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Abstract: Reliable cropland parcel data are vital for agricultural monitoring, yield estimation, and
agricultural intensification assessments. However, the inherently high landscape fragmentation and
irregularly shaped cropland associated with smallholder farming systems restrict the accuracy of
cropland parcels extraction. In this study, we proposed an adaptive image segmentation method
with the automated selection of optimal scale (MSAOS) to extract cropland parcels in heterogeneous
agricultural landscapes. The MSAOS method includes three major components: (1) coarse segmenta-
tion to divide the whole images into homogenous and heterogeneous regions, (2) fine segmentation
to determine the optimal segmentation scale based on average local variance function, and (3) region
merging to merge and dissolve the over-segmented objects with small area. The potential cropland
objects derived from MSAOS were combined with random forest to generate the final cropland
parcels. The MSAOS method was evaluated over different agricultural regions in China, and derived
results were assessed by benchmark cropland parcels interpreted from high-spatial resolution images.
Results showed the texture features of Homogeneity and Entropy are the most important features for
MSAOS to extract potential cropland parcels, with the highest separability index of 0.28 and 0.26,
respectively. MSAOS-derived cropland parcels had high agreement with the reference dataset over
eight tiles in Qichun county, with average F1 scores of 0.839 and 0.779 for the area-based classifi-
cation evaluation (Fab) and object-based segmentation evaluation (Fob), respectively. The further
evaluation of MSAOS on different tiles of four provinces exhibited the similar results (Fab = 0.857
and Fob = 0.775) with that on eight test tiles, suggesting the good transferability of the MSAOS over
different agricultural regions. Furthermore, MSAOS outperformed other widely-used approaches in
terms of the accuracy and integrity of the extracted cropland parcels. These results indicate the great
potential of using MSAOS for image segmentation in conjunction with random forest classification to
effectively extract cropland parcels in smallholder farming systems.

Keywords: cropland parcel extraction; image segmentation; optimal segmentation scale; region
merging; random forest
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1. Introduction

Cropland parcels are the basic unit for agricultural production. The extents and
locations of cropland parcels are fundamental datasets for crop type identifications, crop
yield estimation, agricultural resources allocation, and economic planning [1–4]. In addition,
due to increasing agricultural mechanization and intensification, cropland parcels have
markedly enlarged and expanded [5]. Despite the benefits of improving productivity and
economic development, the enlarging cropland parcels may increase the risk of habitat
fragmentation and biodiversity loss [6]. Therefore, there was a critical need for accurate
and timely maps of cropland parcels so as to meet the needs of agriculture production
management and ecological consequences assessment.

Particularly, the cropland parcels in smallholder farming system were generally
smaller than 2 hectares (ha), suggested by [7], which may introduce unexpected errors
for extracting them accurately. Traditionally, cropland parcels were primarily extracted
based on the visual interpretations of high spatial resolution airborne or satellite images [8].
Although this manual method has been widely used in various scientific communities [9],
it was limited to small areas due to the considerable labor and time demands. With the ad-
vent of satellites with high spatiotemporal resolution observations and rich spectral bands
(e.g., Sentinel-2, Planet, and Worldview-3), more and more semi-automated or automated
cropland parcel extraction approaches have been developed [8,10–12]. In general, extracting
cropland parcels mainly includes two kinds of methods: deep learning and geographical
object-based image analysis (GeOBIA). The former was mainly based on neural networks
to explore comprehensive features by automated learning from training datasets, which
have been widely used in various research fields [13–18]. Nevertheless, the performances
of this deep learning-based method highly depend on the quantity and quality of training
samples, restricting the efficiency of large-scale cropland parcels extraction in settings
where these reference data are absent. GeOBIA method merges spatially neighborhood
pixels with similar spectral features into a single object by image segmentation and then
identifies targeted cropland objects using classification algorithms, such as support vector
machine (SVM), multi-layer perceptron (MLP), or random forest (RF) . . . [19] algorithms.
Due to the high computational efficiency and low requirements for training dataset [20,21],
GeOBIA has been demonstrated to be a prominent method to extract cropland parcels from
high-resolution images [22–25].

The performance of GeOBIA was largely determined by the image segmentation
that was used to generate the basic mapping units [26]. Edge- and region-based image
segmentation methods are two popular algorithms used to extract object polygons from
high-resolution images. Specifically, edge-based approaches extract the possible existence
of perceivable edges among objects via edge detection operators, such as Sobel, Prewitt, and
Canny [10,11]. However, these approaches are easily affected by noise and indistinct bound-
aries between adjacent fields, introducing undesired errors associated with incomplete or
pseudo boundaries. To address the above limitations, region-based algorithms, such as
watershed [27,28], and multi-resolution segmentation approaches [29] were proposed and
widely used to generate successive regional boundaries based on iteratively merging small
and similar objects.

