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Abstract: Smoke plumes are the first things seen from space when wildfires occur. Thus, fire smoke
detection is important for early fire detection. Deep Learning (DL) models have been used to detect fire
smoke in satellite imagery for fire detection. However, previous DL-based research only considered
lower spatial resolution sensors (e.g., Moderate-Resolution Imaging Spectroradiometer (MODIS))
and only used the visible (i.e., red, green, blue (RGB)) bands. To contribute towards solutions for
early fire smoke detection, we constructed a six-band imagery dataset from Landsat 5 Thematic
Mapper (TM) and Landsat 8 Operational Land Imager (OLI) with a 30-metre spatial resolution. The
dataset consists of 1836 images in three classes, namely “Smoke”, “Clear”, and “Other_aerosol”. To
prepare for potential on-board-of-small-satellite detection, we designed a lightweight Convolutional
Neural Network (CNN) model named “Variant Input Bands for Smoke Detection (VIB_SD)”, which
achieved competitive accuracy with the state-of-the-art model SAFA, with less than 2% of its number
of parameters. We further investigated the impact of using additional Infra-Red (IR) bands on the
accuracy of fire smoke detection with VIB_SD by training it with five different band combinations.
The results demonstrated that adding the Near-Infra-Red (NIR) band improved prediction accuracy
compared with only using the visible bands. Adding both Short-Wave Infra-Red (SWIR) bands can
further improve the model performance compared with adding only one SWIR band. The case study
showed that the model trained with multispectral bands could effectively detect fire smoke mixed
with cloud over small geographic extents.

Keywords: remote sensing; multispectral satellite imagery; smoke detection; fire detection; moderate
spatial resolution; deep learning

1. Introduction

Wildfires can develop quickly, aggravated by climate change, causing substantial
consequences to society, ecology, and the economy [1–3]. Fire detection in early stages can
prevent the disastrous impact of extreme fires. Using satellite imagery for fire detection is
cost-effective since an increasing number of satellites are being launched to monitor the
earth. However, detecting early fires from satellite imagery is challenging since the fires
can be easily obscured by the thick canopy, clouds, or the smoke they emit. Even when
using the thermal band, fires can be masked by the heated background when the weather
is hot, and false alarms could be frequently caused by heated bare soils or deserts or other
highly reflective regions [4–6].

Detecting fire smoke to infer fires is a better option than direct fire detection, con-
sidering fire smoke has the following characteristics: (1) fire smoke can rise above the
canopy in a short time and usually has distinctive colours from the vegetation; (2) fire
smoke disperses quicker into a large scale than the spread of fire; hence it is easier to be

Remote Sens. 2022, 14, 3047. https://doi.org/10.3390/rs14133047 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14133047
https://doi.org/10.3390/rs14133047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6037-2947
https://doi.org/10.3390/rs14133047
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14133047?type=check_update&version=4


Remote Sens. 2022, 14, 3047 2 of 24

detected from satellites; (3) the temperature of fire smoke is significantly lower than the
hot background.

Nevertheless, fire smoke detection from satellites is challenged by other factors:
(1) variant characteristics of fire smoke such as its shape, colour, and scale; (2) similar-
ity and overlap in the spectral signatures between fire smoke and other objects such as
snow, cloud, and dust [7–10]. Figure 1 shows the variants of fire smoke in different scenar-
ios captured by Landsat 8 OLI, visualised in true colour using bands 4 (red), 3 (green), and
2 (blue).

Figure 1. Variants of fire smoke in Landsat 8 OLI true-colour imagery. (a) Dark grey fire smoke
plumes under cirrus clouds. (b) Long slim fire smoke plume in bright colour. (c) Dispersed fire
smoke on the edge of the image. (d) Brown-coloured dense fire smoke in the whole image. (e) Wide,
dispersed fire smoke in light blue colour covering the whole image. (f) Spread dense fire smoke in
dark grey colour under altocumulus clouds.

Early research tried to discriminate fire smoke in the satellite imagery from other
confounding objects (e.g., water, snow, cloud) based on shallow handcrafted features at the
pixel level [11–18]. Such features have strong associations with various local conditions
and need to be properly redefined in a different area.

The development of Deep Learning (DL) techniques, especially Convolutional Neural
Networks (CNN), shifted the research focus in recent years to detecting fire smoke in the
satellite imagery at the scene level [10,19]. The DL models can automatically extract deep
semantic features to determine whether the satellite imagery contains fire smoke, regardless
of the shape, position of the fire smoke, and even when there are other confounding objects
or aerosols in the imagery. However, the below gaps are yet to be filled:
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• Previous DL-based research was based on satellite imagery with a low spatial reso-
lution (e.g., 0.25–1 km in MODIS imagery and 0.5–2 km in Himawari-8 Advanced
Himawari Imager (AHI) imagery), where early fires over small geographic extents
could be easily overlooked. Using imagery from satellites with a higher spatial resolu-
tion has the advantage of revealing early fires over small geographic extents.

• The existing DL models for fire smoke detection at the scene level only used the visible
(referred to as RGB hereinafter) bands of the satellite imagery. Whereas Infra-Red
(IR) bands often contain important information that could potentially improve the
detection accuracy, particularly if the fires were obscured. For example, in Figure 2,
visualising the fire smoke scenes using SWIR_2, NIR, and blue bands reveals the
actively burning fires in vivid red colour, burnt scars in dark red colour in the bottom-
left image, and fire smoke in light blue colour in both two bottom images. These
properties are not clear in the RGB images in the top row.

