSTA. In Figure 14, the origin and destination of the trajectory are
the place of origin and dissipation of the process object of SSTA. The arrow indicates
an evolutionary direction of SSTA, and the evolutionary structure shows the place of
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origin, place of dissipation, evolutionary relationships (developing, merging, splitting
and splitting-merging relationships) and the places they occurred. To aid in finding more
meaningful marine knowledge, each clustering pattern will require further exploration.
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5. Conclusions

Advanced Earth observation technologies could provide marine environmental parame-
ters at large scales over long time periods, thus facilitating studies of their dynamic evolutions
in space and time. To deal with such dynamic evolution discovery in marine environmental
analyses, we developed a mining system at a scale of evolution, rather than of data observation,
called PoSDMS. This system aimed to allow automatic/semi-automatic marine environmental
analysis from raster-formatted datasets to provide new knowledge. This was achieved through
six modules: a module of raster-formatted dataset pretreatment, a module of process-oriented
extraction, a process-oriented graph database, a module of process-oriented visualization,
a module of process-oriented clustering and a module of process-oriented association rule
mining. These modules were developed on the basis of marine spatiotemporal process se-
mantics [13,19] and graph database techniques [56] for processing raster-formatted datasets,
extracting and storing oceanic dynamics, implementing mining processes and designing
visualization interfaces. The detailed are listed as follows:

Raster-formatted datasets pretreatment module. By integrating the GDAL plug-in,
the module dealt with large amounts of raster data formats, including, but not limited to,
NetCDF, HDF4, HDF5, GeoTiff, RST, HFA, ASCII DEM and GRASS Raster format. The
integrated algorithms solved the transformations with four spatial scales of 0.25◦, 0.5◦,
1.0◦ and 2.0◦ and three temporal scales of month, season and year, including geographical
spatiotemporal statistics, spatiotemporal interpolation and standard monthly, seasonal and
annual averaged anomalies [59].

Process-oriented graph database and Process-oriented oceanic dynamic management
module, extraction module and visualization module. These modules integrated marine spa-
tiotemporal process semantics [13], PoTGM (Process-oriented Two-tier graph Model) [14],
PoAIR (Process-oriented Approach for Identifying Rainstorm) [31] and PoAIES [19] to obtain,
represent, store and manage six types of anomalies of marine environmental parameters, i.e.,
SST, sea surface salinity, sea surface precipitation, sea level anomaly, sea surface chl_a concen-
tration and marine primary productivity. Furthermore, these modules have an expanding
capacity for handling other marine environmental parameters.

Process-oriented clustering module. This module designed interactive strategies for
calculating similarity measurements based on spatial, temporal and thematic characteristics
of process objects. The integrated algorithms included K-means, DBSCAN [57], SNN [37],
DcSTCA [38] and PoSCM [26].

Process-oriented association rule mining module. By redefining the concepts about
support, lift and confidence and constructing the mining transaction table at a scale of
an evolution but not a time snapshot, this module expanded quantitative Apriori [39],
CBAR [40], FP-Tree [42] and MiQarma [41].

Compared with independent popular techniques and algorithms, PoSDMS provided
a platform to overcome the challenges of exploring oceanic dynamic information from time
series of raster-formatted datasets. As all the key algorithms were developed at a scale
of oceanic evolution, the preliminary results from a case study of SST were encouraging,
and demonstrated that PoSDMS could be useful for obtaining oceanic dynamics thanks
to its powerful processing capacity. While only SSTA in global oceans was taken as a case
study to evaluate the functions and performance of PoSDMS, it would be equally capable
of dealing with the other five marine environmental parameters, i.e., sea surface salinity,
sea surface precipitation, sea level anomaly, sea surface chl_a concentration and marine
primary productivity. Additionally, PoSDMS is expandable and could be used to deal
with other marine environmental parameters, and it has been registered by the National
Copyright Administration of P.R. China (No. 2022SR0406836).

The proposed PoSDMS system proved to be a promising analytical tool for dealing with
oceanic dynamics using time series of raster-formatted datasets, but further development is
still needed. Future studies will aim to expand the interfaces to integrate the latest mining
methods and techniques, ensuring that PoSDMS keeps pace with the developments of data
mining technologies in big data era. All of the key algorithms were developed in a serial and
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Windows-based standalone version, which could limit the popularization and application
of PoSDMS. Thus, a second study will aim to encapsulate the modules into independent
components, design them in a parallel fashion and then migrate them onto cloud-based service
platforms. In addition, PoSDMS discovered large amount of oceanic evolution patterns of
marine environmental parameters at the sea surface; however, the dynamic information of
the deep sea is equally or perhaps more important than that of the surface. Therefore, PoS-
DMS must expand its process-oriented analyzing module from three dimensions (Longitude,
Latitude, Time) to four dimensions (Longitude, Latitude, Time, Depth).
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Abbreviations

CBAR Cluster-Based Association Rule
CPU Central Processing Unit
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DcSTCA Dual-constraint SpatioTemporal Clustering Approach
DEM Digital Elevation Model
ENSO El Niño–Southern Oscillation
ESRL Earth System Research Laboratories
GDAL Geospatial Data Abstraction Library
GeoDMA Geographic Data Mining Analyst
GIS Geographic Information System
GRASS Geographic Resources Analysis Support System
HDF Hierarchical Data Format
HFA Hierarchal File Format
MIQarma Mutual-Information-based Quantitative Association Rule-Mining Algorithm
NetCDF Network Common Data Form
NOAA National Oceanic and Atmospheric Administration
OAR Ocean Area Reconnaissance
PDO Pacific Decadal Oscillation
PoAIES Process-oriented Approach to Identify Evolution of SSTA
PoAIR Process-oriented Approach for Identifying Rainstorm
PoGDB Process-oriented Graph Database
PO Process object
POID Process Object ID
PoSCM Process-oriented Spatiotemporal Clustering Method
PoSDMS Process-oriented Spatiotemporal Dynamics Mining System
PoTGM Process-oriented Two-tier Graph Model
P-V-M Plateau-Valley-Mountain
RSMapMinig Image-driven Remote-Sensing Mining System
SOID Sequence Object ID
SRNN Shared Reciprocal Nearest Neighborhood
SST Sea Surface Temperature
SSTA Sea Surface Temperature Anomalies
ST SpatioTemporal
WSST Warmer Sea Surface Temperature
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