There are various region-based methods (e.g., k-means or region-growing methods),
among which the mean shift segmentation method is advantageous because it requires
little prior information regarding the number of clusters and is insensitive to parameter
initialization [30]. In particular, this method can cope with arbitrary clusters and was
suitable for extracting cropland parcels with irregular shapes and different sizes [23,26,31].
Nevertheless, the major challenge for the mean shift segmentation method involves the
selection of an optimal scale (i.e., bandwidth) since an inappropriate scale will result in
either over- or under-segmentation [20,32]. The optimal segmentation scale essentially
reflects the critical point at which spatial dependence exists or does not exist [33]. A few
previous studies have explored the automatic selection of the optimal scale based on the
semi-variogram and average local variance (ALV) functions [32,33]. However, these meth-
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ods have been only used in regions with relatively homogeneous landscapes, its potential
for extracting cropland parcels over complex landscape regions where spectral variations
are considerable [23] has not been explored. Therefore, in the face of the fragmented
agricultural landscapes with the small size of cropland parcel, how to develop an efficient
image segmentation strategy with automatic optimal scale was critical when using GeOBIA
method for mapping cropland parcels in such regions.

In this study, we proposed a mean shift-based adaptive image segmentation method
with an automatic optimal scale (MSAOS). The MSAOS method includes three major
components, i.e., coarse segmentation, fine segmentation, and region merging, to generate
the potential cropland parcels. We take Qichun County in Hubei province, China, where the
agriculture landscape was quite heterogeneous and crop planting patterns were complex,
as the test area to exploit and test the MSAOS for extracting cropland parcels in smallholder
farming systems (i.e., cropland parcels that were smaller than 2 ha) [7]. Moreover, four
tiles across China from south to north were employed to evaluate the transferability of
the MSAOS. With the potential cropland objects derived from MSAOS, a random forest
classifier was used to extract the final cropland parcels for the study area. The performances
of generated cropland parcels were assessed, respectively, at area and object level based on
benchmark datasets.

2. Study Area and Data
2.1. Study Area

The study area is located in Qichun County (115◦12′–115◦56′E, 29◦59′–30◦45′N),
Huanggang City, Hubei Province, China (Figure 1). The area of Qichun is approximately
2400 km2, and the county contains hilly areas in the northeast and plains and water areas
in the southwest. The terrain of this county is rugged and its elevation ranges from 12 m
to 1241 m. This region has a subtropical humid monsoon climate, with an annual average
temperature of 16.8 ◦C and 1342 mm of precipitation and a frost-free period of approxi-
mately 249 days. The cropland in Qichun covers approximately 560 km2 and the main crop
types are rice, winter wheat, and oilseed rape. The cropland parcels are small, with more
than 80% of the parcels smaller than 2 ha (Figure S1 in Supplementary Materials). The
fragmented landscapes in Qichun make it suitable to test the performances of the MSAOS
method for extracting cropland parcels.

To further test the transferability of the MSAOS over different regions, four evaluation
tiles were selected across China from north to south (Figure 1A). The evaluation tiles
were located in four provinces of China (i.e., Yunnan, Hubei, Jiangsu, and Liaoning) and
characterized by different agricultural landscapes and cropping structures, which are
suitable for understanding the performance of the proposed MSAOS method.

2.2. Satellite Data

The satellite data, namely, Planet images, were acquired from Planet company’s
“Doves” PlanetScope nanosatellites to extract the cropland parcels. Planet images offer
four multispectral bands (blue: 420–530 nm, green: 500–590 nm, red: 610–700 nm, and
near-infrared: 780–860 nm), with a spatial resolution of 3 m. We collected six high-quality
images (taken on 10 April, 17 June, 29 July, 24 August, 4 September, and 11 October)
that covered the crucial growing stages of major crops in this study area in 2018. The
raw images were first converted to top of atmosphere (TOA) reflectance using at-sensor
radiance and supplied coefficients. Then, the surface reflectance was generated using the
6SV2.1 radiative transfer model and a moderate-resolution imaging spectroradiometer
(MODIS) near real-time (NRT) data based on the TOA reflectance. Finally, the geometrical
correction was implemented based on ground control points and fine digital elevation
maps (DEMs) to generate surface reflectance images with a spatial bias of less than 1 pixel.
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the selected test tiles used to evaluate the MSAOS performance. 
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Figure 1. The spatial location of the selected test regions used for the cropland parcel extraction and
the other four regions for evaluating the transferability of the MSAOS. (A) is the spatial distribution
of the test region (orange area) and the evaluation tiles (four blue triangles); (B) details the geographic
location of test region and the evaluation tile in Hubei province; The top-left inset and large pictures
in panel (C) refer to a digital elevation map (DEM) and pseudo-color (RGB: near-infrared, red, and
green) image of Qichun, respectively. The squares with yellow solid lines in panel (C) are the selected
test tiles used to evaluate the MSAOS performance.

