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Abstract: The traditional template matching strategy of optical and synthetic aperture radar (SAR)
is sensitive to the nonlinear transformation between two images. In some cases, the optical and
SAR image pairs do not conform to the affine transformation condition. To address this issue, this
study presents a novel template matching strategy which uses the One-Class Support Vector Machine
(SVM) to remove outliers. First, we propose a method to construct the similarity map dataset using
the SEN1-2 dataset for training the One-Class SVM. Second, a four-step strategy for optical and SAR
image registration is presented in this paper. In the first step, the optical image is divided into some
grids. In the second step, the strongest Harris response point is selected as the feature point in each
grid. In the third step, we use Gaussian pyramid features of oriented gradients (GPOG) descriptor
to calculate the similarity map in the search region. The trained One-Class SVM is used to remove
outliers through similarity maps in the fourth step. Furthermore, the number of improve matches
(NIM) and the rate of improve matches (RIM) are designed to measure the effect of image registration.
Finally, this paper designs two experiments to prove that the proposed strategy can correctly select
the matching points through similarity maps. The experimental results of the One-Class SVM in
dataset show that the One-Class SVM can select the correct points in different datasets. The image
registration results obtained on the second experiment show that the proposed strategy is robust to
the nonlinear transformation between optical and SAR images.

Keywords: image registration; nonlinear deformation; similarity map; One-Class SVM; synthetic
aperture radar (SAR)

1. Introduction

Optical and SAR image Registration aims to detect control points (CPs) between
Optical and SAR images [1]. It can provide important application values in planar block
adjustment [2,3], change detection [4], and high-precision geolocation [5]. However, the
serious speckle noise, non-linear radiation distortions (NRD), and the non-rigid deforma-
tion relationship between the optical and SAR images pair make automatic registration
between optical and SAR images challenging [6,7].

Points, lines, and regions are common properties used in image registration. According
to the primitive properties of optical and SAR image registration, the matching strategies
can be divided into three types: point-based, line-based, and segment-based strategies [8].

The optical and SAR point-based matching strategies are usually divided into four
steps: feature detection, feature points matching, outlier removal, transformation, and
resampling [9]. In this strategy, the feature points are assumed to be affine invariant [10].
Remote sensing image feature description methods are usually divided into two categories:
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intensity-based matching methods and feature-based matching methods [11]. Intensity-
based matching methods including mutual information methods [12], normalized cross-
correlation methods [13] link CPs between images using similarity measures. In contrast
to intensity-based methods, feature-based matching methods, including scale-invariant
feature transform (SIFT) [14] and histogram of oriented gradient (HOG) [15], are very
popular methods to provide the feature descriptor using some invariant features. All of
the above methods are sensitive to speckle noise and NRD. To improve the performance in
optical and SAR image registration tasks, phase congruency (PC) [16] is introduced into
some models such as local histogram of orientated phase congruency (LHOPC) [17] and
histogram of oriented phase congruency (HOPC) [18]. When the optical and SAR image
pairs only have an offset of a few pixels, HOPC and LHOPC have good performances.

There are a lot of outliers in matching point pairs. These outliers in the point set should
be eliminated before using these points to estimate the geometrical transformation [19].
These outlier filtering methods can be roughly divided into two categories: parametric-
based methods and nonparametric-based methods [20]. Parametric-based methods always
use a hypothesize and verify model to fit an appropriate model. Random sample consensus
(RANSAC) [21] is a famous parametric-based method, which randomly selects a sample
from the consensus set to calculate the transformation parameters. The performance of
RANSAC is robust when correct points are the majority. The performance of RANSAC
deteriorates when outliers are the majority. In addition, if a lot of outliers can randomly fit a
correspondence method well, the RANSAC method will become very time-consuming and
obtain the wrong transformation model. The Fast sample consensus (FSC) [22] improves
the sampling technique with RANSAC to make the algorithm faster. Restricted spatial order
constraints (RSOC) [23] is proposed to remove outliers for registering aerial images with
monotonous backgrounds. Non-parametric-based methods formulate the correspondences
in the matching-points dataset by a mixture model by introducing explicit and hidden
variables such as vector field consensus (VFC) [24], identifying correspondence function
(ICF) [25], coherent spatial matching (CSM) [26], and coherence point drift (CPD) [27].
A vector field is used in VFC to estimate the consistency of correct correspondences after
non-parametric geometric transformations. Diagnostic techniques and support vector
machine are used in ICF to learn a correct correspondence function. CSM uses the thin-plate
spline function to parameterize the coherent spatial mapping. CPD chooses the Gaussian
mixture model to formulate the point registration problem. However, the computational
complexity of these above outlier filters increases rapidly as the image size increases and
the number of matching points increases.

