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Abstract: Plastic pollution is a critical global issue. Increases in plastic consumption have triggered
increased production, which in turn has led to increased plastic disposal. In situ observation of plastic
litter is tedious and cumbersome, especially in rural areas and around transboundary rivers. We
therefore propose automatic mapping of plastic in rivers using unmanned aerial vehicles (UAVs) and
deep learning (DL) models that require modest compute resources. We evaluate the method at two
different sites: the Houay Mak Hiao River, a tributary of the Mekong River in Vientiane, Laos, and
Khlong Nueng canal in Talad Thai, Khlong Luang, Pathum Thani, Thailand. Detection models in the
You Only Look Once (YOLO) family are evaluated in terms of runtime resources and mean average
Precision (mAP) at an Intersection over Union (IoU) threshold of 0.5. YOLOv5s is found to be the most
effective model, with low computational cost and a very high mAP of 0.81 without transfer learning
for the Houay Mak Hiao dataset. The performance of all models is improved by transfer learning
from Talad Thai to Houay Mak Hiao. Pre-trained YOLOv4 with transfer learning obtains the overall
highest accuracy, with a 3.0% increase in mAP to 0.83, compared to the marginal increase of 2% in
mAP for pre-trained YOLOv5s. YOLOv3, when trained from scratch, shows the greatest benefit from
transfer learning, with an increase in mAP from 0.59 to 0.81 after transfer learning from Talad Thai to
Houay Mak Hiao. The pre-trained YOLOv5s model using the Houay Mak Hiao dataset is found to
provide the best tradeoff between accuracy and computational complexity, requiring model resources
yet providing reliable plastic detection with or without transfer learning. Various stakeholders in the
effort to monitor and reduce plastic waste in our waterways can utilize the resulting deep learning
approach irrespective of location.

Keywords: deep learning; transfer learning; plastic; UAVs

1. Introduction

Plastic is used extensively in households and industry. Plastic takes hundreds of years
to degrade, so it affects both the terrestrial and marine ecosystems. Marine litter has been
recognized as a serious global environmental issue since the rise of the plastic industry
in the mid-1950s [1]. Hence, the need for research into plastic management solutions is
self-evident [2]. The UN Environment Programme (UNEP) estimates that 15% of marine
litter floats on the sea’s surface, 15% remains in the water column, and 70% rests on the
seabed. Up to 80% of the plastic in the ocean is from land-based sources and reaches the
ocean via rivers [3]. Nevertheless, riverine plastics are understudied compared to marine
plastics [4]. The earliest research on riverine plastic began in the 2010s, with a study on a

Remote Sens. 2022, 14, 3049. https://doi.org/10.3390/rs14133049 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14133049
https://doi.org/10.3390/rs14133049
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-5992-0010
https://orcid.org/0000-0001-7262-4566
https://orcid.org/0000-0002-3378-2411
https://doi.org/10.3390/rs14133049
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14133049?type=check_update&version=3


Remote Sens. 2022, 14, 3049 2 of 29

sample of waterways in Europe and North America, particularly the Los Angeles area [5]
and the Seine [6].

Current government regulations do not adequately address marine litter and plastics.
There is also a gap in regional frameworks addressing the issue of plastic litter. Establishing
proper waste collection systems and changing peoples’ perceptions are two major hurdles
to plastic litter prevention, and both goals remain a distant dream in southeast Asian
countries. Thoroughly surveying plastic litter distribution in rural areas manually is time-
consuming and complex, so automatic mapping of plastic litter using unmanned aerial
vehicles (UAVs) is a better option, especially in inaccessible locations.

UAVs (abbreviations used throughout the paper are listed in “Abbreviations” in
alphabetical order) are relatively low-cost and can operate at low-altitudes with minimal
risk. They provide images with high resolution and high image acquisition frequency [7].
UAV-based real-time data collection of imagery is important for surveillance, mapping,
and disaster monitoring [8,9]. UAVs are widely used for data collection, object detection,
and tracking [10]. UAVs can be categorized as low- or high-altitude platforms [11] and
can be roughly categorized into three classes: small, medium, and large, according to their
maximum altitude and range. The maximum altitude for small drones is usually below
300 m; the maximum altitude for large drones is normally above 5500 m. Altitudes vary
within these ranges for medium size UAVs. Regarding maximum range, small UAVs can
typically cover less than 3 km, while medium UAVs can cover 150–250 km, and large ones
can cover even larger distances. High-altitude UAVs can image large areas quickly, while
low attitude UAVs can capture more detailed features in smaller fields of view. High-
altitude UAV scans can be used as a preliminary to reduce the overhead involved in finding
the correct areas for more detailed surveys. Once a high-altitude survey is completed, the
plastic in a river can be precisely detected and catalogued based on a follow-up low-altitude
UAV survey. Since UAVs at such low-altitudes can provide centimeter-level or better pixel
resolution with high accuracy [12], they open the door for ordinary individuals to collect
and analyze high-quality imagery through automatic methods irrespective of whether
satellite or aerial imagery is available from formal sources. Given a specific camera selected
and mounted on a UAV, an appropriate flight altitude should be determined to obtain
a suitable ground sampling distance (GSD) for measuring sizes of items captured in the
images and for efficiently covering the target area. The GSD is the size of the projection of
one pixel on the ground and is a function of the focal length of the camera, flight altitude,
and physical dimensions of sensor’s pixels. The GSD places a lower limit on the precision
achievable for points on the ground [13]. In addition, flight altitude, camera properties
determine the resolution of the images captured. Though we obtain good resolution with
a 4K camera at 30 m, other researchers [13–15] conducted flights at ranges of 6–10 m for
better image resolution. UAVs flying at a low-altitude provide high-resolution data, which
are useful in detecting plastic, metal, and other litter in rivers. The focal length also affects
image quality and plays a vital role in obtaining accurate annotations and precise plastic
detection [16]. Simple color-based approaches to categorization of litter in UAV images [17]
are less dependent on flight altitude and GSD than object detectors, which typically require
high resolution images captured at lower altitudes.

UAVs have already been used in monitoring marine macro-litter (2.5 cm to 50 cm) in
remote islands [18–20], which suggests that low-cost UAVs are suitable for low-altitude,
high-resolution surveys (from 6 m to 30 m). Estimates of plastic litter in global surface
waters are available [2], but we are far from having a global inventory of litter along shores
due to the low efficiency and limited extent of surveys along shores thus far [21]. However,
UAV images have been found effective for analyzing the spatial distribution of plastic
litter cross-shore and long-shore, as well as for measuring the sizes of detected items using
semi-automated image processing techniques [22]. Moreover, UAV applications were found
to be effective for monitoring coastal morphology, the extent of morphological changes,
and interaction of marine litter dynamics on the beach [23].
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Floating litter surveys conducted by UAVs at altitudes of 20 m and 120 m have been
found to be more accurate than beach litter surveys at altitudes of 20 m and 40 m [24].
The authors attribute this to seawater being a more homogeneous background than sand.
Floating litter surveys, however, have the risk of losing the UAV while it is flying over
the sea, and beach litter surveys are less affected by environmental challenges. According
to Martin et al. [20], manual screening of UAV images of beaches taken from a height of
ten meters was 39 times faster and 62% more accurate than the standard ground-based
visual census method. Researchers also pointed out that training citizen scientists to anno-
tate plastic litter datasets acquired through UAVs is effective [25,26]. However, machine
learning-based automatic mapping combined with manual screening was found to be even
faster and more cost-effective [19,20].