Figure 2. Two fire smoke scenes are visualised in different bands. (a) RGB. (b) SWIR_2, NIR, and
blue.

The aims of this work are as follows:

• Construct a labelled multi-class imagery dataset from multispectral moderate spatial
resolution satellite imagery and share it with the research community to facilitate the
future research for fire smoke detection;

• Investigate the effect of using additional IR bands in DL-based fire smoke detection.

In terms of the former aim, we constructed a fire smoke imagery dataset containing
1836 multispectral images based on Landsat 5 TM and Landsat 8 OLI imagery data. The
images contain six spectral bands, including the RGB bands, the Near-Infra-Red (NIR) band,
and two Short-Wave Infra-Red (SWIR) bands (i.e., SWIR_1 and SWIR_2), all possessing a
30-m spatial resolution. The details about this dataset will be introduced in Section 3.2.

In terms of the latter aim, we designed a lightweight CNN model allowing a variant
number of bands as input for the investigation. We named this model “Variant Input Bands
for Smoke Detection (VIB_SD)”. The following needs were taken into consideration for
designing VIB_SD:

• The latest DL techniques that have been demonstrated effective for fire smoke detec-
tion should be integrated to achieve the best possible detection accuracy;
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• The model is lightweight in terms of the number of parameters. The lightweight
model is time-efficient in training, and resource-efficient for the potential on-board-of-
small-satellite applications, which is one of our future research goals.

VIB_SD will be introduced in Section 3.3. Our experiment results demonstrated that
adding the NIR band effectively improved the model prediction accuracy, and both SWIR
bands can further improve the model prediction accuracy.

In summary, the major contributions of our work presented in this paper are:

• For the first time in the literature, we created a labelled imagery dataset based on
Landsat multispectral moderate spatial resolution imagery, which contains three fire
smoke scene-related classes (i.e., “Smoke”, “Clear”, and “Other_aerosol”). This dataset
will be expanded to facilitate future research in satellite-based fire smoke detection;

• We designed a lightweight CNN model VIB_SD, which achieved competitive accuracy
with the state-of-the-art model SAFA. More importantly, such performance was achieved
with less than 2% of the number of parameters used by SAFA. VIB_SD has the potential
to be improved and adopted for on-board-of-small-satellite applications.

• Our findings suggest that adding each of the three IR bands (i.e., NIR, SWIR_1,
and SWIR_2) individually can effectively improve the fire smoke detection accuracy;
while adding all three IR bands collectively can achieve the highest accuracy. The
findings provide useful information for the band selection strategies when using
multispectral or hyperspectral satellite imagery for fire smoke detection. To the best of
our knowledge, such an investigation has not been conducted in the literature.

We will present the remaining content of this paper as follows: Section 2 will review
previous related work; Section 3 will introduce the satellite imagery datasets used in
this work, the structure of VIB_SD, the experimental settings, and the evaluation metrics;
Section 4 will present the experimental results and our findings; Section 5 will demonstrate
the effectiveness of using the model trained with multispectral bands in detecting fire
smoke mixed with clouds or over small geographic extents; Section 6 will further discuss
the results and explore future possibilities; Section 7 will present the conclusion.

2. Related Work
2.1. Approaches Used in Satellite-Based Fire Smoke Detection

This section will briefly summarise the approaches used in satellite-based fire smoke
detection. Table 1 classifies the approaches based on the adopted techniques and the
detection levels.

Table 1. Approaches used in satellite-based fire smoke detection.

Type of Approach Detection Level Bands Used Techniques

Non-neural network Pixel Level RGB and/or IR

False colour composite

Multi-thresholds

Traditional machine learning

Neural network/DL Pixel Level RGB and/or IR MLP 1, FCN 2

Scene Level RGB CNN
1 Multi-Layer Perceptron; 2 Fully Convolutional Network.

Prior to the fast development of DL techniques, the non-neural-network approaches
were dominant in the research. False colour composite approaches support the visual
exploration of fire smoke. Using different band combinations other than the RGB bands can
visually reveal fire smoke in distinctive colours from other objects [20–22]. Such approaches
may be used for case analysis but are hardly suitable for automated workflows when
working with massive satellite data [7,10].

Multi-threshold approaches tried to discern fire smoke pixels from other confound-
ing pixels using handcrafted threshold values or features based on the reflectance and
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brightness temperature values in certain spectral and pseudo bands [11–16]. However,
the threshold values and the features are hard to define, as they are strongly associated
with the local conditions and solar zenith angles at the time of the image acquisition
and vary greatly across different sensor platforms [9,10]. To further detect fire smoke
pixels automatically, machine learning techniques, including traditional non-neural net-
work techniques [13,17,18] and Multi-Layer Perceptron (MLP) neural networks [7,9], were
employed using training samples extracted from visually classified polygons or by multi-
thresholds approaches. Such approaches may have undermined the generalisability due to
having few deep semantic features.

Deep convolutional neural networks were more recently used for fire smoke detec-
tion at both the pixel level and scene level. A Fully Convolutional Network (FCN) was
proposed in [23] to segment smoke pixels from non-smoke pixels. The model was trained
using 975 smoke images from Himawari-8 AHI with six spectral bands and one pseudo
band (i.e., RGB, NIR, SWIR, top of atmosphere temperature, and fire radioactive power).
Although multispectral imagery data were used, this approach is different from the scene
level classification that we adopted since the dataset only has one class, “Smoke”, at the
scene level.