The typical optical and SAR line-based matching strategy is usually divided into four
steps: line segment extraction, line feature intersection, outlier removal, transformation,
and resampling [28]. In this method, the feature points are found by intersecting lines.
Hu [29] proposed a parameter fitting method based on a genetic algorithm, which improved
the ability to search global maximum value. Sui [30] introduced the Voronoi diagram into
spectral point matching to further enhance the matching accuracy between two sets of
line intersections. This algorithm has strong robustness in the region with obvious line
features. These line-based matching strategies can only work in areas with strong line
features. However, line features will become fewer as the image becomes larger.

The classic optical and SAR region-based matching strategy is usually divided into four
steps: region segment extraction, point feature extraction, iterative optimal, transformation,
and resampling. In this method, an edge-based selection in the regional segment is involved
to detect the corresponding CPs. Bentoutou [31] used Hu moment to characterize the local
area of the image to achieve regional matching between SPOT image and SAR image.
To avoid failed registration caused by poor image segmentation, iterative level set and
SIFT (ILS-SIFT) [32] is proposed using level set segmentation to obtain conjugate features
between optical and SAR images. However, region-based algorithms can only work well in
areas such as farmland, rivers and lakes.
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The above matching strategies can achieve good results in some specific scenes. These
methods use the affine transformation model to remove outliers. Due to the difference
in imaging modes and angles, optical and SAR image pair has a non-rigid deformation
relationship. As the size of images increases, the nonlinear deformation between images be-
comes non-negligible and the affine transformation condition is not satisfied (see Figure 1).
To solve the nonlinear deformation problem, the common method is to divide the large-
size images into some small blocks and then match the corresponding block pairs [33].
However, the manual blocks do not reflect the real deformation relationship between the
image pair, which can lead to mismatching. Fan [34] proposed a large-size image matching
strategy based on image pyramids. However, this pyramid strategy still assumes that the
two images satisfy the affine transformation condition. Therefore, an outliers elimination
algorithm without a transformation model is needed.

Figure 1. An example of the nonlinear deformation between optical and SAR images. (a) GF7 (visible),
GF3 (SAR). (b) Details of the nonlinear deformation. (c) The transformer of the optical and SAR
images pair. The image pair have a significant nonlinear deformation which is not satisfied the affine
transformation.

2. Motivation and Contribution

In our recent works, we proposed an optical and SAR image matching method based
on the Gaussian pyramid, which is invariant to illumination and speckle noise [35]. How-
ever, when we increased the image size in the experiment, the matching points do not
increase significantly. Through comparison, we found the effect of descriptors was not bad,
but a large number of correct matching points were deleted during the removal of outliers.
Therefore, this paper aims to propose an optical and SAR image matching strategy that
depends on the relationship between points to eliminate outliers.

The feature proposed in this paper is built in two stages. First, we combine the one-
class classification [36] with template matching for the first time. We train the One-Class
SVM based on the SEN1-2 dataset [37] and use the One-Class SVM to classify similarity
maps. In this way, the process of eliminating outliers is not limited by the size of the
point-set and the transformation model. Second, we propose a new optical and SAR image
registration strategy based on a robust feature selection model, which uses the similarity
map to predict the correct CPs. Our image matching strategy is not based on the relationship
between point sets but the texture of the similarity map generated in the template matching
process. This strategy can avoid the influence of nonlinear deformation of the optical and
SAR image pair. The main contribution of our strategy is to solve the problem of outliers
removal due to the non-rigid deformation relationship between optical and SAR images.

The remainder of this paper is organized as follows. Section 3 presents the proposed
optical and SAR images strategy based on a robust feature selection model; Section 4
evaluates the performance of this strategy; Section 5 presents our conclusions and recom-
mendations for future work.
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3. Methodology

The proposed matching framework mainly consists of four steps: the similarity
map, the One-Class SVM, the creation of training data, and the optical and SAR image
registration strategy.

3.1. The Similarity Map

The similarity map is always used to testify the performance of the descriptor (see
Figure 2). In the process of the template matching task, if the feature descriptor detects
a table matching point, an extreme similarity value will appear in the similarity map. In
contrast, if there is no outstanding extreme value in the similarity map, it proves that the
image difference in the search region is large and cannot be accurately found the correct
point because of nonlinear radiation difference or time difference. We use the normalized
cross-correlation (NCC) of the descriptor as the similarity metric for this task.

dncc =

n
∑

x=1

(
PA(x)− PA

)(
PB(x)− PB

)
√

n
∑

x=1

(
PA(x)− PA

)2 n
∑

x=1

(
PB(x)− PB

)2
. (1)

In the NCC formula, PA(x) and PB(x) are the feature descriptor between optical and
SAR images when PA and PB are the means of PA(x) and PB(x) . dncc is the NCC number
which ranges from−1 to 1 where 1 means the most relevant between two feature descriptors.