Since rigorous interpretation of aerial images from UAVs by humans is time-consuming,
error-prone, and costly, modern deep learning (DL) methods using convolutional neural
networks (CNNs) are a preferable alternative [27]. DL is already well established in re-
mote sensing analysis of satellite images. UAV technology integrated with deep learning
techniques is now widely used for disaster monitoring in real time, yielding post-disaster
identification of changes with very higher accuracy [28,29]. DL has emerged as an ex-
tremely effective technique in modern computer vision due to its ability to handle a variety
of conditions, such as scale transformations, changes in background, occlusion, clutter,
and low resolution, partly due to model capacity and partly due to the use of extensive
image augmentation during training [30]. DL has proven superior to traditional machine
learning techniques in many fields of computer vision, especially object detection, which
involves precise localization and identification of objects in an image [17,31]. Classification,
segmentation, and object detection in multispectral ortho imagery through CNNs has been
successful [32]. In UAV mapping applications involving detection of objects, changes in
viewing angles and illumination introduce complications, but CNNs nevertheless extract
useful distinguishable features. CNNs are very effective for per-pixel image classification.

Although deep learning methods have been shown to provide accurate and fast de-
tection of marine litter [33], little research integrating UAVs and deep learning has been
conducted in the context of monitoring plastics on beaches and rivers. Once a model has
been trained, processing UAV images for detection of plastics with the model is straight-
forward. However, deep learning methods require a great deal of computing resources
for offline training and online inference, as models are required to perform well across
various conditions, increasing their complexity. Furthermore, training of modern object
detection models requires a great deal of manual labor to label data, as the data preparation
requires accurate bounding boxes in addition to class labels, making the data engineering
more intensive than that required for classification models. To minimize these costs, plastic
monitoring application should analyze georeferenced UAV patch images ensuring appro-
priate image quality and little redundancy. To determine whether a given training dataset
is sufficiently representative for the plastic detection in similar georeferenced patch images
after model development, we advocate evaluation of the method at multiple locations.

It is time consuming to train a deep neural network for detection from scratch. It can
be more effective to fine-tune an existing pre-trained model on a new task without defining
and training a new network, gathering millions of images, or having an especially powerful
GPU. Using a pre-trained network as a beginning point rather than starting from scratch
(called transfer learning) can help accelerate learning of features in new datasets with small
amounts of training data while avoiding overfitting. This approach is therefore potentially
particularly useful for detection of plastic in a modest-scale dataset. OverFeat [34], the
winner of the localization task in the ILSVRC2013 competition, used transfer learning.
Google DeepMind uses transfer learning to build deep Q-network agents that use pixels
from 210 × 160 color video at 60 Hz and the game score as input and learn new games
across different environments with the same algorithms and minimal knowledge. This
model was the first artificial agent to learn a wide variety of challenging tasks without
task-specific engineering [35]. Nearly every object detection method in use today makes use
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of transfer learning from the ImageNet and COCO datasets. The use of transfer learning
provides the following advantages [36]:

1. higher baseline performance;
2. less time to develop the model;
3. better final performance.

We therefore investigated the performance of pretrained and tabula rasa object detec-
tion models for plastic detection using data acquired from a Mekong river tributary, the
Houay Mak Hiao (HMH) river in Vientiane, Laos, as well as a canal in the Bangkok area,
Khlong Nueng in Talad Thai (TT), Khlong Luang, Pathum Thani, Thailand. We explored
how a model trained on one location performs in a different location in terms of compute
resources, accuracy, and time.

This paper makes three main contributions to the state of the art in riverine plastic
monitoring:

1. We examine the performance of object detection models in the You Only Look Once
(YOLO) family for plastic detection in ortho imagery acquired by low-altitude UAVs.

2. We examine the transferability of the knowledge encapsulated in a detection model
from one location to another.

3. We contribute a new dataset comprising images with annotations for the public to
use to develop and evaluate riverine plastic monitoring systems.

We believe that this research will provide practitioners with tools to save computing
resources and manual labor costs in the process of developing deep learning models for
plastic detection in rivers. The techniques introduced here should scale up to various types
of landscapes all over the world.

2. Materials and Methods

In this section, we describe the study area for the research and the materials and
methods adopted to perform experiments on the task of plastic detection from UAV imagery
in two locations through deep learning.

2.1. Study Area

We gathered data at two locations, viz., Khlong Nueng Canal, Talad Thai, Pathum
Thani (TT), Thailand and Houay Mak Hiao river in Vientiane, Laos (HMH) as in Figure 1.
HMH is in a sub-basin of the Mekong River basin with a land area of 436.91 km2, located in
Vientiane, the capital city of Laos as in Figure 2. The study area was at coordinates 17.95◦N
102.91◦E. This river contributes pollutant to the Mekong River basin. TT is in Khlong Luang
district, Thailand with coordinates 14.08◦N 100.62◦E, as shown in Figure 3. The study areas
were selected based on their contribution to pollution downstream and the ease and safety
of accessibility for data collection considering UAV survey zone restriction in Laos and
Thailand. As no study of individual plastic object detection in these areas has yet been
performed, they were found to be ideal for evaluating plastic monitoring methods.

2.2. Materials

UAV surveys 30 m above the terrain were carried out at Houay Mak Hiao river (HMH)
in Vientiane, Laos and Khlong Nueng Canal (TT) in Talad Thai, Pathum Thani, Thailand
with a DJI Phantom 4 with a 4K resolution camera resulting in a ground sampling distance
of 0.82 cm to assess the plastic monitoring methods for these waterways.

The computing resources comprised two environments: (1) Anaconda with Jupyter
running on a personal computer with an Intel®Core™ i7-10750H CPU @2.60 GHz, 16 GB
RAM, and NVIDIA GeForce RTX 2060 GPU with 6 GB GPU RAM, and (2) Google Co-
laboratory Pro. The personal computer was used for YOLOv3 and YOLOv5, and Google
Colaboratory Pro was used for YOLOv2 and YOLOv4.
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OpenStreetMap, 2021).

2.3. Methodology

In this section, the proposed methodology for detection of plastic in rivers is discussed,
along with the various deep learning model architectures used in the experiments. We aim
to assess model performance in the task of identifying plastic in rivers using georeferenced
ortho-imagery and deep learning approaches utilizing minimal computing resources, as
shown in Figure 4.
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2.3.1. Deep Learning Models for Object Detection

CNNs can locate multiple objects in an image, effectively separating foreground from
background [37]. We thus evaluate various CNN-based object detection models on riverine
plastic detection. Object detection has two main functions: to find regions of interest and to
classify those regions. Regions of interest can be obtained in two ways, by region proposal
methods or direct regression. Region proposal methods involve two stages, the first of
which involves finding regions of interest through color contrast and superpixel straddling,
and the second of which involves classifying the resulting proposals with CNNs. The direct
regression method, on the other hand, is a one step-method in which region proposals and
object detection are carried out in a single step. Single-step models tend to find it difficult
to locate small objects in an image due to a limited number of possible bounding boxes at
fine levels of detail. YOLO is the most popular single-stage detector. It carries out both the
bounding box identification and object classification tasks in a single pass of the network.
R-CNN is a representative of two-stage detectors. Some of the older detection models use a
full CNN classifier such as VGG-16 or ResNet as the classifier while most modern detectors
such as YOLO use a CNN classifier as a backbone for feature extraction followed by a small
“head” for classification.

Early versions of YOLO had better performance in both speed and accuracy than extant
models such as MobileNetSSDv2 and Faster R-CNN. YOLO makes use of a single CNN
to detect objects by processing the entire image at once without creating region proposals.
It predicts a detection tensor directly based on a small set of possible bounding boxes.
Features at the deeper layers used for the final detection have receptive fields spanning the
entire image, making it less likely to predict false positives in background regions. YOLO
models output bounding box coordinates, confidence scores, and object class scores directly
with an image as input. The confidence scores signify the probability that a predicted box
contains an object. YOLO is fast, running at 45 FPS in real-time, and Fast YOLO is faster at
155 FPS [38]. The original YOLO architecture predicts just two bounding boxes per grid
cell [39]. The total of 98 bounding boxes per image is small compared to the 2000 boxes
predicted by Selective Search. Though most of the early detection frameworks depended
on heavy feature extractors such as VGG-16, which uses 30.69 billion floating operations in
a single pass for a single image of 224 × 224 resolution, YOLO used the more lightweight
GoogLeNet architecture, with only 8.52 billion operations [40], albeit with lower accuracy
as a backbone than VGG-16. YOLO has no localization error and hence is less likely to
predict false positives in the background [41].