Moreover, images from the Chinese Gaofen-2 (GF-2) satellite, launched in August
2014, were employed for transferability evaluation. Two cameras onboard the GF-2 satellite
capture panchromatic and multispectral images, respectively. The multispectral images
comprise four bands (blue: 450–520 nm, green: 520–590 nm, red: 630–690 nm, near-infrared
(NIR): 770–890 nm), whereas the panchromatic images have one band (450–900 nm) and
their spatial resolutions are 4 m and 1 m, respectively. The acquisition date of GF-2 for
evaluation tiles 1–4 was 28 July 2019, 12 March 2020, 19 February 2021, and 17 September
2021, respectively. Similarly, several sequential procedures were performed in the prepro-
cessing of GF-2 images. First, radiometric calibration and atmospheric correction were
applied to derive the surface reflectance data. Then, we used the nearest neighbor diffu-
sion pan-sharpening procedure to fuse the panchromatic images (1 m) and corresponding
multispectral images (4 m) to obtain multispectral images with 1 m resolution. Finally,
the geometric biases were precisely adjusted based on ground reference points carefully
selected from Google Earth.

2.3. Test Tiles and Ground Truth Data

In this study, eight typical test tiles of 3 × 3 km2 areas with different agricultural
landscapes were selected, as shown in Figure 1. It can be observed that most cropland
parcels were smaller than 2 ha (Figure S1 in Supplementary Materials), suggesting that these
tiles can be employed to comprehensively evaluate the performances of cropland parcels
derived from MSAOS image segmentation and random forest classification. According
to topographic variation and geometric characteristics of cropland parcels (i.e., their sizes
and shapes) in Figure 2D, the eight test tiles were grouped into three typical agricultural
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landscapes, i.e., plain areas with large cropland parcels (PL, i.e., Tiles 2–4), plain areas with
small cropland parcels (PS, i.e., Tile 1 and Tile 5), and hilly areas with irregularly shaped
cropland parcels (HIS, i.e., Tiles 6–8). Furthermore, cropland parcels in each tile were
visually identified by three interpreters using the corresponding Planet images, which were
used as the reference cropland parcels to assess the accuracies of extracted cropland parcels.
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tions and the topological characteristics over eight typical test tiles.

2.4. Data for Transferability Evaluation

Four typical evaluation tiles (Eva.1–4) of 1 × 1 km2 areas across China from south to
north were selected (Figure 1A) to understand the transferability of the MSAOS. Figure 3
demonstrates the shape and size of cropland parcels in these tiles. Eva.1 exhibited the
smallest and most irregularly shaped cropland parcels with a median size of 0.25 ha and
the largest parcels of smaller than 1.5 ha. Although Eva.2 also displayed the small cropland
parcels with a median size of 0.40 ha, it is located on the plain areas and its’ cropland
parcels were much more regular. In terms of Eva.3, it showed relatively larger cropland
parcels than Eva.2. The largest cropland parcel of Eva.4 was observed due to the high
agricultural intensification in the northern China. Overall, the four validation tiles were
stratified by the parcel size and included multi landscapes, which could be applied for
assessing the MSAOS transferability. Meanwhile, the cropland parcels in each tile were
visually interpreted using the corresponding GF-2 images, which were used as the reference
data to assess the accuracies of extracted cropland parcels.
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3. Methodology
3.1. Calculation of Texture Features

Texture information of high spatial resolution images depicts the correlation between
the neighbor pixels, which could reduce the “salt and pepper noise” influence and thus
improve the segmentation performance. The gray level cooccurrence matrix (GLCM)
method, for which texture information was described via gray-level spatial correlation [34],
was used to derive the texture features in this study. The GLCM was calculated with a
process window size of 3 × 3 pixels and a cooccurrence shift of (1,1) to extract spatial
information from the satellite images (Part 4 in Supplementary Materials). Since there are
no guidelines on which texture features are optimal for image segmentation, we calculated
candidate texture features from GLCM (Table 1). Then, the optimized texture features for
MSAOS were selected by analyzing the separability between cropland and non-cropland
in Section 4.1.