Figure 2. The process of the similarity map.

In our research, we find the texture of the similarity map is closely related to the
success of matching. As shown in Figure 3, when the obvious feature similarity between
the optical and SAR image pair is shown using the feature descriptor, concentrated peaks
are usually formed relatively. When the obvious feature does not appear in the search
region, the peak value will be randomly distributed. Assuming that the feature descriptors
are isotropic, the shape of the similarity map will be correlated with the result of the optical
and SAR image matching. Therefore, we can filter out the mismatch point by analyzing the
texture of the similarity map.

In our task, we need the algorithm to determine whether the peak value in the search
region is a true match point. As shown in Figure 3, the similarity map of the correct
point has the table feature and the similarity map of the wrong point is chaotic. In that
case, we do not need to extract the features of the error matching points in this process.
Because of the serious imbalance between positive and negative samples, the traditional
multi-classification algorithm will cause the severe over-fitting phenomenon in our task.
Therefore, we cannot use the multi-classification algorithm in this task.
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Figure 3. Comparison of similarity maps by the correct point and the wrong point.

3.2. The One-Class SVM

One-Class SVM is a special case of SVM formulation. In two-class classification, the
hyper-plane defined by support vectors separates the two classes with the largest possible
margin. In the case of one-class classification, we have only positively labeled data to
train the support vectors (see Figure 4). In One-Class SVM (OCSVM), the hyperplane
corresponding to the negative class is set to be the origin of the coordinate system. Positive
data exists in the positive half-space of the hyper-plane. When slack variables are used to
relax the constraint, the optimization objective can be expressed as:

min
w,ξ,b

1
2‖w‖

2 + 1
vN ∑

i
ξi − b

s.t. 〈w, Φ(xi)〉 ≥ b− ξi, ξi ≥ 0
(2)

Figure 4. Different forms of classification.

Here, the slack variable ξi corresponds to the training data. In our case, ξi is the
vectorized similarity map. v ∈ (0, 1) is a trade-off parameter. As v approaches 0, that
means the upper boundaries on the Lagrange multipliers tend to infinity. In our case, the
number of vs. is the percentage of negative samples. b is the bias term and N is number of
training samples. Φ is a mapping function that maps xi to the kernel space where the kernel
function K(·, ·) is used to define dot products. After training a support vector machine, the
class of the new sample Xtest can be predict using the condition sgn(〈w, Φ(xi)〉 − b).

Equation (2) can be solved using the Lagrange multipliers αi, βi ≥ 0 as follows:

L(w, ξ, α, β) = 1
2‖w‖

2 + 1
vN ∑

i
ξi − b

−∑
i

αi(〈w, Φ(xi)〉 − b + ξi)−∑
i

βiξi
(3)
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Set the derivatives with respect to the primal variables w,ξ,b equal to zero. It can be
shown that:

w = ∑
i

αiΦ(xi), (4)

αi =
1
vl
− βi ≤

1
vl

, ∑
i

αi = 1. (5)

Substituting Equations (4) and (5) into Equation (3), and using Equation (2), the dual
optimization problem can be derived as:

min
w,ξ,b

1
2 ∑

i
∑
j

αiαjK
(
xi, xj

)
s.t. 0 ≤ αi ≤ 1

vN , ∑
i

αi = 1
(6)

At the optimum, it can be shown that if αi , βi are nonzero and 0 ≤ αi ≤ 1
vN is satisfied

we can recover the bias term by exploiting that for any such a, the corresponding pattern
xi satisfies

b = 〈w, Φ(xi)〉 = ∑
j

αjK
(
xi, xj

)
. (7)

All patterns {xi : i ∈ [l], αi > 0} are called Support Vectors. The decision for any test
similarity map xt that is vectorized as xt can be expressed in terms of the kernel function
using the dual variables and vectorized training images as follows:

f (xt) = sgn

(
∑

i
αiK(xi, xt)− b

)
(8)

3.3. The Creation of the Similarity Dataset

The SEN1-2 dataset was produced by M. Schmitt et al. to research the Optical-SAR
image registration. It is comprised of 282,384 SAR-optical patch-pairs with 10 m resolutions
acquired by Sentinel-1 and Sentinel-2. In this section, we use the SEN1-2 dataset to create
our similarity map dataset. Because the image pairs in the SEN1-2 dataset use the 30 m-
SRTM-DEM and the ASTER DEM as high latitude to revise the image patch, we set the
image pairs in the SEN1-2 dataset to standard values.