YOLOv2 was introduced to improve the speed-accuracy trade-offs in YOLO. The
custom GoogLeNet [42] network was replaced by DarkNet19, and batch normalization [43]
was introduced. The fully connected layers in GoogLeNet were also removed, and anchor
boxes with aspect ratios learned through k-means were introduced along with multiscale
training. Despite these improvements, YOLOv2 has low recall [38], so YOLOv3 was
subsequently introduced with further improvements. YOLOv3 is tuned for small objects
with multi-scale features [44]. YOLOv3 is much more complicated than the previous model,
and the speed and accuracy can be varied by changing model size. YOLOv3 provides
good average precision (AP) at an Intersection over Union (IoU) threshold of 0.5, but
the AP decreases at higher IoU levels because YOLOv3 does not predict ground truth
bounding box boundaries very accurately. YOLOv3-SPP (spatial pyramid pooling) adds a
SPP module, which uses the concept of the spatial feature pyramid, realizing both local and
global features. This solves the issue of image distortion caused by cropping and zooming
the image area and repeated feature extraction by the CNN. The smaller version of YOLOv3,
called Tiny YOLOv3, is designed for mobile machine learning and low-powered computing
devices such as the Internet of Things (IoT) devices and shows better performance in terms
of speed accordingly [45]. The size of the Tiny YOLOv3 CNN is about 20% that of YOLOv3,
and it runs several times faster, making it usable for real-time detection on small devices.
From YOLOv2 to YOLOv3, the computational complexity in terms of GFLOPs (billion
floating-point operations), which mostly depends on the number and types of layers used
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in the network, increases from 30 to 140, with an increase in mAP from 21% to 33%. The
added complexity, however, means it cannot be considered a light-weight model [44].

YOLOv4 and YOLOv5 were developed to increase the speed of YOLOv3 while keeping
high accuracy. YOLOv3 was known not to perform well on images with multiple features
or on small objects. Among other improvements, YOLOv4 uses the Darknet53 backbone
augmented with cross-stage partial blocks (CSPDarknet53), improving over YOLOv3 using
only 66% of the parameters of YOLOv3, accounting for its fast speed and accuracy [46].
The YOLOv5 model pushes this further, with a size of only 27 megabytes (MB), compared
to the 244 MB of YOLOv4. YOLOv5 models pre-trained on MS COCO achieve mAPs
from 36.8% (YOLOv5s) to 50.1% (YOLOv5x). YOLOv5 and YOLOv4 have similar network
architectures; both use CSPDarknet53 as the backbone, and both use a path aggregation
network (PANet) and SPP in the neck and YOLOv3 head layers. YOLOv5’s reference
implementation is based on the PyTorch framework for training rather than the Darknet
C++ library of YOLOv4. This makes YOLOv5 more convenient to train on a custom dataset
to build a real time object detection model.

Yao et al. [47] consider the fact that UAVs normally capture images of objects with
high interclass similarity and intraclass diversity. Under these conditions, anchor-free
detectors using point features are simple and fast but have unsatisfactory performance due
to losing semantic information about objects resulting from their arbitrary orientations. The
authors’ solution uses a stacked rotation convolution module and a class-specific semantic
enhancement module to extract points with representations that are more class-specific,
increasing mAP by 2.4%. Future work could compare YOLO-type detectors with improved
point feature-based detectors such as R2 IPoints. However, it is difficult to detect small
objects with dense arrangements using this detector due to the sensitiveness of IoU to the
deviation of the position of small objects.

The use of transformer neural networks [48] has led a new direction in computer
vision. Transformers use stacked self-attention layers to handle sequence-to-sequence tasks
without recursion, and transformers have recently been applied to vision tasks such as
object detection. The vision Transformer (ViT) was the first high accuracy transformer
for image classification [49]. However, ViT can only use small-sized images as input,
which results in loss of information. The detection transformer (DETR) [50] performs
object detection and segmentation. DETR matches the performance of highly optimized
Faster R-CNN on the COCO dataset [51]. The Swin transformer [52] has been proposed
as a backbone for computer vision. Swin stands for shifted window which is a general-
purpose backbone for computer vision. Swin is a hierarchical transformer that limits the
self-attention computation to non-overlapping local windows and allows cross-window
connection through shifted window to address the issue of a large variation in scale and
resolution of images, leading to relatively good efficiency on general hardware, running
in time linear in the image size. The Swin transformer achieves current state-of-the-art
performance on the COCO object detection task (58.7 box AP and 51.1 mask AP on COCO
test-dev) and ADE20K semantic segmentation (53.5 mIoU on ADE20Kval).

CNNs have a natural inductive bias for image processing problems, such as translation
equivariance and contrast adaptivity, but the transformer lacks these properties, resulting
in requirements for much larger datasets or stronger data enhancement [53] to achieve
the best performance. Since our goal is to perform well on moderate-sized datasets using
modest compute resources, we do not consider transformers at this time.

2.3.2. Selection of Object Detection Models

Various object detection models have been used in research related to plastic litter
detection. Majchrowska et al. [54] use EfficientDet-D2 to localize litter and EfficientNet-B2
to classify waste into seven categories. The researchers obtained 75% classification accuracy
and 70% mean average precision.

Córdova et al. [55] conducted a comparative study on state-of-the-art approaches for
object detection using the PlastOPol and TACO datasets and found that YOLOv5-based
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detectors perform well in litter detection. On the PlastOPol dataset, YOLO-v5x obtains a
best AP@0.5 of 84.9, and YOLO-v5s obtains best AP@0.5 of 79.9. On the TACO dataset,
YOLO-v5x obtains a best AP@0.5 of 63.3, and YOLO-v5s obtains a best AP@0.5 of 54.7
for YOLO-v5s. YOLO-v5s was found to be 4.87, 5.31, 6.05, and 13.38 times faster than
RetinaNet, Faster R-CNN, Mask R-CNN, and EfficientDet-d5, respectively.

Kraft et al. [56] use calibrated onboard cameras with GNSS and GPS to capture
images and use YOLOv3, YOLOv4, and EfficientDet for object detection [57]. They find
that YOLOv4 and EfficientDet-d3 show the highest mean average precision (mAP) for
trash detection. Kumar et al. [58] analyze the efficiency of YOLOv3 and YOLOv3-tiny in
separating waste into bio-degradable and non-biodegradable types. Their research shows
that YOLOv3 has better predictive performance than YOLOv3-tiny, with accuracies of
85.29% and 26.47%, respectively. This research used 6437 images drawn from six classes
(cardboard, paper, glass, plastic, metal, and organic waste) and found that YOLOv3-
tiny needs four times less computation time than YOLOv3, demonstrating a wide speed-
accuracy tradeoff.

Fulton et al. [59] evaluate the performance of object detection algorithms (YOLOv2,
Tiny-YOLO, Faster R-CNN with Inception v2, and Single Shot MultiBox Detector (SSD)
with MobileNetV2 for underwater trash detection and removal of trash using autonomous
underwater vehicles. (AUVs). The models detect three classes of objects in the J-EDI
(JAMSTEC E-Library of Deep-Sea Images) dataset, i.e., plastic, remotely operated vehicles
(ROVs), and a “bio” class (plants, fish, detritus, etc.). All the above-mentioned models
are fine-tuned from their pre-trained states. The authors’ transfer learning method for
the YOLO model only updates weights in the last three layers. The authors find that the
YOLOv2 models have good speed, but YOLOv2 and tiny-YOLO have low mAP. They
also find that transfer learning increases accuracy for the bio-class to a level sufficient for
deployment in real time scenarios.