The first scene-level fire smoke DL model SmokeNet was proposed in [10] based
on the USTC_SmokeRS dataset, which was constructed by the same authors. Very re-
cently, the state-of-the-art scene-level fire smoke detection model SAFA, trained with the
USTC_SmokeRS dataset, was proposed in [19]. SmokeNet and SAFA both used 64% of the
USTC_SmokeRS dataset for training, 16% for validation, and 20% for testing. Both models
were trained under the same training and testing settings and evaluated with the same
metrics. SmokeNet achieved a testing accuracy of 92.75%, compared with 96.22% for the
state-of-the-art SAFA.

2.2. Techniques Used in DL-Based Scene-Level Fire Smoke Detection

In this section, we will introduce the techniques used in SmokeNet [10] and SAFA [19],
which are closely related to the techniques we integrated to design VIB_SD.

Both SmokeNet and SAFA incorporated the attention mechanism [24] to extract salient
features. The attention mechanism has been widely used in scene classification models,
such as in [25–30]. However, the implementations vary. SmokeNet adopted the channel
attention implementation in [31] and implemented the spatial attention module based
on a similar algorithm. SAFA implemented its spatial attention module and channel
attention module in more complicated ways by incorporating parallel average pooling and
max-pooling, feature map transformation with dual kernel size, and learnable coefficients.

Both SmokeNet and SAFA employed residual learning. SmokeNet adopted the
residual attention module proposed in [25], which allowed indicative subtle features
to be learned for the classification tasks. Instead, SAFA employed the residual blocks
in [32] as the backbone blocks and also integrated the residual blocks with the spatial
attention and channel attention modules to extract salient features in its Salient Feature
Extraction Path (SFEP).

In addition, SAFA proposed a Mutual Activation Interim (MAI) to achieve smooth
feature fusion between different levels in its Global Information Extraction Path (GIEP).
The prediction from SFEP and GIEP were combined through two learnable coefficients to
generate the final prediction.

Attention mechanism and residual learning were both employed in VIB_SD. We
adopted the simpler implementations in SmokeNet for spatial and channel attention,
considering the lightweight need. Similar to [33], we integrated residual learning in an
inception-residual module but with more paths and kernels of different sizes. Instead
of adaptively using salient features and global features to improve the classification per-
formance in [19], we combined features extracted in multiple scopes to achieve the same
purpose, inspired by the inception structures [33,34]. The structure of VIB_SD and its key
modules will be introduced in Section 3.3.
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3. Materials and Methods

In this section, we will introduce two satellite imagery datasets used in this work, the
VIB_SD model and its key modules, the experiment framework, and the evaluation metrics.
The software tools used in the Landsat data collection and labelling were developed using
Python Jupyter Notebook. We used Tensorflow for the model implementation and training.

3.1. RGB USTC_SmokeRS Dataset

The USTC_SmokeRS dataset was used to evaluate VIB_SD by comparing VIB_SD with
the existing models trained based on this dataset.

To the best of our knowledge, the USTC_SmokeRS dataset is the only labelled satellite
imagery dataset for DL-based scene-level fire smoke detection. The dataset consists of
6225 256× 256 RGB images collected from MODIS (Level-1B), which has a spatial resolu-
tion of 1 km. The dataset contains six fire-smoke-related scene classes, including “Smoke”,
“Cloud”, “Dust”, “Haze”, “Land”, and “Seaside”. The number of images in each class of the
USTC_SmokeRS dataset is shown in Table 2. More about the dataset can be found in [10].

Table 2. Number of images in USTC_SmokeRS.

Smoke Cloud Haze Dust Land Seaside Total

1016 1164 1002 1009 1027 1007 6225

3.2. Multispectral Landsat Imagery Dataset

One of our contributions in this work is that we constructed a labelled multispectral
moderate spatial resolution satellite imagery dataset for early fire smoke detection. The
dataset consists of three fire-smoke-related scene classes, namely “Smoke”, “Clear”, and
“Other_aerosol”. We used this dataset to investigate the contribution of using additional
bands to the fire smoke detection accuracy. We will explain the data collection and labelling
processes in this section.

3.2.1. Data Source

We collected the multispectral Landsat imagery data based on historical wildfires in
Australia. We note that the Australian-based data does not restrict our methods from being
applied in other regions of the world.

We chose the Landsat series as the target satellites since they have a much higher
spatial resolution (30 m) than MODIS and Himawari-8 AHI. The major source is Landsat 8
OLI, which was launched on 11 February 2013 and has been in operation since then. To
find more images capturing fire smoke successfully, we extended the query time back to
2010, which allowed Landsat 5 TM (decommissioned on 5 June 2013) to be used as a minor
part of the data source. Landsat 7 was excluded due to black stripes in its imagery from
31 May 2003 caused by the failure of its scan line corrector. Landsat 9 was already launched
on 27 September 2021, but its data were still not publicly available at the time the collection
procedures commenced.

We queried and downloaded the surface reflectance Landsat imagery data, which
were processed with the algorithm “Nadir Corrected Bi-directional Reflectance Distri-
bution Function Adjusted Reflectance Coupled with a Terrain Illumination Correction
(NBART)” [35], from the Digital Earth Australia (DEA) Sandbox platform [36]. The
NBART Landsat imagery data were indexed by DEA with open access to the public and
can be queried and downloaded based on the range of location coordinates, time, and
bands specification.