The SEN1-2 dataset has two advantages. The first advantage is that the dataset has the
image of four seasons which can fully reflect the nonlinear distortion between optical and
SAR images. The second advantage is that the dataset includes common scenes such as
farmland, lakes, mountains, towns and roads. The radiation differences caused by different
sensors in optical and SAR images can be fully reflected. To simulate the real template
matching process, the basic process consists of three steps.

First, the Harris response of the optical image is calculated in the image pair. As shown
in Figure 5, if the maximum value of the Harris response lies within the search region, the
optical and SAR image pair passes this selecting. If the Harris strongest point is not within
the search region, this image pair will be discarded. Only 9183 image pairs passed the first
round of selection.
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Figure 5. The max Harris response in the search region.

Second, the GPOG descriptor is used to calculate the similarity maps of the SAR
image in the 9183 image pairs. In the similarity map, the maximum response point is
taken as the matching point. The matching point of the SAR image is compared with the
strongest Harris response point extracted from the optical image. If the error in both X
and Y directions is less than 3 pixels, this similarity map will pass this round of selecting
(see Figure 6). If the error is greater than three pixels, the similarity map is placed in the
negative sample. Only 2684 image pairs passed the second round of selection.

Figure 6. The similarity map of the correct point.

Third, in the second step, there are always some unstable extreme points in the right
region. It is necessary to remove the unstable similarity maps manually. The similarity
maps with good shape are screened out and put into the positive sample. Although some
positive samples will be abandoned in this step, the stable form of the similarity map is
helpful to improve the performance of the model. Finally, 2300 image pairs are selected to
form positive samples.

3.4. The Proposed Strategy

In this section, we put forward a new framework for optical and SAR image registra-
tion. Our optical and SAR image registration strategy consists of four steps (see Figure 7).
First, we find the overlap between the optical and SAR images. Then we divide the optical
image into vertical and horizontal grids. The strongest Harris response points are extracted
from each grid of the optical image as feature points. We find the SAR feature points
corresponding to the optical feature points by geographic information. The similarity map
is calculated by centering on the SAR feature point in the SAR image. Similarity maps from
the SAR feature points are input into trained One-Class SVM to filter out outliers. The
specific steps are as follows:

First, we read the metadata of the optical and SAR image pair to find the overlapping
ground areas and project the four corners onto the ground. Only the optical image with
overlapping ground areas is retained as computing areas. If there are overlaps between
the two ground coverings, we deem these two images overlapped; otherwise, there is no
overlap between these two images. The available optical image of the computing area is
collected to be divided into some grids. The horizontal and vertical grids divide the target
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optical image into some small pieces. The Harris response is calculated in each grid. We
use the Harris response maximum point as a virtual control point for each grid. Since the
feature selection method cannot guarantee the uniform distribution of virtual control points
in the overlapping ground area, the rasterization method is necessary for our strategy. If
we do not rasterize the images or extract multiple feature points in each grid, the feature
points will be too concentrated.

Second, to obtain the similarity map, we find the coordinate of the feature point of the
optical image in the SAR image. The size of the search area is related to the positioning
accuracy of the optical and SAR images pair. If the positioning accuracy of the image pair is
higher, the search region can be adjusted to be smaller. On the other hand, if the positioning
accuracy of the image pair is low, the search area should be appropriately expanded. The
correct match point should be guaranteed to appear in the search region. As long as the
feature descriptor is strong enough to resist nonlinear radiation and the speckle noise in
SAR images, the single-peak structure will be generated in the search region.

Third, similarity maps generated in the SAR image are input into the previously
trained One-class SVM. In this step, One-Class SVM will distinguish between the correct
match points and the false match points using a hyperplane. In the process of feature
selection, the false match points with poor performance in the similarity map are filtered.
The correct match points with good performance in the similarity map are received. The
fundamental difference between the feature selecting algorithm and the RANSAC algorithm
is that there is no preset transform model for the optical and SAR images pair.

Finally, the correct point reserved by One-Class SVM is taken as the final matching
point of template matching output.

Figure 7. The proposed optical and SAR image registration strategy.

4. Experiments and Evaluation

A set of experiments is designed to evaluate the performance of the One-Class SVM
used in the feature selection and the performance of the proposed strategy. We first test the
One-Class SVM on the SEN1-2 dataset and OSmatch dataset [38]. Then we demonstrate
the performance of the proposed strategy using some optical and SAR satellite images. In
this experiment, we propose two new metrics (NIM and RIM) to evaluate the performance
of the strategy used in the large image registration. This experiment can demonstrate the
abilities of the proposed strategy.