Tata et al. [60] describe the DeepPlastic project for marine debris detection in the
epipelagic layer of the ocean. This project includes the development of the DeepTrash
dataset comprising annotated data captured from videos of marine plastic using off-the-
shelf cameras (GoPro Hero 9) in three study sites in California (South Lake Tahoe, Bodega
Bay, and San Francisco Bay) and also incorporating the J-EDI dataset to represent marine
plastics in different locations. The research used low-cost GPUs and the deep learning
architectures YOLOv4-tiny, Faster R-CNN, SSD, and YOLOv5s for detection with the aim
to build a real-time monitoring system. The YOLOv5s model achieved a mAP of 85%,
which is higher than that of the YOLOv4-tiny model (84%). These models outperformed a
model for detection of deep-sea and riverine plastic by the University of Minnesota [59],
which had mAPs of 82.3% using YOLOv2 and 83.3% using Faster R-CNN. The authors
therefore selected YOLOv4-tiny and YOLOv5s, which have good accuracy and sufficiently
high inference speeds for real-time object detection. Since there are several models with
different speed-accuracy tradeoffs in the YOLOv5 group of detectors, various YOLOv5
models have been used in research related to the detection of plastic [61]. This family
of object detection models offers flexibility in terms of architecture and can be adjusted
for the best performance in different tasks. From YOLOv5s to YOLOv5l, the number of
parameters, depth, and width increases steadily resulting in higher model complexity
but better accuracy. We use the YOLO family of algorithms for plastic detection in the
river in this research due to its good performance in terms of speed and accuracy of
detection in real-world environments with limited computing resources and data. We
trained different pre-trained YOLOv2 models (YOLOv2, YOLOv2-tiny), YOLOv3 models
(YOLOv3, YOLOv3-tiny, and YOLOv3-spp), YOLOv4 models (YOLOv4, YOLOv4-tiny),
and YOLOv5 models (YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x) to perform plastic
detection in UAV images. In addition, fine-tuning the pre-trained models, we also trained
each of the aforementioned models from scratch to determine which approach performs
best with limited time and capacity. As previously discussed, YOLOv5s was previously
found to perform best for plastic detection in the epipelagic layer of the ocean, with a mAP
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of 0.851 [60], so we use a similar methodology to evaluate performance of plastic detection
models for rivers using various YOLO architectures according to mAP at different IoUs.

2.3.3. Transfer Learning

Training deep CNNs from scratch is difficult, as they need a large amount of training
data and labeling expertise. Transfer learning can speed up model development compared
to training from scratch by fine-tuning some or all of the layers of a pretrained network to
perform well on a new dataset [62]. Transfer learning reduces training time, as the model
does not need to be trained for many iterations to give good performance. There are two
methods of transfer learning, feature extraction and fine-tuning. Feature extraction uses
knowledge of features learned on one model to extract meaningful features from a new
dataset. In this transfer learning setup, weights of the feature extraction portion of the
pre-trained network are not updated during training on the new dataset. Instead, some
of the deepest layers are unfrozen, and the model is trained with a low learning rate for
both the new classifier layer and the previously existing deepest layers of the base model.
Transfer learning via fine-tuning, on the other hand, allows all the layers or some of the
layers of the base model to be unfrozen, and model is retrained end-to-end, again with a
very low learning rate. The outcome is to fine-tune the weights of the pre-trained network
to extract high-order features more appropriate for the specific new task.

2.3.4. Performance Assessment of Transfer Learning

In addition, in-sample test performance, we also assess each model’s capacity for
knowledge transfer to another location. Deep learning models learn features representative
of their training datasets. Early layers tend to learn general features, while later layers
tend to learn features that are high level and more specific to the training dataset. We
perform transfer learning on models pre-trained on one location, fine-tuning them by either
(1) freezing weights of all the initial layers of the network of the pre-trained models and
then changing the weights of the last two layers of the respective network, allowing them
to learn features from data of the new location, or (2) fine-tuning all parameters in every
layer. The best weights for the best model for plastic detection at one location are used
as a basis for training at the other location. The same performance metrics are computed
for each of the transferred models to find the best approach to transfer learning about the
plastic detection task to a new location at low computing cost with minimal compute time.

The following basic steps are required to perform the comparison of deep learning
techniques.

a. Data preparation: Prepare the data set in the appropriate format (e.g., DarkNet
format for YOLOv4-tiny and PyTorch format for YOLOv5s) and then split it into
training and validation sets.

b. Input: Prepare images and label files for training and validation dataset along with
the pre-trained weights and configuration file for training.

c. Output: Save trained model to a file containing optimized weights.

(A) Training models from pre-trained networks (S1):

To train neural networks for plastic detection beginning with pre-trained networks,
we perform the following steps.

i. Load pre-trained weights (optimized for the COCO dataset) into the model.
ii. Freeze the initial N1 layers and unfreeze the last N2 layers of the model.
iii. Select a hyperparameter configuration from Table 1.
iv. Train the model and stop training when average loss stops decreasing.
v. Record final average loss.
vi. Repeat steps iii–v for all combinations of hyperparameters.
vii. Select the model with hyperparameters that achieve the lowest average loss.
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Table 1. Selection of hyperparameters.

Parameters Value

Batch size * 16, 32, 64 and 128
Learning rate 0.01 to 0.001

No. of filters in YOLO layers 18 **
* YOLOv5 requires a batch size 4 for all experiments due to limited GPU memory; ** Replace number of filters
(80 + 5) · 3 for COCO with (1 + 5) · 3 in the convolutional layer before each YOLO layer.

(B) Training from scratch (S2):

The following steps are undertaken to carry out model training from scratch. The
steps are the same as for pre-trained networks (S1) with modifications to step (ii) as follows:

i. Load the pre-trained weights (trained on COCO dataset).
ii. Unfreeze all layers and initialize weights to random values from Gaussian distri-

butions having mean zero and standard deviation
√

(2/n), where n denotes unit’s
fan in (number of input units). This initialization controls the initial output and
improves convergence empirically [63].

iii. Select a subset of hyperparameters from Table 1.
iv. Train the model and stop training when average loss stops decreasing.
v. Record average loss.
vi. Repeat steps iii–v for all combinations of hyperparameters.
vii. Select the model with hyperparameters that achieve the lowest average loss.

(C) Transfer learning:

To evaluate transfer of learning from one location to another, the following steps are
carried out.

i. Collect best weights for each model and each type of training at one location.
ii. Load the best weights for one location and one model.
iii. Freeze initial N1 layers and fine-tune the last N2 layers.
iv. Select a subset of hyperparameters from Table 1.
v. Train the model in a new location and stop training when average loss stops decreasing.
vi. Calculate average loss.
vii. Repeat steps iv–vi for all combinations of hyperparameters, for all models.

2.3.5. Performance Indicators

We evaluate the performance of detection models using the performance metrics
described in this section.