Considering the negative impacts of atmospheric scattering on the blue band and the
importance of the near-infrared band for vegetation identification, we created an RGB image
composition using near-infrared, red, and green bands. Furthermore, to reduce the effect
of pseudo boundaries caused by internal color variabilities within the cropland parcels,
we used texture information extracted from image luminance instead of chrominance
information. Thus, the color space of images was converted from RGB to YUV, in which
luminance information was stored in the Y layer and chrominance information was stored
in the U and V layers. Subsequently, the candidate texture features were extracted from
the Y layer. Finally, we investigated the separability between cropland and non-cropland
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texture features to select the optimal texture features for obtaining potential cropland
objects. Here, we used the separability index to characterize the separability between
classes [35], which was calculated using Equation (1):

SIij =

∣∣∣µi − µj

∣∣∣
1.96× (σi + σj)

(1)

where µi (σi) and µi (σj) represent the mean (standard deviations) value of class i and

class j features, respectively,
∣∣∣µi − µj

∣∣∣ denotes the interclass variability, and the (σi + σj)

represents the intraclass variability. Thus, a larger
∣∣∣µi − µj

∣∣∣ value and a smaller (σi + σj)

value indicate a higher degree of feature separability between the two classes.

Table 1. Candidate texture features used for image segmentation.

Feature Name Equation

Mean Mean = 1
L2

L−1
∑

i=0

L−1
∑

j=0
Pij

Variance (Var) Var =
L−1
∑

i=0

L−1
∑

j=0
(i−Mean)2Pij

Homogeneity (Hom) Hom =
L−1
∑

i=0

L−1
∑

j=0

Pij

1+(i−j)2

Contrast (Con) Con =
L−1
∑

i=0

L−1
∑

j=0
(i− j)2Pij

Dissimilarity (Dis) Dis =
L−1
∑

i=0

L−1
∑

j=0

∣∣∣i− j
∣∣∣Pij

Entropy (Ent) Ent =
L−1
∑

i=0

L−1
∑

j=0
Pij(−lg(Pij))

Angular second moment (ASM) ASM =
L−1
∑

i=0

L−1
∑

j=0
P2

ij

Correlation (Cor) Cor =
L−1
∑

i=0

L−1
∑

j=0

(i−Mean)(j−Mean)P2
ij

Var

Both i and j represent the pixel gray level, L indicates the grayscale of the image, and Pij denotes each
GLCM element.

3.2. Image Segmentation by MSAOS

Mean shift is a nonparametric clustering algorithm that uses the Parzen window
kernel density estimation to cluster data and has been proven to be effective in image
segmentation applications [30,36,37]. The kernel bandwidth (h) is the key parameter for
mean shift method, which determines the distance between different clusters in the spatial–
spectral–textural domain. This parameter can be further divided into the spatial bandwidth
(hs), spectral bandwidth (hr), and texture bandwidth (ht). Specifically, the hs determines the
spatial distance between different clusters, while hr and ht limit clusters’ spectral difference
and textural difference in the spectral sub-domain and texture sub-domain, respectively.
Since an inappropriate h value may result in under- or over-segmentation, this parameter
needs to be adaptively adjusted for different landscape types. Here, we developed MSAOS
method by extending the traditional mean shift algorithm to automatically select the
optimal segmentation scale (Figure 4). Specifically, MSAOS includes three components:
(1) First, coarse segmentation was used to divide the whole images into homogenous
and heterogeneous regions using k-means clustering based on optimal texture features.
(2) Then, for homogenous regions, fine segmentation was conducted to determine the
optimal segmentation scale for potential cropland parcels based on average local variance
(ALV) functions. (3) Finally, the region-merging algorithm was adopted to merge and
dissolve the over-segmented objects with small areas. With the MSAOS method, the
potential cropland parcels with their respective optimal cropland boundary were generated.
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3.2.1. Coarse Segmentation

The objective of coarse segmentation was to improve the scale estimation of fine
segmentation and exclude the heterogeneous objects which were not easily distinguished
from croplands by colors. Due to the complexity of landscapes in smallholder farming
systems, pre-estimating the optimal kernel bandwidth h for mean shift segmentation based
on the whole image information was not necessarily appropriate. This was primarily
because the pre-estimated h values obtained for all kinds of objects may ignore the specific
characteristics of the targeted objects [23]. For regions with high landscape fragmentation,
smaller h values would be more suitable for segmenting small objects, whereas larger h
values would be suitable for segmenting larger objects.