The time and spatial information needed for querying the data were extracted from
historical fire datasets in South Australia (SA) and New South Wales (NSW) hosted on Data
SA [37] and Data NSW [38], respectively. Table 3 shows a sample record in the SA historical
fires dataset.
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Table 3. A sample record in the SA historical fires dataset.

Attributes Values

FID 5801
INCIDENTNU 202011011
INCIDENTNA Overland Corner/Calperum
INCIDENTTY Bushfire

FIREDATE 2020-11-15
FINANCIALY 2020/2021

FIREYEAR 2020
SEASON SPRING

DATERELIAB 1
IMAGEINFOR Landsat 8 17/11/2020
FEATURESOU 33
CAPTURESOU 4

HECTARES 1447.32
SHAPE_Leng 0.91332
SHAPE_Area 0.00141367

min_longi 140.372
max_longi 140.613

min_lati −33.7796
max_lati −33.6953
Sensor MODIS

geometry (POLYGON ((140.4123221680001
−33.6969758549999. . . )))

3.2.2. Data Collection Strategy and Processes

It involved two phases to construct the dataset: Imagery collection and tiling and
labelling.

1. Imagery Collection;
In this phase, the algorithms were developed to extract the time and location informa-
tion from the historical fire datasets from Data SA and Data NSW and to download
Landsat 5 TM and Landsat 8 OLI imagery in a bulk manner based on the derived
time and spatial information. We extended the data query time range to cover 16 days
(two revisits of the Landsat series) before and after the recorded fire date, which does
not strictly indicate the ignition date due to recording discrepancies. This also allowed
imagery for the same area to be collected at different times under different weather.
We also added a buffering area in the query with 5 km along both the longitude and
the latitude, based on the polygon coordinates of the burnt scars. The imagery files
returned from the query were visually examined to select those that successfully
captured fire smoke.
We reserved six spectral bands in the imagery data, including the RGB bands, NIR
band, SWIR_1 band, and SWIR_2 band. As shown in Table 4, the wavelengths of
the six selected bands of Landsat 5 TM and Landsat 8 OLI vary slightly, though each
corresponding band falls roughly in the same range. The majority of the imagery data
were collected from Landsat 8 OLI. The thermal band was not included because we
initially considered constructing a mixed imagery dataset from Landsat and Sentinel-
2 (A and B), which can be used to train a model potentially adaptive to different
sensors. Since Sentinel-2 does not have a thermal band, it would be better to exclude
the thermal band from the Landsat imagery. However, we will consider adding the
thermal band in future data collection where applicable.
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Table 4. Wavelengths of the selected bands of Landsat 5 TM and Landsat 8 OLI.

Band
Wavelength (µm)

Landsat 5 TM Landsat 8 OLI

Red 0.63–0.69 0.64–0.67
Green 0.52–0.60 0.53–0.59
Blue 0.45–0.52 0.45–0.51
NIR 0.76–0.90 0.85–0.88

SWIR_1 1.55–1.75 1.57–1.65
SWIR_2 2.08–2.35 2.11–2.29

From DEA Sandbox, we downloaded 477 imagery files covering fire sites with a wide
range of locations, of which eight imagery files were from SA and the rest from NSW.
There were 15 imagery files from Landsat 5 TM and the rest from Landsat 8 OLI. The
areas covered by the imagery files varied significantly, subject to the scale of the fires.

2. Tiling and Labelling.
In this phase, we tiled the imagery files to 256 × 256 patches with a 50% overlap rate
both horizontally and vertically. The overlap between the patches will help the model
learn to recognise fire smoke regardless of the position of the fire smoke in the patches.
The tiling process is demonstrated in Figure 3.

Figure 3. Overlapped tiling.

We labelled the patches into three classes: “Smoke”, “Clear”, and “Other_aerosol”.
“Other_aerosol” refers to non-smoke scenes that are not “Clear” either, such as scenes
with cloud, dust, haze, or other aerosol mixtures. Patches were labelled as “Clear” if
there is no visible aerosol or labelled as “Smoke” as long as they contain fire smoke.
Identifying fire smoke in the patches is not always easy, as shown in the bottom
images in Figure 2. To identify fire smoke more precisely for the labelling, we visually
examined the patches in false colour using the SWIR_2 band, the NIR band, and
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the blue band. Additional imagery files containing either only a clear background
or clouds were downloaded in this phase to balance the number of images in the
non-smoke classes.
After tiling and labelling 36 imagery files covering different fire sites, we obtained a
training dataset of 1836 256 × 256 images in total, with more than 600 images in each
class. The dataset covers a wide range of fire smoke scenes (e.g., fire smoke in different
shapes, scopes, colours, and density; fire smoke above different backgrounds; fire
smoke mixed with different types of clouds), which broadly reflects the complexity
of wildfire events and the challenges that the detection task faces. The experimental
results of this paper in Section 4 were obtained using this dataset.

3.3. VIB_SD

As mentioned in Section 1, the following needs were considered when designing VIB_SD:

• Using input imagery with multiple combinations of multiple spectral bands.
• Achieve the best possible detection accuracy;
• Lightweight in terms of parameters in the model for high efficiency and potential

on-board-of-small-satellite applications.

To achieve good accuracy, we integrated the attention mechanism, residual learning,
and the inception structure to assist the extraction of features that are related to fire smoke.
We tried to reduce module stacking to control the weight of the model.