(A) Mean Average Precision (mAP):

It is unrealistic to expect perfect matches between the ground truth and predicted
bounding boxes due to variations in labeling and quantization. The area under a precision
versus recall curve gives the average precision for a specific class for the set of predictions of
a model. The average of this value, calculated over all classes and multiple IoU thresholds,
is called mAP. mAP measures the performance of an object detector based on the IoU
between the predicted and ground truth bounding boxes across all classes in the dataset.
The Jaccard similarity or IoU is a measure of how well a predicted bounding box fits a
ground truth bounding box for an object, defined by

IoU =
Area of Overlap
Area of Union

. (1)

The numerator is the area of the intersection of the predicted and ground-truth bound-
ing boxes, while the denominator is the total area covered by the union of the predicted
and ground truth bounding boxes. IoU ranges from 0 to 1. Closer rectangles give higher
IoU values. If the IoU threshold is 0.5, and a predicted bounding box has an IoU with a
ground-truth bounding box of more than 0.5, the prediction is considered a true positive
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(TP). If a predicted bounding box has IoUs less than 0.5 for all ground-truth bounding
boxes, it is considered a false positive (FP). IoU is well suited to unbalanced datasets [64].
We use an IoU threshold of 0.5.

mAP is a widely used metric and the benchmark for comparing models on the COCO
data set. AP gives information about the accuracy of a detector’s predicted bounding boxes
(precision) and the proportion of relevant objects found (recall). Precision is the number of
the correctly identified objects of a specific class in class, divided by the total number of
objects of that class in an image set.

Precision =
TP

TP + FP
(2)

In the equation, TP and FP are the total number of true positives and false positives.
The recall is the number of correctly detected objects divided by the total number of

objects in the dataset. It signifies how well the ground truth objects are detected.

Recall =
TP

TP + FN
(3)

FN is the number of false negatives. A false negative is a ground truth bounding
box with insufficient overlap with any predicted bounding box [65]. Perfect detection is a
precision of 1 at all recall levels [66]. There is usually a tradeoff between precision and recall;
precision decreases as recall increases and vice-versa. AP averages the model’s precision
over several levels of recall.

(B) F1-Score:

F1 is a measure of a model’s accuracy on a dataset at a specific confidence level and IoU
threshold. It is the harmonic mean of the model’s precision and recall [67]. It ranges from 0
to 1. A F1-score of 1 indicates perfect precision and recall. The maximum F1 score refers
to the best harmonic mean of precision and recall obtained from a search over confidence
score thresholds for the test set.

F1− Score =
2 · Precision · Recall
Precision + Recall

(4)

3. Results
3.1. Dataset Preparation

The image dataset comprised tiled ortho-images cropped to a size of 256 × 256 pixels
corresponding to 2 m × 2 m patches of terrain. We annotated 500 tiles for each river using
the YoloLabel tool [68] to record the bounding box for each identifiable piece of plastic in
each image. Sample images from Laos (HMH) and Talad Thai (TT) datasets are shown in
Figure 5.

Manual labeling of plastic in the image is a work-intensive task. However, labelers
have done their best to identify only plastic though there will be some unavoidable errors
in the labeling due to difficulty in perceiving the material [69]. Plastic litter is the bulk of
the litter in the marine environment and the greatest threat to marine ecosystems. Marine
plastic is the biggest concern for the world, most of the marine plastic comes from rivers, etc.

The images were randomly assigned to training and validation sets in a ratio of 70:30
for preparing object detection models using different versions of YOLO. The objects in the
HMH dataset tended to be brighter and more distinct-shaped than in the TT dataset, in
which the objects were darker, occluded with sand, and mostly trapped among vegetation.
Variations in datasets should result in learning of better features and more robust predic-
tions. In most cases, only a small portion of each image contains plastic. Most deep learning
methods do not generalize well across different locations [70]. The datasets represent only
floating plastic and plastic visible on riverbanks. Submerged plastic was not considered.
Similar analysis of the training data representative of plastic has been conducted in the
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context of automatic mapping of plastic using a video camera and deep learning in five
locations of Indonesia [71].
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Figure 5. Sample images from datasets used for training deep learning models for plas-
tic detection in rivers. (a) HMH in Laos with co-ordinates (887,503.069 m, 1,995,416.74 m);
(887,501.986 m, 1,995,416.537 m); and (887,501.418 m, 1,995,417.692 m) (b) TT in Thailand with
co-ordinates 674,902.457 m, 1,557,870.257 m); (674,903.403 m, 1,557,860.135 m); and (674,925.317 m,
1,557,850.965 m) under WGS_1984_UTM_Zone_47N.

3.2. Experimental Parameter Sets

The individual experiments we carried out to assess the performance of plastic detec-
tion with various models in the YOLO family for two locations are tabulated in Table 2. The
parameters that are considered for YOLOv3 and YOLOv5 families are batch size 4, epoch
100, and batch size 16 for YOLOv2 and YOLOv4 families with a learning rate 0.001. Mostly,
the batch size is adjusted according to the GPU memory with possible allowed high value
to simulate model [72]. The models are set up to train on HMH and TT datasets separately
from pre-trained networks and from scratch with various YOLO models. Transfer learning
from one location HMH (Laos) to another location TT (Thailand), and vice-versa is per-
formed taking the best weights from the best model in each YOLO family to transfer the
knowledge to different locations through fine-tuning.

We evaluate the experimental results through the calculation of mAP, computational
complexity in terms of GFLOPs, and F1-score. We also calculate the total volume of plastic
in terms of estimated surface area covered by plastic objects, using the pixel size in cm
and each bounding box’s size. We also analyze the smallest and largest plastics that can be
detected by the best model. We report the results in this section.
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Table 2. Plastic detection experiment details using Houay Mak Hiao river (HMH) and Khlong Nueng
Canal (TT) datasets.

Experiment Training Dataset Testing Dataset Training Method Models
(YOLO Family)

I

HMH TT

Scratch
YOLOv2

YOLOv2-tiny
YOLOv3

YOLOv3-tiny
YOLOv3-spp

YOLOv4
YOLOv4-tiny

YOLOv5s
YOLOv5m
YOLOv5l
YOLOv5x

II Using pre-trained model

III

TT HMH

Scratch

IV Using pre-trained model

V HMH TT Fine-tuning YOLOv5s, YOLOv4, YOLOv3-spp,
and YOLOv2 trained in II

VI TT HMH Fine-tuning YOLOv5s, YOLOv4, YOLOv3-spp,
and YOLOv2 trained in IV

VII Plastic volume estimation using pre-trained YOLOv5s in terms of surface area

3.3. Experiments I, II, III, and IV: Plastic Detection in UAV Imagery

Plastic detection results without transfer learning given in Tables 3 and 4 are for the
HMH and TT datasets, respectively.

The performance of YOLOv2-tiny is clearly worse than that of YOLOv2, YOLOv3, and
YOLOv3-tiny as small objects tend to be ignored by YOLOv2. This is likely due to the lack
of multi-scale feature maps in YOLOv2 [73]. Previous research [59] found that YOLOv2
provides mAP 47.9 with average IoU 54.7 in the plastic detection compared to 0.809 at
IoU 0.5 for YOLOv4 pre-trained here. YOLOv3-tiny scratch has the best inference time of
0.004 s when there is no detection in the HMH dataset.

In our research, the F1 is highest with a value of 0.78 for pre-trained YOLOv4,
YOLOv5s, and YOLOv5l for HMH, while the highest F1 is 0.78 and 0.61 for the TT, for pre-
trained YOLOv4 and YOLOv5s. Overall, pre-trained YOLOv5s is small, requiring 13.6 MB
for weights on disk, and has lower computational complexity than other models, requir-
ing only 16.3 GFLOPs compared to YOLOv4’s 244.2 MB model size and 59.563 GFLOPs.
Moreover, YOLOv5s takes less time to train than the other models. It exhibits fast inference
speed and produces real-time results. Because YOLOv5 is implemented in PyTorch, while
YOLOv4 requires the Darknet environment, it is slightly easier to test and deploy in the
field, though we note that both Darknet models and PyTorch models can be converted to
ONNX and deployed easily. With all of these considerations in mind, we conclude that
YOLOv5s is better than YOLOv4 for plastic detection in rivers.
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Table 3. Experiment I and II results. Detection Performance on HMH dataset.