4.1. Experiment of the One-Class SVM in Dataset

The One-Class SVM is tested on SEN1-2 and OSmatch datasets to evaluate its per-
formance in the feature selection. A set of image pairs covering different seasons and
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scenes was selected for testing in the SEN1-2 dataset. A set of high-resolution image pairs
are selected in the OSmatch dataset compared with the SEN1-2 dataset. In the OSmatch
dataset, the optical sensor is the Google Earth platform’s panchromatic camera, which has
an image resolution of 1m. The 1-m SAR images in the OSmatch dataset is generated using
GF-3 spotlight mode. In comparison, the 3 m resolution SAR images of the SEN1-2 dataset
were obtained from 5 m resolution Sentinel-1 C-band images by downsampling. The
experimental data, evaluation criterion and experimental results follow in the next section.

4.1.1. Experimental Data

Figure 8 shows samples of the test dataset. We selected 400 positive samples and
100 negative samples from the SEN1-2 dataset as a training dataset. To test the performance
of trained One-Class SVM in the SEN1-2 dataset, we selected 600 positive and 400 negative
samples in the spring dataset, 400 positive and 300 negative samples in the summer dataset,
500 positive and 400 negative samples in the fall dataset, and 300 positive and 300 negative
samples in the winter dataset. To detect the effect of image resolution on the similarity map,
we selected 200 positive and 200 negative samples in OSmatch dataset as a supplementary
test dataset.

Figure 8. Samples of the test dataset.

4.1.2. Evaluation Criteria

The One-Class classifiers are evaluated by a test dataset containing positive and nega-
tive samples. Therefore, the testing procedure of One-Class SVM is analogous to binary
classifiers/detectors. The majority of previous works have used Receiver Operating Charac-
teristics (ROC) curve to report the performance of the one-class classification. According to
the combination of real class and One-Class SVM prediction class, the positive and negative
datasets can be divided into four cases: true positive (TP), false positive (FP), true negative
(TN) and false-negative (FN). The ROC curve represents the relationship between the false
positive rate (FPR) and the true positive rate (TPR). They are defined as:

TPR =
TP

TP + FN
(9)

FPR =
FP

TN + FP
(10)
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4.1.3. Experimental Analysis

By adjusting the value of v in Formula (2) from 0.01 to 0.5, we obtained the TPR and
FPR values of One-Class SVM in the dataset under different thresholds and drew the ROC
curve. As shown in Figure 9 and Table 1, the performance of the trained One-Class SVM in
the four sub-datasets of the SEN1-2 dataset can be obtained through the ROC curve. In the
training dataset, the proportion of negative samples is 0.2, and the proportion of positive
samples is 0.8. When the threshold of the classifier is set to 0.2, the TPR of the classifier can
reach more than 0.8 in the four datasets. The TPR of spring, summer and fall datasets can
reach more than 0.85, which proves that a correct point can be successfully selected only
from the similarity map of the template region. The TPR of winter dataset is slightly worse
because the surface radiation changes obviously in winter, which has a certain influence
on the texture structure of the image. In general, the One-Class SVM has the robustness to
radiation changes.

Figure 9. ROC curves deliverd on SEN1-2 dataset.

Table 1. TPR and FPR results for One-Class SVM on SEN1-2 and OSmatch datasets.

v 0.01 0.05 0.08 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Spring
TPR 1 0.99 0.97 0.96 0.91 0.87 0.81 0.75 0.69 0.61 0.53 0.45

FPR 0.78 0.62 0.51 0.46 0.30 0.19 0.12 0.07 0.05 0.03 0.02 0.01

Summer
TPR 1 0.98 0.97 0.96 0.91 0.86 0.81 0.73 0.67 0.62 0.56 0.49

FPR 0.83 0.68 0.57 0.50 0.32 0.25 0.13 0.06 0.04 0.02 0.01 0

Fall
TPR 0.99 0.97 0.96 0.94 0.90 0.85 0.79 0.69 0.62 0.55 0.46 0.40

FPR 0.80 0.63 0.58 0.49 0.33 0.21 0.14 0.08 0.06 0.04 0.02 0.01

Winter
TPR 1 0.99 0.98 0.95 0.88 0.81 0.74 0.64 0.55 0.46 0.35 0.27

FPR 0.81 0.67 0.55 0.47 0.30 0.24 0.17 0.11 0.06 0.04 0.01 0.01

OSmatch
TPR 1 0.95 0.93 0.93 0.84 0.81 0.72 0.62 0.51 0.45 0.33 0.27

FPR 0.92 0.61 0.56 0.53 0.37 0.29 0.19 0.11 0.07 0.04 0.02 0.01

Rather than increasing TPR, we want FPR to be small in practical applications. There-
fore, we recommend adjusting the threshold vs. to 0.3 and reducing the FPR to below 0.1
when actually using the One-Class SVM to select similarity maps.
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With the SEN1-2 dataset as training data and OSmatch dataset as test data, the feature
selection performance of the One-Class SVM is slightly degraded (see Figure 10). The
performance of the SEN1-2 dataset is the sum of the results of four seasons. Different reso-
lutions result in different texture structures of images in the search region. The difference
in texture structure is reflected in the similarity map in that the single peak is steeper and
harder to distinguish from the noise signals. However, the feature selecting accuracy of
One-Class SVM in the OSmatch dataset can also be above 0.8. In general, the classifier still
has a certain robustness to the change in image resolution, although the change in image
resolution has a certain impact on the feature selecting accuracy of One-Class SVM.