To obtain the optimal h for different landscapes, we first divided the whole images
into homogenous and heterogeneous regions using the clustering method based on optimal
texture features selected in Section 3.1. In this study, the k-means clustering was selected
due to its computational efficiency and good performance for segmentation, and the cluster
numbers were set as 2, according to the Part 3 in Supplementary Materials. As a result, small
objects (e.g., buildings and roads, etc.) or sparse woodlands were characterized by rapidly
varying spectra at small spatial scales and thus were assigned to heterogeneous regions.
Conversely, larger objects (e.g., cropland parcels, rivers, and large forests) were assigned as
homogeneous regions. Thus, the heterogeneous regions were first excluded to reduce the
uncertainty in the pre-estimated segmentation scale, and the homogenous regions were
retained to pre-estimate the optimal h values for segmenting the cropland parcels.

3.2.2. Fine Segmentation

We extended the scale selection method presented by [33] to multilayer images to
pre-estimate the optimal h value in the spatial–spectral–textural domain, i.e., hs, hr, and ht,
respectively. Figure 5 shows the workflow by which the optimal hs value was pre-estimated.

According to previous studies [32], the relationship between hs and the window size
(W) can be expressed as Equation (2):

W = 2× hs + 1 (2)

The optimal hs can be evaluated by iteratively increasing the W values to where the
local variance of homogeneous regions converges. First, the local variance (LV) of each
pixel was calculated using all pixels within the W ×W window size. Particularly, for the LV
calculation of border pixels, the symmetric padding method was used to pad the missing
pixels outside the region with symmetric pixels along the border. Meanwhile, the ALV of
all pixels’ homogeneous regions was calculated. Then, the first-order (FOALV) and the
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second-order (SOALV) rates of change in ALV were calculated for each iteration, as shown
in Equations (3) and (4):

FOALVi =
ALVi − ALVi−1

ALVi
(3)

SOALVi = FOALVi−1 − FOALVi (4)

where i and i − 1 represent the current and previous iteration numbers, respectively;
FOALVi denotes the rate of change in ALV at the i-th iteration; and SOALVi denotes the
change in FOALVi. Both FOALV and SOALV were employed to assess the dynamics of
ALV as the iteration number progresses and their values ranged from 0 to 1. If FOALV
and SOALV were both less than the set thresholds of a and b, the current iteration number
corresponding hsi was adopted as the optimal hs value. In this study, a and b were set
as 0.1 and 0.01, respectively, because these empirically driven thresholds based on the
characteristics of study area can maximized the segmentation performance (Part 5 in
Supplementary Materials).
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Based on the selected hs value, the hr and ht values can be further calculated as the
average local standard deviations of the spectral layer and texture layer within the W,
respectively, as shown in Equation (5).

h =
n

∑
j=1

√
LVj

n
(5)

where LVj represent the local variance in the j-th pixel within the W derived by the optimal
hs value over the spectral layer or the texture layer. The term n denotes the number of
pixels comprised in all homogenous regions.

3.2.3. Region Merging

As a typical bottom-up algorithm, the mean shift method was used to segment the
images at pixel level, which could inevitably generate many desired small and trivial
segments [38]. For this study, we conducted a region-merging process to address these
small segments so as to improve the accuracy of derived cropland parcels. Region merging
was a bottom-up process that combines small but similar adjacent regions to obtain a whole
large region with certain processing rules. Adjacency judgment and the merging criterion
were two prerequisites that need to be carefully addressed in the region-merging process.
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In this study, the region adjacency graph (RAG), a data structure widely used to
describe the relationship between large-area objects within an image, was employed for
the adjacency judgment. The expression of RAG can be defined as G = (V, E), where V was
the vertex set that represents regions produced by image segmentation and E was the edge
set for the adjacency judgment. In terms of the merging criterion, we used a merging cost
function proposed by [38], and this function can be written as Equation (6):