Model Training Time (h) Inference Time per
Image (s) Model Size (MB) Computational

Complexity (GFLOPs)
mAP @ 0.5 IoU for
Validation Dataset

Map @ 0.5 IoU for
Testing Dataset

Highest F1
Score

Computing
Platform

Pre-trained YOLOv2 0.359 4.74 192.9 29.338 0.723 0.442 0.66

Google Colab
YOLOv2 scratch 0.367 4.84 192.9 29.338 0.581 0.259 0.6

Pre-trained YOLOv2-tiny 0.166 3.53 42.1 5.344 0.467 0.293 0.38

YOLOv2-tiny scratch 0.23 3.52 42.1 5.344 0.348 0.286 0.44

Pre-trained YOLOv3 tiny 0.082 0.01 16.5 12.9 0.714 0.366 0.7
Intel®Core™

i7-10750H CPU
@2.60 GHz, 16 GB
RAM, and GPU as
NVIDIA GeForce

RTX
2060

YOLOv3-tiny scratch 0.082 0.004 16.5 12.9 0.555 0.336 0.58

Pre-trained YOLOv3 0.259 0.018 117 154.9 0.735 0.396 0.72

YOLOv3 scratch 0.258 0.017 117 154.9 0.479 0.311 0.54

Pre-trained YOLOv3-spp 0.266 0.017 119 155.7 0.787 0.402 0.75

YOLOv3-spp scratch 0.279 0.014 119 155.7 0.59 0.265 0.57

Pre-trained YOLOv4 1.884 6.85 244.2 59.563 0.809 0.463 0.78

Google Colab
YOLOv4 scratch 1.961 5.54 244.2 59.563 0.766 0.373 0.74

Pre-trained YOLOv4-tiny 0.899 2.92 22.4 6.787 0.758 0.418 0.76

YOLOv4-tiny scratch 0.968 2.72 22.4 6.787 0.732 0.355 0.73

Pre-trained YOLOv5s 0.146 0.019 13.6 16.3 0.810 0.424 0.78

Intel®Core™
i7-10750H CPU

@2.60 GHz, 16 GB
RAM, and GPU as
NVIDIA GeForce

RTX 2060

YOLOv5s scratch 0.149 0.017 13.6 16.3 0.740 0.272 0.67

Pre-trained YOLOv5m 0.195 0.041 40.4 50.3 0.787 0.434 0.77

YOLOv5m scratch 0.197 0.04 40.4 50.3 0.695 0.331 0.70

Pre-trained YOLOv5l 0.265 0.027 89.3 114.1 0.810 0.422 0.78

YOLOv5l scratch 0.262 0.032 89.3 114.1 0.669 0.176 0.67

Pre-trained YOLOv5x 0.402 0.036 166 217.1 0.781 0.367 0.76

YOLOv5x scratch 0.399 0.042 166 217.1 0.710 0.316 0.69
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Table 4. Experiment III and IV results. Detection Performance on Talad Thai dataset.

Model Training Time (h) Inference Time per
Image (s)

mAP@ 0.5 IoU for
Validation Dataset

mAP @ 0.5 IoU for
Testing Dataset Highest F1 Score Computing Platform

Pre-trained YOLOv2 0.649 4.74 0.499 0.452 0.52

Google Colab
YOLOv2 scratch 0.648 4.94 0.368 0.327 0.44

Pre-trained YOLOv2-tiny 0.162 3.53 0.328 0.256 0.33
YOLOv2-tiny scratch 0.174 3.43 0.302 0.220 0.32

Pre-trained YOLOv3-tiny 0.087 0.007 0.495 0.483 0.53
Intel®Core™ i7-10750H
CPU @2.60 GHz, 16 GB

RAM, and GPU as
NVIDIA GeForce RTX

2060

YOLOv3-tiny scratch 0.088 0.007 0.409 0.562 0.47

Pre-trained YOLOv3 0.282 0.017 0.571 0.743 0.59
YOLOv3 scratch 0.286 0.016 0.359 0.358 0.43

Pre-trained YOLOv3-spp 0.285 0.016 0.570 0.748 0.60
YOLOv3-spp scratch 0.28 0.016 0.390 0.511 0.41

Pre-trained YOLOv4 1.86 4.54 0.608 0.553 0.78

Google Colab
YOLOv4 scratch 1.89 4.63 0.544 0.524 0.75

Pre-trained YOLOv4-tiny 0.949 2.85 0.609 0.568 0.59
YOLOv4-tiny scratch 0.44 3.33 0.560 0.434 0.54

Pre-trained YOLOv5s 0.146 0.029 0.610 0.767 0.61

Intel®Core™ i7-10750H
CPU @2.60 GHz, 16 GB

RAM, and GPU as
NVIDIA GeForce RTX

2060

YOLOv5s scratch 0.155 0.025 0.530 0.622 0.59

Pre-trained YOLOv5m 0.22 0.036 0.562 0.761 0.57
YOLOv5m scratch 0.221 0.036 0.426 0.494 0.49

Pre-trained YOLOv5l 0.273 0.026 0.579 0.767 0.60
YOLOv5l scratch 0.283 0.027 0.442 0.529 0.49

Pre-trained YOLOv5x 0.41 0.035 0.575 0.779 0.57
YOLOv5x scratch 0.393 0.035 0.363 0.456 0.45
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3.4. Experiment V and VI: Transfer Learning from One Location to Another

The results of the transfer learning experiments are shown in Table 5.

Table 5. Experiment V and VI results. Performance comparison between models trained from scratch,
without transfer learning, and with transfer learning by location based on mAP.

YOLO
Family

Best Model
(Pre-Trained)

Evaluation
Dataset

Mean Average Precision (mAP)

Training from
Scratch

Pretraining on COCO;
No Transfer Learning

Transfer
from

Pretraining on
COCO + Transfer

YOLOv5 YOLOv5s
HMH 0.74 0.81 TT 0.83

TT 0.53 0.61 HMH 0.62

YOLOv4 YOLOv4
HMH 0.76 0.80 TT 0.83

TT 0.54 0.60 HMH 0.61

YOLOv3 YOLOv3-spp HMH 0.59 0.79 TT 0.81
TT 0.39 0.57 HMH 0.59

YOLOv2 YOLOv2
HMH 0.58 0.72 TT 0.77

TT 0.37 0.49 HMH 0.51

Transfer learning with fine-tuning is only marginally better than transfer learning
without fine-tuning, but both are substantially better than training from scratch. Though
mAP on HMH for YOLOv4 and YOLOv5s transfer without fine-tuning is similar (0.81),
with fine-tuning, YOLOv4 shows a 3% increase in mAP compared to 1% for YOLOv5s.
The number of ground truth objects in HMH is 592 compared to 796 for TT so we see that
the model of TT transfers better than HMH with a 2.7% increase in mAP by YOLOv3-spp
to 0.81 in compared to training from scratch but still, it is less than by mAP obtained
by transfer learning using pre-trained YOLOv4 and YOLOv5s. The YOLOv3-spp model
is large (119MB) and has high computational complexity (155.7 GFLOPs) compared to
YOLOv5s (13.6 MB and 16.3 GFLOPs). YOLOv4 and YOLOv5 are also faster than YOLOv3.
Hence, considering model simplicity, speed, and accuracy, the pre-trained YOLOv5s model
for HMH is good for detection with or without transfer learning.

3.5. Experiment VII: Estimation of Plastic Volume in Different Detection Cases

Experiments I-VI lead to the conclusion that the pre-trained YOLOv5s is the best in
terms of mAP, inference time, and detection resources. The minimum and maximum size
of detected plastic objects are measured using the surface area covered by the detected
bounding box using the best pre-trained YOLOv5s model are shown in Figure 6. The
smallest and largest ground truth bounding box areas are approximately 26 cm2 and
4422 cm2 for HMH, while they are 30 cm2 and 3336 cm2 for TT, respectively.