Figure 10. ROC curves deliverd on OSmatch dataset.

4.2. Experiment of the Proposed Strategy

To evaluate the performance of strategy, we compared this strategy with the RANSAC
algorithm and block-RANSAC algorithm. In the block-RANSAC algorithm, the non-rigid
deformation can be fitted by cutting the large-size image into some small blocks. We
divided the overlapping part of the optical and SAR image pair into 30 × 20 grids. The
strongest Harris response was selected as the feature point for each grid. In the block-
RANSAC algorithm, we cut the image into 2 × 2 grids and used the RANSAC algorithm to
remove the wrong points in each grid. According to the matched points, the warp image is
resampled by Delaunay triangulation method. The point set filtered by One-Class SVM
was compared with the point set filtered by the other methods. The experimental data,
evaluation criterion, and experimental results follow in the next section.

4.2.1. Experiment Data

The proposed strategy is tested in this experiment using real optical and SAR satellite
images. The optical images are generated by four sensors (GF7, GF1, ZY03, GF2) and the
SAR images are generated by GF3. With the increase of image resolution, the geometric
relation between optical and SAR images is difficult to conform with the affine transforma-
tion conditions. In this case, we chose four pairs of images with a resolution better than
3 m in this experiment. These data include urban areas, mountainous areas, rural areas,
and bodies of water such as lakes and rivers. Figures 11–14 shows the four pairs of images,
and Table 2 provides the descriptions for all the test data.



Remote Sens. 2022, 14, 3012 12 of 19

Figure 11. The pair A.

Figure 12. The pair B.

Figure 13. The pair C.
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Figure 14. The pair D.

Table 2. Detailed description of test data for the experiment of the strategy.

No. Image Pair Resolution Size (Pixels) Date Characteristics

A GF-7 (optical) 0.8 m 13,301 × 11,637 06/2021 High resolution images over urban areas,
GF-3 (SAR) 3 m 18,734 × 16,204 06/2018 temporal differences of 36 months (see Figure 11)

B GF-1 (optical) 2 m 13,928 × 12,145 10/2016 High resolution images over urban areas
GF-3 (SAR) 3 m 13,902 × 12,125 09/2018 including rivers, lakes and island (see Figure 12)

C ZY-3 (optical) 2 m 13,928 × 12,145 11/2017 High resolution images over mountain areas,
GF-3 (SAR) 3 m 13,902 × 12,125 04/2019 significant radiation differences (see Figure 13)

D GF-2 (optical) 1 m 27,141 × 23,631 06/2018 High resolution images over urban areas,
GF-3 (SAR) 3 m 5459 × 3939 01/2019 Fog interferes with the optical image (see Figure 14)

4.2.2. Evaluation Criteria

In this experiment, the performance of the optical and SAR image registration strategy
is evaluated in four ways. First, we use a classical evaluation criterion named the number of
correct matches (NCM). The NCM is the number of match points after removing false match
points. Using this criterion, we can intuitively analyze the advantages and disadvantages of
various matching strategies. The second method is an objective and quantitative measure
named Root mean square error (RMSE), which can measure the correlation of the image
registration, and it is defined as the following equation:

RMSE =

√√√√ 1
N0

N0

∑
i=1

(
T
(
xi

1, yi
1
)
−
(
xi

2, yi
2
))2 (11)

N0 is the number of the matched point pairs
(
xi

1, yi
1
)

and
(
xi

2, yi
2
)

in the image pair.
T is the transformation matrix computed by the whole matched points in the image pair.

In general, RMSE is used to evaluate the ability of the point set to conform with a
particular model. When the image size is small, RMSE can be used to approximate the
ability of the registration algorithm. As the image size increases, RMSE will fail due to the
increase of nonlinear distortion.

To objectively reflect the improvement of image matching affected by correct matching
points, we introduce structural similarity (SSIM) to measure the variation of image matched
by control points, and is defined as the following equation:

SSIM(x,y)=

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c1

) (12)
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where µx and µy are the mean of Ix and Ix; σ2
x and σ2

y are the variances of Ix and Ix;

c1 = (k1L)2 and c2 = (k2L)2 is the constant used to maintain stability; L is the dynamic
range of pixel values; k1 = 0.01 and k2 = 0.03. However, as shown in Figure 15, due to the
interference of the speckle noise of SAR image, SSIM of optical and SAR images cannot
reflect the correlation. We reduce the speckle noise by extracting phase congruency (PC)
from the image.