Figure 4 shows the main structure of VIB_SD on the left and the structures of the stem
block, reduction block, and the classification head on the right.

Figure 4. Structure of VIB_SD.

The implementations of the key modules in VIB_SD will be introduced in Section 3.3.1.
To estimate the performance of VIB_SD, we trained the model using the USTC_SmokeRS
dataset and compared the results with those of SmokeNet, SAFA, and Inception-ResNet-V2 [33]
under the same training settings. The comparison will be shown in Section 3.3.2. As in-
dicated in Figure 4, the number of logits in VIB_SD was set to 512 when trained with the
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USTC_SmokeRS dataset since the dataset has six classes. This number was set to 256 when
training VIB_SD with the Landsat dataset as it only has three classes.

The loss function we used for the back propagation was sparse categorical cross-
entropy, as defined by the following formula:

Loss = −
C

∑
i=1

yi · log ŷi, (1)

where C is the number of classes,ŷi is the predicted probability of an instance being the
i-th class and yi is either 1 if the ground truth label is the i-th class or 0 if not.

3.3.1. Key Modules

1. Spatial Attention Module;
The spatial attention module aims to learn the weight for each pixel in each channel of
a feature map. The weights are learnt simultaneously. The differences in the weights
will help to infer the spatial associations of the pixels, which further helps the model
to make the prediction. The module is illustrated in Figure 5a: an input feature map
F = [ f1, f2, . . . , fc] ∈ RW×H×C is first reshaped to a 2D vector V = [v1, v2, . . . , vl ],
where l = W × H; vi = [pi

1, pi
2, . . . , pi

C] is a 1D vector representing the values of the
pixel at position i across all channels in F after F is flattened, and pi

j is the value of the
pixel at the jth channel; V is then passed to two fully connected layers both activated
by a sigmoid function; the dimension of the interim output was reduced by a ratio
r = 16 [10] to achieve less computing complexity; the output is then reshaped to
generate the spatial attention distribution S = [s1, s2, . . . , sC], where sj ∈ RW×H is the
spatial attention distribution of f j; the final output of the spatial attention module
Os = [os

1, os
2, . . . , os

C] is obtained by multiplying the spatial attention distribution S to
F, where os

j = sj × f j. Readers can refer to [10] for more details.

2. Channel Attention Module;
The channel attention module aims to learn the weight of each channel in a feature
map. This weight indicates the importance of the channel in predicting the class
of the image. The module is illustrated in Figure 5b: for any input feature map
F = [ f1, f2, . . . , fc] ∈ RW×H×C, a global average pooling is firstly operated to generate
a vector A = [a1, a2, . . . , aC], where aj ∈ R; A is then transformed using two fully
connected layers with a dimension reduction ratio r = 16 [10], activated by a Relu
function and a sigmoid function, respectively; the transformed output is the channel
attention distribution C = [c1, c2, . . . , cC], where cj ∈ R is the weight of channel f j; the
final output of the channel attention module Oc = [oc

1, oc
2, . . . , oc

C] is then obtained by
multiplying the channel attention distribution C to F, where oc

j = cj × f j. Readers can
refer to [10,31] for more details.

Figure 5. Attention modules. (a) Spatial attention. (b) Channel attention.
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3. Inception-Residual Module;
The inception-residual module aims to learn residuals associated with spatial features
in various scopes since information in the residuals may be important for detecting
early fire smoke that usually presents in a small area in the image. We used a four-
path inception block with kernels of different sizes to achieve this purpose, which is
different from the inception-residual block in [33]. The inception-residual module in
VIB_SD is illustrated in Figure 6.

Figure 6. Inception-residual module.

4. Inception-Attention Module.
The inception-attention module in VIB_SD aims to apply the attention mechanism to
spatial features in various scopes extracted using kernels of different sizes. Specifically,
we try to extract spatial features in three different scopes through three paths. In the
first path, we use a 3× 1 kernel followed by a 1× 3 kernel to extract spatial features in
small scopes. In the second path, we use a 7× 1 kernel followed by a 1× 7 kernel to
extract spatial features in medium scopes. In the third path, we use an 11× 1 kernel
followed by a 1 × 11 kernel to extract spatial features in large scopes. The three
paths are each followed by a spatial attention module. We use the other two paths
to generate feature maps containing less spatial information. One path only uses a
1× 1 kernel; the other uses a 3× 3 max-pooling layer followed by a 1× 1 kernel. The
feature maps generated from the five paths are concatenated, after which we use a
channel attention module to allocate weights to the channels in the new feature map.
This will help the model predictions based on the importance of the extracted spatial
features. The inception-attention module in VIB_SD is demonstrated in Figure 7.
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Figure 7. Inception-attention module.

3.3.2. Comparison with the State-of-the-Art

In this section, we will demonstrate the proposed lightweight model VIB_SD can
achieve competitive performance with the state-of-the-art models, even though it has much
fewer parameters.

We compared VIB_SD with SmokeNet, SAFA, and Inception-ResNet-V2 [33]. Smo-
keNet was the best model prior to SAFA, which is the state-of-the-art. Inception-ResNet-V2
contains a similar key component to VIB_SD: the inception-residual block. Many other
scene level classification DL models could be also used for fire smoke detection, particularly
those developed for remote sensing applications, for example, BoCF [39], RSSC-ETDL [40],
LPDCMEN [41], D-CNN [42], and KFBNet [43]. However, these models will not be ex-
plained provided they have been compared with SmokeNet and SAFA in [10,19], and
comparing models is not the aim of this work.