The smallest size of plastic detected is approximately 47 cm2 in HMH, while the largest
size of plastic detected is approximately 7329 cm2, in TT. The applicable size range for
detected plastic depends not only on the models but also on the GSD. The GSD, in turn,
depends on the flight altitude and geometric properties of the camera (focal length and
sensor size) [74]. Here, we used a single camera for capturing images at both locations, so
higher spatial resolution images captured at lower altitudes using the same high-resolution
camera could improve the detection of the smaller plastic objects.
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4. Discussion

In this section, we discuss the detection results, examining specific examples of detec-
tion using the best pre-trained YOLOv5s model. We also discuss the performance of the
model under transfer to a new location.

We find that bright plastics are well detected by the Houay Mak Hiao (HMH) models,
while darker and rougher plastics are better detected by the Talad Thai (TT) models. Neither
model detects soil-covered or very bright plastic well. This result is sensible, as the HMH
data include varied types of rigid plastic objects that are bright and irregular, while the TT
data include objects that are more irregular and darker in appearance. Under both transfer
and direct training, we find that the TT dataset is more difficult than HMH. The TT dataset
has a wider variety of plastic in terms of shape, color, and size.

4.1. Analysis of Sample Plastic Detection Cases with/without Transfer Learning from HMH to TT

First, we consider transfer learning from HMH to TT. Figure 7 shows some of the good
results obtained by a model trained on HMH then fine-tuned on TT. The HMH model was
originally trained on brighter and rigid objects; hence, the brighter rigid objects in the TT
dataset are well detected. However, plastic filled with sand and soil or affected by shadow
are ignored.

Figure 8 shows some of the weak results for the HMH model fine-tuned on TT.
Amorphous plastic is detected with high confidence by the TT model but with lower
confidence by the HMH model fine-tuned on TT. The HMH model appears biased toward
rigid and bright objects.
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Figure 9 shows some cases in which no plastic is detected by either the TT model or
the HMH model after fine-tuning on TT. The plastic is very bright and looks like water or
sticks. Apart from the brightness, it is known that the turbidity or cloudiness of the water
also affects detection in shallow water, making plastic detection difficult [75]. Shadows and
reflections also make detection difficult [19]. Hence, image capture should be performed
under optimal weather conditions from a nadir viewing angle [76]. Unavoidable remaining
shadows in the image can be rectified through statistical analysis or by applying filters
such as gamma correction [77]. In addition, the flight height of the UAV, temperature, and
wind speed need to be considered to minimize the effects of atmospheric condition on
the images.
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Figure 9. Both the TT model and the HMH model transferred to TT fail in some cases. Neither model
detected any plastic in these images from TT.

4.2. Analysis of Sample Plastic Detection Cases with/without Transfer Learning from TT to HMH

Next, we consider transfer learning from TT to HMH. Figure 10 shows good results
obtained by training on TT then transferring to HMH with fine-tuning. The TT model was
originally trained on the amorphous dark objects typical of the TT dataset; hence, these
types of objects in the HMH dataset are well detected, showing that model does retain
some positive bias from the initial training set.
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Figure 11 shows weak results for the TT model fine-tuned on HMH. Rigid, bright, and
colored objects are well detected with high confidence by the HMH model but with lower
confidence by the TT model fine-tuned on HMH, as the TT data are biased toward dark
irregular objects.
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Figure 11. Fine-tuning the TT model on HMH is weak or fails in some cases. (a) HMH model result
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Figure 12 shows some cases in which no plastic is detected by either the HMH model
or the model using transfer learning from TT to HMH. Neither model detected objects that
are soil-like or bright objects floating in the water. Transparent plastic partially floating on
the water surface is particularly difficult to identify, as it is affected by the light transmitted
through and reflected by the plastic [72].
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4.3. Analysis of Performance of YOLO Models for Detection

Models generally improve in accuracy over time as new techniques are introduced,
but it is important to evaluate the various models’ effectiveness in terms of computational
complexity and operational considerations as well as in terms of accuracy. In our exper-
iments, the mAP measurements of the best pre-trained models are higher than those of
the best scratch-trained models at the same number of training epochs. The mAP results
from the pre-trained YOLOv4 and YOLOv5s models are similar, with values of 0.809 and
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0.81 in HMH, respectively, and 0.608 and 0.610 in TT, respectively. This result is consistent
with the results of research by the Roboflow team on a custom trained blood cell detection
model [78]. A custom dataset of 364 images with three classes (red blood cells, white blood
cells, and platelets) was used in their research. The researchers found that YOLOv4 and
YOLOv5s had similar performance, with 0.91 mAP @ 0.5 IoU for red blood cells and white
blood cells.

According to our method, the pre-trained YOLOv5s model outperforms other YOLO
algorithms regardless of the study area. However, the plastic in the HMH dataset appears
to be easier to detect than in the TT dataset. Training the pre-trained YOLOv5s model on
the HMH or TT dataset gives the best result that dataset in terms of speed, accuracy, and
compute resources. We also find that transfer learning improves mAP. Transfer learning
from HMH to TT with fine-tuning performs better than training on TT only in the case
of bright objects, while TT to HMH works better for dark objects. Pre-trained YOLOv4
and YOLOv5s on TT before fine-tuning on HMH shows high mAP. In other work [78],
YOLOv5s has been found to be as accurate as YOLOv4 on small datasets, while YOLOv4
can make better use of large datasets. YOLOv5s has good generalization, while YOLOv4
has more accurate localization. However, YOLOv5s is 88% smaller than YOLOv4 and easier
to deploy than YOLOv4, as the YOLOv5 implementation is based on PyTorch, making it
easier to deploy in production.

Multiple kinds of research on plastic detection in UAV images using deep learning al-
gorithms have found that plastic can be detected using deep learning techniques [72,76,79],
but choosing appropriate models is important. Research with different versions of YOLO
on object detection [80,81] have found that YOLOv3 is less capable than YOLOv4 and
YOLOV5, perhaps because YOLOv3 uses DarkNet53, which has low resolution for small
objects [44]. YOLOv4 extends YOLOv3 with the “bag of freebies” and “bag of specials,”
that substantially increase accuracy [46]. Research applying YOLOv5s and YOLOv4-tiny
models in the epipelagic layer in the ocean [60] found that YOLOv5s performed the best,
with high mAP and F1 scores. They found that the VGG19 architecture obtained the best
prediction, with an overall accuracy of 77.60% and F1 score of 77.42% [25]. The F1 score
of 77.6% is a big improvement over previous research [20] on automatic detection of litter
using Faster R–CNN, which obtained an F1 score which found an F-score of 44.2 ± 2.0%.
Consistent with these results, our research shows that YOLOv5s is a fast, efficient, and
robust model for real time plastic detection. YOLOv5 uses a Focus structure with CSP-
Darknet53 to increase speed and accuracy [81]. Compared to DarkNet53, this structure
utilizes less CUDA memory during both forward and backward propagation. YOLOv5 also
integrates an anchor box selection process that automatically selects the best anchor boxes
for training [82]. Overall, we find that the lightweight YOLOv5s is the most user-friendly
model and framework for implementing real-world plastic detection.