Given an input image I(x, y), its convolution results Eno(x, y) and Ono(x, y) with log
Gabor even-symmetric Ge

no and odd-symmetric Go
no wavelets in scale n and orientation o

can be regarded as

[Eno(x, y), Ono(x, y)] = [I(x, y) ∗ Ge
no, I(x, y) ∗ Go

no] (13)

Then, the amplitude Ano(x, y) and phase ϕn(x, y) are given by

Ano(x, y) =
√
(Eno(x, y))2 + (Ono(x, y))2 (14)

ϕn(x, y) = arc tan 2(Eno(x, y), Ono(x, y)) (15)

Considering the noise compensation term To , the final PC model is :

PC(x, y) =
∑
o

∑
n

W0(x, y)bAno(x, y)∆Φno(x, y)− Toc

∑
o

∑
n

Ano(x, y) + ε
(16)

where W0(x, y) is a weighting function ; ε is a small constant; ∆Φno(x, y) is a more sensitive
phase deviation function defined as

Ano(x, y)∆Φno(x, y) =
Eno(x, y)ϕe(x, y) + Ono(x, y)ϕo(x, y)
−|Eno(x, y)ϕo(x, y) + Ono(x, y)ϕe(x, y)|

(17)

where,

ϕe(x, y) = ∑
o

∑
n

Eno(x, y)
/

ψ(x, y) (18)

ϕo(x, y) = ∑
o

∑
n

Ono(x, y)
/

ψ(x, y) (19)

ψ(x, y) =

√(
∑
o

∑
n

Eno(x, y)
)2

+

(
∑
o

∑
n

Ono(x, y)
)2

(20)

SSIM is calculated for the image pair in Figure 15, and then the results are shown
in Table 3. Extracting PC from optical and SAR images and then calculating SSIM can
better reflect image similarity. In Figure 15c, c2 is in the center of the image with a size of
100 × 100 pixels. c1 moves 5 pixels to the left and 5 pixels to the up compared with c2, and
c3 moves 5 pixels to the right and 5 pixels to the down compared with c2. It can be seen
from Table 3 that SSIMPC is sensitive to image translation.

Table 3. SSIM results.

SSIM (a, b) (c, d) (c1, d1) (c2, d1) (c3, d1)

Pari 1 0.21 0.95 0.91 0.94 0.91

Pari 2 0.33 0.91 0.88 0.91 0.86

Pari 3 0.18 0.73 0.81 0.89 0.85
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Figure 15. The test image pair for SSIMPC. (a) SAR image. (b) optical image. (c) PC response of SAR
image. (d) PC response of optical image.

Based on the properties of SSIMPC, we proposed two image evaluation metrics: the
number of improve matches (NIM) and the rate of improved matches (RIM). NIM is defined
as the following equation:

NIM =

N0
∑

i=1
Π(SSIMPC(T(w(xi

1, yi
1)), w(xi

2, yi
2))

−SSIMPC(w(xi
1, yi

1), w(xi
2, yi

2)))

(21)

where Π(x) is the indicator function which takes 1 and 0 when x is true and false; N0 is the
number of the matched point pairs; T is the transformation matrix; w is a window function.
RIM is defined as following equation:

RIM =
NIM

N0
(22)

If the correct transformation relationship between two images is found by the feature
point set, at least the structural similarity of the image pairs near the feature points is
improved compared to the original. Based on this assumption, NIM and RIM can reflect
the contribution of matching points to improve image matching quality.

4.2.3. Experimental Analysis

As shown in Figure 11, the optical and SAR images pair does not conform to the
affine transformation conditions. The details in Figure 16 and Table 4 show that the actual
matching accuracy of the image is improved after block processing, which proves that there
are a lot of nonlinear transformations between the large images pair. The proposed strategy
extracts fewer feature points than with the block-RANSAC method because the single peak
structure in the similarity map is only a sufficient and unnecessary condition for successful
matching. By comparing NIM and RIM, the points filtered with our strategy can improve
image matching quality significantly more than other algorithms. As shown in Figure 16,
the proposed strategy can achieve the best matching effect in this test.
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Figure 16. Details of image transformation relationships detected by RANSAC, Block-RANSAC and
the proposed strategy in pair A.

Table 4. Registration results for all the test sets.