Since both SmokeNet and SAFA were trained using the USTC_SmokeRS dataset, we
trained VIB_SD and Inception-ResNet-V2 using the same dataset for the comparison.

We split the dataset for training (64%), validation (16%), and testing (20%) and set the
batch size as 32, the same as in [10,19].

We followed the same data pre-process: The input images for the training were resized
to 230× 230 before randomly cropping to 224× 224. Then, we augmented the training
images with random horizontal and vertical flipping. The input images for validation
and testing were resized to 224× 224 directly. All the images were standardised using the
“per_image_standardization” function provided in Tensorflow.

We used Adam for optimisation and dynamically reduced the learning rate from 0.01
by a factor of 0.2 when the validation loss failed to decrease after 20 epochs. We increased
our max epochs to 500 compared with 200 in [10,19] since we noticed the training accuracy
still has space to improve after 200 epochs. We applied early stopping when the validation
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accuracy failed to increase within 90 epochs, which aims to avoid redundant training while
guaranteeing the training performance.

We used accuracy and kappa-coefficient as the evaluation metrics since they were
adopted in [10,19]. The definition of accuracy and kappa-coefficient will be introduced in
Section 3.5.

Table 5 compares the number of parameters, accuracy, and kappa-coefficient of the
four models. The results show that VIB_SD significantly reduced the parameter number
with minor compromises in accuracy compared with the state-of-the-art model SAFA.
However, VIB_SD achieved higher accuracy and kappa-coefficient than both SmokeNet
and Inception-ResNet-V2.

Table 5. Model performance comparison.

Model Parameters Accuracy Kappa-Coefficient

SmokeNet 53.5 M 92.75% 0.9130
SAFA 84.2 M 96.22% 0.9546

Inception-ResNet-V2 54.4 M 91.33% 0.8958
VIB_SD 1.66 M 93.57% 0.9227

3.4. Experiments

The objectives of the experiments are to:

• Demonstrate the effectiveness of using additional IR bands in accurate fire smoke detection;
• Examine the contributions of NIR and SWIR bands to the model prediction accuracy.

We trained the VIB_SD model using five different band combinations. The band
combinations are RGB, RGBN, RGBNS1, RGBNS2, and RGBNS1S2, where N refers to the
NIR band, S1 refers to the SWIR_1 band, and S2 refers to the SWIR_2 band. The trained
models are named VIB_SD_RGB, VIB_SD_RGBN, VIB_SD_RGBNS1, VIB_SD_RGBNS2,
and VIB_SD_RGBNS1N2 accordingly.

With the five models, the contribution of different bands can be verified as follows: The
contribution of NIR can be verified by comparing VIB_SD_RGBN to VIB_SD_RGB; the contri-
bution of the SWIR bands can be verified by comparing VIB_SD_RGBNS1 or VIB_SD_RGBNS2
to VIB_SD_RGBN; the individual contribution of each SWIR band can be verified by comparing
VIB_SD_RGBNS1S2 to VIB_SD_RGBNS1 and VIB_SD_RGBNS2.

Experimental Settings

The models were trained using the multispectral moderate spatial resolution Landsat
imagery dataset we collected. We used 64% of the dataset for training, 16% for validation,
and 20% for testing. The number of images in each class is shown in Table 6.

Table 6. Components of the Landsat dataset.

Smoke Other_aerosol Clear Total

615 605 616 1836

All images in the training data were augmented with random horizontal and vertical
flipping. We did not apply standardisation since we achieved better training performance
without doing so. Augmentation was not applied to the images for validation and testing.

The loss function, regularisation, and optimisation are the same as the settings de-
scribed in Section 3.3.2.

We compared the five models in two ways:

• Each model was trained 10 times with random samples following the above split
ratios. The samples obtained may be different for each split. The overall performance
of the models was compared;
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• All the five models were trained using the same training samples and testing samples
in one random split. The performance of the models was compared.

The former trained the models with more variations of data, while the latter made the
models more comparable.

3.5. Evaluation Metrics

As mentioned in Section 3.3.2, we adopted accuracy and kappa-coefficient as the
evaluation metrics.

The formulas for calculating the accuracy and the kappa-coefficient are defined in
Table 7. N denotes the total number of images; i refers to a specific class; Nii is the number
of true positive predictions of class i; Ni+ denotes the number of images of class i that were
classified as other classes; N+i denotes the number of images of other classes that were
classified as class i.

Table 7. Formulas of accuracy and kappa-coefficient.

Predicted Class 1 · · · Predicted Class t

Actual Class 1 N11 · · · N1t

...
... · · ·

...

Actual Class t Nt1 · · · Ntt

Accuracy
∑t

1 Nii
N

Kappa-coefficient
N ∑t

1 Nii −∑t
1(Ni+N+i)

N2 −∑t
1(Ni+N+i)

4. Results

Based on the 10 results of each model, we obtained their accuracy range within the 95%
confidence interval of the mean value, best accuracy, the kappa-coefficient range within the
95% confidence interval of the mean value, and best kappa-coefficient, as listed in Table 8,
which also includes the number of parameters of the models.

Table 8. Performance of models using variant bands based on 10 results.