4.4. Challenges in Plastic Detection and Future Opportunities for Improvement

There are several challenges involved in detecting plastic in rivers. The reflectance
properties of water and other objects influences plastic detection. Previous research [83]
found that floating debris caught in river plumes can be identified as plastic when images
are analyzed by the floating debris index (FDI) and spectral signatures. Clear water is
efficient in absorbing light in the near infrared (NIR) spectrum, while floating plastic and
weeds reflect NIR. These spectral properties make floating plastic more visible depending
on the spectrum used. Seaweed absorbs shortwave infrared (SWIR) light at 1610 nm
more than seawater or plastic, but SWIR absorption has high variation due to atmospheric
correction. Timber has peak reflection in the NIR band and is also reflects strongly in the
red and SWIR ranges. These properties would help distinguish plastic litter from other
materials more effectively if hyperspectral sensors were adopted.

It is sometimes difficult to detect plastic in RGB images due to their limited spectral
range and precision [84]. A UAV with a RGB camera may be accurate enough for larger
objects but will depends on the objects having distinctive color and weather condition
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being good for the best performance [85]. UAVs with multispectral or hyperspectral sensors
can achieve centimeter-level or decimeter-level resolution while flying at an altitude of
several hundred meters and have great potential for monitoring of plastic debris [86].
Though multi-spectral and hyperspectral remote sensing is still in its early stages, it has
long-term and global potential for monitoring plastic litter, due to the broader wavelength
range and differing absorption and reflectance properties of different materials at different
wavelengths. Multispectral sensors can also improve litter categorization. Research by
Gonçalves et al. [87] used multispectral orthophotos to categorize litter types and materials
applying the sample angle mapping (SAM) technique considering five multispectral bands
(B, R, G, RedEdge, and NIR) providing a F1 score of 0.64. However, dunes, grass, and
partly buried items were challenges for the litter detection process obtaining a low number
of false positives (FP) was crucial to outputting reliable litter distribution estimates.

According to research by Guffogg et al. [88], spectral feature analysis enables detection
of synthetic material at a sub-pixel. The minimum surface cover required to detect plastic
on a sandy surface was found to be merely 2–8% for different polymer types. The use of
spectral features in the near and shortwave infrared (SWIR) regions of the electromagnetic
spectrum (800–2500 nm) that characterize plastic polymers can deal with the challenges that
occurred due to variable plastic size and shape. Spectral absorption features at 1215 nm and
1732 nm proved useful for detecting plastic in a complex natural environment in Indian
Ocean, whereas RGB video and imagery can be complicated by variable light and the color
of plastic. Other research [89] has used SWIR spectral features to find large plastics and
found that airborne hyperspectral sensors can be used to detect floating plastics covering
only 5% of a pixel. However, plastic detection can be affected by the presence of wood or
spume, and spectral feature analysis is susceptible to plastic transparency [90].

The characteristics of plastic litter in a river also affect detection quality. Plastic litter
does not have a definite shape, size, or thickness in every river. In a study of some beaches
of Maldives, more than 87% of litter objects larger than 5 cm were visible in images captured
with a UAV at 10 m altitude with a 12.4 MP camera [19]. However, on beaches and in
rivers, small plastic objects cause confusion, especially in crowded images [55], while
larger plastic items are easily identified, as they span a greater number of pixels and are
distinct from surrounding objects. Some plastics can be easily identified through color, but
color fades with time, and plastic structure can also degrade in response to exposure to
natural elements. Some plastics are flexible, with no distinct edges, and are easily occluded
by water and sand. In addition, some transparent objects that look like plastic can be
easily misclassified as plastic. Watergrass and strong sunlight reflections interfere with
riverine plastic monitoring, as do natural wood debris and algae [91–93]. Different types of
vegetation have unique roles in trapping different litter categories, and this phenomenon
can increase the difficulty of plastic litter detection [22]. However, including such images
in the training set does improve the robustness of the trained model. We therefore include
such data in the training sets in this research. Shadows also disrupt the quality of visual
information and can impair detectors [94]. It is also difficult to collect a large amount of
training data in a short period of time in real environments.

The UAV platform and the performance of its sensors are also important for obtaining
good image quality with low observation time. High-performance sensors operated at
high-altitudes can cover a broader area more quickly than a low-performance sensor
at low-altitudes [95]. The wide coverage area achievable with UAV mapping provides
more detailed information on the distribution of plastic in a given area than other survey
methods [96]. In future work, the use of hyperspectral sensors [95,97] should be explored,
as plastic reflects various wavelengths differently than other objects and materials. Imaging
conditions such as brightness, camera properties, and camera height affect the quality of
the image. It is also difficult to obtain high quality marine plastic litter monitoring data
under different wind speeds and river velocities. Such operating conditions can affect
plastic detection accuracy by 39% to 75% [98]. Detection of plastics is easier when the study
area has a homogenous substrate on the riverbank.
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In summary, plastic detection and monitoring is highly dependent on plastic character-
istics and imaging conditions. The global orthomap could be combined with the grid-wise
plastic litter detections over the whole study region to create detailed litter maps that would
guide stakeholders in effective management of plastic litter.

5. Conclusions

In this paper, we have examined the performance of object detection models in the
YOLO family for plastic detection in rivers using UAV imagery with reasonable computing
resources. Pre-trained deep learning YOLO models transfer well to plastic detection in
terms of precision and speed of training. YOLOv5s is small size with low computational
complexity and fast inference speeds, while YOLOv4 is better at localization. Transfer
learning with fine-tuning using YOLOv5s improves plastic detection. Hence, we find the
pre-trained YOLOv5s model most useful for plastic detection in rivers in UAV imagery.

We make the following main observations from the experiments.

1. Our experiments provide insight into the spatial resolution needed by UAV imaging
and computational capacity required for deep learning of YOLO models for precise
plastic detection.

2. Transfer learning from one location to another with fine-tuning improves performance.
3. Detection ability depends on a variety of features of the objects imaged including the

type of plastic, as well as its brightness, shape, size, and color.
4. The datasets used in this research can be used as references for detection of plastic in

other regions as well.

This research introduces a simple to use and efficient model for effective plastic detec-
tion and examines the applicability of transfer learning based on the nature of the available
plastic samples acquired during a limited period of time. The study should provide plastic
management authorities with the means to perform automated plastic monitoring in rivers
in inaccessible areas of rivers using deep learning techniques. Furthermore, the research
was carried out over limited river stretches during a specific limited period of time. Hence,
a UAV survey with wide coverage area and longer flight time may add more prominent
data, which would in turn enhance the performance of the detection of plastic.
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Abbreviations

The abbreviations including in the text are reported alphabetically.

AP Average Precision
AUVs Autonomous Underwater Vehicles
CNNs Convolutional Neural Networks
COCO Microsoft Common Objects in Context
CSM Class-specific Semantic enhancement Module
CSP Cross Stage Partial
DETR Detection Transformer
DL Deep Learning
FDI Floating Debris Index
FN False Negative
FP False Positive
FPS Floating Point Systems
GFLOPs One billion Floating-point Operations Per Second
GNSS Global Navigation Satellite System
GPS Global Positioning System
GPU Graphics Processing Unit
GSD Ground Sampling Distance
HMH Houay Mak Hiao
ILSVRC2013 ImageNet Large Scale Visual Recognition Challenge 2013
IoU Intersection over Union
J-EDI JAMSTEC E-Library of Deep-sea Images
mAP Mean Average Precision
NIR Near Infrared
PANet Path Aggregation Network
R-CNN Region-Based Convolutional Neural Networks
RNN Recurrent Neural Network
R2 IPoints Rotation-Insensitive Points
ROVs Remotely Operated Vehicles
SAM Sample Angle Mapping
SPP Spatial Pyramid Pooling
SRM Stacked rotation convolution module
SSD Single Shot Detector
SWIR Short-wave Infrared
TP True Positive
TT Talad Thai
TACO Trash Annotations in Context Dataset
UAVs Unmanned Aerial Vehicles
UNEP United Nations Environment Programme
VGG-16 Visual Geometry Group-16
YOLO You Only Look Once
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