Method N0 NCM RMSE NIM RIM

Pair A
RANSAC 18 17 1.10 9 50%

Block-RANSAC 38 35 7.23 18 47%
Our strategy 31 31 18.27 24 81%

Pair B
RANSAC 78 77 1.17 38 48%

Block-RANSAC 99 95 2.02 52 52%
Our strategy 91 90 7.51 70 76%

Pair C
RANSAC 30 28 1.05 13 43%

Block-RANSAC 54 49 10.25 23 42%
Our strategy 89 86 25.50 61 69%

Pair D
RANSAC 15 15 1.08 5 33%

Block-RANSAC 44 42 7.27 22 50%
Our strategy 41 41 35.40 28 68%

As shown in Figure 12, the image in pair B was taken at Wuhan, Hubei Province. The
content of this image is mainly plain with a small elevation difference. Therefore, there
are only a few pixels offset between optical and SAR images. The images pair satisfies the
affine transformation condition. In this case, the RANSAC algorithm and block-RANSAC
algorithm extract a similar number of feature points when the RMSE is small (see Table 4).
The accuracy of matching points obtained by the proposed strategy is higher than the other
two methods through NIM and RIM. As shown in Figure 17, the proposed strategy is better
in detail.

Figure 17. Details of image transformation relationships detected by RANSAC, Block-RANSAC and
the proposed strategy in pair B.

As shown in Figure 13, the region in pair C is located in the mountainous area of
Dengfeng City, Henan Province. The number of correct points extracted by the Block-
RANSAC algorithm is three times more than the RANSAC algorithm (see Table 4), which
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proves that the nonlinear transformation between images is very serious. As shown in
Figure 18, the points extracted by the RANSAC algorithm cannot reflect the nonlinear
transformation of the image. The shortcoming of the Block-RANSAC algorithm is that
artificial segmentation is not suitable for the condition of the image itself. The proposed
strategy can find the corresponding relationship between the two images more accurately.
The details and NIM can prove that the proposed strategy can find useful and correct
matching points.

Figure 18. Details of image transformation relationships detected by RANSAC, Block-RANSAC and
the proposed strategy in pair C.

As shown in Figure 14, the area of this image pair is located in Wuhan, Hubei Province.
Because the image is disturbed by cloud interference, the optical image quality is poor and
the positioning accuracy is low. Due to the severe nonlinear transformation phenomenon,
the RANSAC method cannot correctly find the deformation relationship of the optical and
SAR images pair. Since the manual segmentation does not match the nonlinear distortion
distribution of the image, the distribution of correct matching points does not change
significantly even though the number of correct matching points increases after block
processing (see Figure 19). As shown in Figure 19, because our strategy does not remove
outliers according to the global transformation model, the proposed strategy can accurately
find stable and correct points between the two images.

In addition, from the results of four groups of experiments, NIM and RIM are in good
agreement with the subjective observation results. The advantage of our strategy is that it
does not assume that the optical and SAR image pair conforms to the rigid transformation.
Therefore, when the image pair has a serious nonlinear deformation, our strategy is more
consistent with the real transformation relationship between images (see Figures 16–19).

Figure 19. Details of image transformation relationships detected by RANSAC, Block-RANSAC and
the proposed strategy in pair D.

5. Conclusions

In this paper, we first propose an optical and SAR image matching strategy based
on the feature selection. The proposed strategy removes outliers through similarity maps
of matching points. Because we only have the feature of the correct matching points in
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the similarity maps, the One-Class SVM is used to select similarity maps. To train the
One-Class SVM, we propose a method to make the similarity map dataset using the SEN1-2
dataset. 2300 positive similarity maps were selected as the dataset. Because this strategy
does not assume the transformation relationship between images, it has strong robustness
to nonlinear transformation between optical and SAR images.

To verify the effectiveness of the proposed strategy, two groups of experiments were
conducted. To prove that the One-Class SVM can select the similarity map correctly, we first
use the SEN1-2 dataset and OSmatch dataset to demonstrate the generalization capability
of the One-Class SVM. Experimental results show that the success rate of One-Class SVM
outlier rejection is higher than 80%, and the stable correct matching points can be selected.
In the second experiment, we tested our strategy using four sets of optical and SAR images.
To find the objective metrics that are in good agreement with subjective observations,
we propose NIM and RIM metrics by comparing the similarity of the template region
before and after matching. By comparing NIM and RIM, more than 68% of the points
filtered with our strategy can improve image matching quality significantly. The experi-
mental result shows the proposed strategy can effectively reduce the influence of nonlinear
transformation between optical and SAR images and achieve a good matching effect.

Our large-size optical and SAR matching strategy can be applied to change detection,
planar block adjustment, high-precision geolocation, and fusion of multi-sensor images.
In our future work, we will test our strategy on more multi-sensor images with nonlinear
deformation and improve the accuracy on the similarity map dataset.
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