VIB_SD_RGB VIB_SD_RGBN VIB_SD_RGBNS1 VIB_SD_RGBNS2 VIB_SD_RGBNS1S2

Parameters 1.660 M 1.666 M 1.671 M 1.671 M 1.68 M
Accuracy 83.28± 1.57% 87.78± 1.38% 87.78± 1.12% 86.4± 0.09% 86.21± 1.18%
Best-Accuracy 86.45% 92.41% 89.97% 89.43% 89.16%
Kappa 0.7488± 0.0234 0.8164± 0.0207 0.8164± 0.0168 0.7956± 0.0135 0.7929± 0.0178
Best-Kappa 0.7964 0.8861 0.8491 0.8413 0.8373

Based on Table 8, VIB_SD_RGB has the worst accuracy and kappa-coefficient, while
VIB_SD_RGBN has the best accuracy and kappa-coefficient under both criteria. This implies
that adding the NIR band can improve the model performance. However, the accuracy
and kappa-coefficient decreased unexpectedly when the SWIR bands were added on top
of the NIR band. Particularly, the accuracy and kappa-coefficient saw a larger decrease
when both SWIR bands were added compared to when only one SWIR band was added.
Potential reasons that might be associated with such results will be discussed in Section 6.

Figure 8 shows the boxplots of the accuracy and kappa-coefficient from the 10 results
of the five models.
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Figure 8. Boxplots based on the 10 results. (a) Accuracy. (b) Kappa-coefficient.

The boxplots in Figure 8 indicate that VIB_SD_RGB is less effective than the other
four models. In contrast to what Table 8 implies by evaluating the models with mean
values, Figure 8 suggests that VIB_SD_RGBNS1 has the highest median accuracy and
kappa-coefficient.

Table 9 shows the results of the five models trained and tested using the same samples
obtained in one split. Since all models were trained with the same training samples and
tested with the same testing samples, the models can be compared more fairly, although the
results may not represent the best possible accuracy and kappa-coefficient of the models.
We used boldface font to indicate the best accuracy and kappa-coefficient.

Table 9. Performance of models using variant bands with the same samples.

Model Testing Accuracy Kappa-Coefficient

VIB_SD_RGB 83.20% 0.7483
VIB_SD_RGBN 84.82% 0.7723

VIB_SD_RGBNS1 85.64% 0.7842
VIB_SD_RGBNS2 85.64% 0.7843

VIB_SD_RGBNS1S2 86.45% 0.7966

Table 9 presents different results: the more bands a model has, the better performance
it can achieve. It is also worth noting that VIB_SD_RGBNS1 and VIB_SD_RGBNS2 achieved
the same prediction accuracy with slightly different kappa-coefficient. This means although
the two models both correctly predicted the same number of images, the true positive
predictions in each class varied.

Tables 8 and 9 and Figure 8 all imply that using additional IR bands can effectively
increase the model prediction accuracy. Particularly, adding the NIR band greatly improved
the prediction accuracy compared with only using the RGB bands.

Based on the fair comparison results in Table 9, it can be inferred that:
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• Both the SWIR_1 and SWIR_2 bands contain useful information for fire smoke detec-
tion; adding either one of them has a similar contribution to the improvement of the
prediction accuracy;

• The SWIR_1 and SWIR_2 bands contain distinctive information; adding both can
further improve the prediction accuracy.

5. Case Study

To examine the effectiveness of using multispectral moderate spatial resolution im-
agery for fire smoke detection, we used VIB_SD_RGBNS1S2 to conduct predictions on four
different fire smoke scenes captured by Landsat 8 OLI, which are shown in Figure 9. All four
scenes have not been used to generate the training dataset. We selected the best weights of
VIB_SD_RGBNS1S2, which yielded the highest accuracy of 89.16% for the predictions.

Figure 9. Fire smoke scenes. (a) Fire smoke mixed with thin clouds above the seaside. (b) Diffused
fire smoke at multiple sites under altocumulus clouds. (c) Cloud-free fire smoke (in the red circle)
over a very small geographic extent. (d) Cloud-free fire smoke plumes in different scales at two
different sites.
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The fire smoke scenes were tiled first, the prediction was then conducted on the
patches. Since the area covered in scene (a) is too small to be properly tiled with a 50%
overlap, we increased the overlap rate to 75% for scene (a) when conducting the prediction.
The overlap rate in the prediction for the other three scenes remained at 50%.

The prediction results of scene (a) are shown in Figure 10. In the prediction results,
the text above each patch shows the id of the patch, the predicted class (CLR refers to
“Clear”, SMK refers to “Smoke”, OA refers to “Other_aerosol”), and the probability of the
predicted class; the text under each patch shows the probabilities of the patch being “Clear”,
“Other_aerosol”, or “Smoke” from left to right.

Figure 10. Prediction results of scene (a) in Figure 9.
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In Figure 10, all patches were correctly predicted, except patch 0 was falsely predicted
as “Other_aerosol”.

The prediction results of scene (b) are shown in Figure 11.

Figure 11. Prediction results of scene (b) in Figure 9.

In Figure 11, patches 0, 1, 4, 5, 8, 12 were correctly predicted as “Smoke”. All other
patches should also be “Smoke” but were falsely predicted as “Other_aerosol”.

The prediction results of scene (c) are shown in Figure 12.
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Figure 12. Prediction results of scene (c) in Figure 9.

In Figure 12, the two patches on the top were both correctly predicted as “Clear” with
a high probability. The two patches on the bottom both contain fire smoke on a very small
scale; however, only the left patch was correctly predicted; the right patch was falsely
predicted as “Clear”.

Since scene (d) is very large and showing the results of all patches is impractical, we
selected the patches which have fire smoke in them to verify the prediction performance.
The prediction results of the fire smoke area in the top right corner in scene (d) are shown
in Figure 13. The prediction results of the fire smoke area in the middle of scene (d) are
shown in Figure 14.

Figure 13. Prediction results of the top right fire smoke area of scene (d) in Figure 9.

In Figure 13, almost all the patches were correctly predicted, except patch 6 and
patch 23, which both contain fire smoke but were falsely predicted as “Clear”.
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Figure 14. Prediction results of the middle fire smoke area of scene (d) in Figure 9.

In Figure 14, patches 52, 53, 66, and 67 were correctly predicted as “Smoke”, whereas
patches 51, 63, 64, 65, 76, 77, 78, and 79 were falsely predicted as either “Clear” or
“Other_aerosol”.

The above results demonstrate that:

• The VIB_SD_RGBNS1S2 model has a good overall accuracy;
• Fire smoke in the Landsat imagery can be detected, although sometimes with false

negatives;
• False negative detection more likely happens where the fire smoke is small or mixed

with clouds.

6. Discussion

The results shown in Table 9 complied with our expectation that using more spec-
tral bands can effectively improve the model prediction accuracy. However, the results
shown in Table 8 and Figure 8 posted one question: why did both VIB_SD_RGBNS2
and VIB_SD_RGBNS1N2 yield worse overall performance compared with VIB_SD_RGBN
and VIB_SD_RGBNS1.

A few factors could be related to this problem. One factor may be linked to the
imbalance of the fire smoke scenes in the dataset. This may be inferred from the skewed
distribution of the accuracy and kappa-coefficient of the models in Figure 8. Fire smoke
could be obscured by clouds, in dark colours hidden in a dark background, in the corners
or on the edges of the images, or simply too small or too thin. When randomly splitting
the samples, the training samples may majorly contain some of the fire smoke scenes, but
the testing samples majorly contain other fire smoke scenes. This can lead to compromised
training and testing performance. In contrast, when the testing samples comply with
the training samples, the models would be likely to achieve better training and testing
performance. In this case, the overall performance of the models might change if they are
trained more times. However, repeating the training process is very time-consuming and
will not guarantee to show us different results. We may need to expand the dataset in a
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proper way to yield a more evenly distributed training and testing samples in the random
splitting process.

Another factor could be related to whether the model can learn the information in
the additional bands appropriately. The backpropagation process needs to effectively
update the weights of all the input bands and extract useful features for the prediction.
If the weights of some spectral bands cannot be properly updated, such bands would be
treated as noises by the model and lead to counterproductive performance. This could be
associated with the size of the training dataset or the model design. To solve this, we may
need to train the models using a larger dataset or further adjust the model design. In our
future work, we will look to expand the current dataset and fine-tune our model structure
for further investigation.

The case study results in Section 5 demonstrate that the VIB_SD_RGBNS1N2 model
can effectively detect fire smoke. Particularly, fire smoke mixed with or obscured by clouds
in scene (a) and (b) and fire smoke over a very small geographic extent in scene (c) were
correctly detected in one or more patches despite false negative predictions occurring in
some other fire smoke patches.

Although the prediction stability of the model still needs to be improved, it has the
potential to be used for early fire detection. We notice that while a few “Smoke” patches
were misclassified as “Clear” or “Other_aerosol”, “Clear” or “Other_aerosol” patches
were rarely misclassified as “Smoke”. This implies the false positive rate in predicting
“Smoke” is low, so the positive prediction for “Smoke” should be trustworthy. Since the
prediction is conducted on overlapped patches, although a few fire smoke patches might
be misclassified, the fire alarm could be still triggered, provided one fire smoke patch can
be correctly predicted.

Nonetheless, we will aim to improve the prediction stability in our future work. Apart
from expanding the training data and adjusting the model design, we will examine whether
the thermal band can further improve the model performance.

Furthermore, we will try to use multi-source satellite imagery to achieve timely detec-
tion of early fire smoke. The temporal resolution of Landsat 8 OLI is eight days, which can
hardly satisfy the demand for timely detection. However, multiple low temporal resolution
satellites will collectively provide a much higher temporal resolution. Therefore, we will
also collect imagery datasets from more satellites (e.g., sentinel-2) in future research, aiming
to timely detect early fire smoke using imagery from multiple satellites.

7. Conclusions

To facilitate satellite-based scene-level fire smoke detection, we constructed a multi-
spectral imagery dataset from moderate spatial resolution satellites: Landsat 5 TM and
Landsat 8 OLI. We developed a lightweight model structure VIB_SD that could be po-
tentially adopted for on-board-of-small-satellite applications with significantly reduced
parameters but only minor compromises in the accuracy. Based on VIB_SD, we trained five
models with the dataset using different band combinations to evaluate the effectiveness
of using multispectral moderate spatial resolution imagery in early fire smoke detection.
Our experiment results demonstrated that training the models using all three additional
IR bands can effectively improve the detection accuracy. We used the VIB_SD_RGBS1S2
model to conduct predictions on real fire smoke scenes. The results showed that the model
can effectively detect early fire smoke in various scenarios, although the prediction stability
still needs further investigation. Our future work will aim to refine the VIB_SD structure,
expand the current dataset, collect new datasets from other satellites (e.g., Sentinel-2), and
try to integrate multiple data sources for the timely detection of early fire smoke.
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