Merge(vi, vj) =
Oi ×Oj

(Oi + Oj)× l(vi, vj)
‖ui − uj‖2 (6)

where i and j represent the two adjacent regions; Oi and Oj are the areas of these two regions;
ui and uj indicate the feature vectors of regions i and j, respectively; and l(vi, vj) denotes
the boundary length between two regions. The merging cost function caused the small and
trivial segments to be merged with their adjacent regions with larger areas, longer common
boundary lengths, and smaller feature differences. Examples of an initial segmentation
process, constructed RAG, region-merged RAG, and region-merged segmentation process,
are shown in Figure 6. After the initial RAG construction, we conducted a region-merging
process based on RAG and merging cost function. Specifically, the merging costs between
the target region and its adjacent regions were calculated, and then the target region was
merged with one of its adjacent regions by selecting the minimum merge cost. For instance,
if region 2 in Figure 6A needed to be merged and the derived Merge(vi, vj) was minimized
based on the calculation of the merge costs between region 2 and its adjacent regions, region
1 and region 2 would be merged to obtain a new region with the label of 1. Then, the RAG
was reconstructed subsequently for the next region-merging process until all objects satisfy
the region-merging criteria.
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3.3. Cropland Identification by Random Forest

We performed a random forest classification to identify cropland parcels from the
segmented objects derived by MSAOS. As a typical ensemble learning algorithm, random
forest has been demonstrated to be very suited for object-based classification applications
in agricultural areas [39]. The random forest classifier used the bagging approach to create
a forest consisting of sufficient independent decision trees based on the training set [40].
Each decision tree in the forest makes a determination about the unclassified sample, and
each output classification result was obtained as a majority vote of outputs [41]. There were
two important parameters for random forest: the number of desired trees (ntree) and the
number of features used in each node to make the trees grow (mtry). According to previous
classification studies based on random forest [42,43], ntree and mtry were empirically set
to 500 and the square root of the total number of input features, respectively.

For our work, three widely-used vegetation indices and seven geometric features were
selected as classification features for random forest (Table 2). To adequately characterize
the unique phenological characteristics of cropland, these selected spectral and geometric
features involving six time points were used as the final features for random forest to
identify the croplands parcels.
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Table 2. List of the spectral and geometric features used in this study. The term “i” denotes the
specific observation date of the remote sensing image.

Feature Type Feature Name Equation or Explanation

Spectral features
NDVI NDVIi =

Niri−Ri
Niri+Ri

VIgreen VIgreeni =
Gi−Ri
Gi+Ri

EVI EVIi = 2.5× Niri−Ri
Niri+6Ri−7.5Bi+1

Geometric features

Area The area of the object.
Perimeter The perimeter of the object.

Shin

The shape index, computed as
perimeter/(4 ∗

√
Area), the closer the

shape index value of the object is to 1,
the more regular the object is.

Extent
Computed as the area divided by the
area of the smallest rectangle
containing the object.

Minor axis length
Length of the minor axis of the ellipse
that has the same normalized second
central moment as the object.

Major axis length
Length of the major axis of the ellipse
that has the same normalized second
central moment as the object.

Orientation
Angle between the x-axis and the major
axis of the ellipse that has the same
second moment as the object.

3.4. Performance Evaluations

We used area- and object-based evaluation methods to fully assess the performances
of cropland parcel derived by MSAOS image segmentation and RF classification based
on the benchmark cropland dataset. The area-based cropland classification accuracy was
assessed using three indicators, i.e., the precision (Pab), recall (Rab), and F1-score (Fab). The
Pab measures the proportion of accurately extracted cropland pixels, whereas Rab stands
for the proportion of reference cropland pixels that were correctly detected. The F1-score,
which combines the precision and recall by calculating the harmonic mean of their values,
was used to evaluate the overall accuracy. The three indicators can be calculated as the
following Equations (7)–(9):

Pab =
TP

TP + FP
(7)

Rab =
TP

TP + FN
(8)

Fab =
2× Pab × Rab

Pab + Rab
(9)

where TP, FP, and FN indicate the number of true positives (pixels correctly identified
as cropland), false positives (pixels misclassified as cropland), and false negatives (pixels
misclassified as non-cropland), respectively.

In addition, an object-based evaluation method was adopted to understand the source
of image segmentation errors, i.e., over- and under-segmentation [44]. The following
three indicators, which were implemented based on objects overlapping, can be written as
Equations (10)–(12):

Pob =

n
∑

i=1
|Si ∩ Rimax|

n
∑

i=1
|Si|

(10)
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Rob =

m
∑

i=1
|Ri ∩ Simax|

m
∑

i=1
|Ri|

(11)

Fob =
2× Pob × Rob

Pob + Rob
(12)

where S and R represent the segmentation result S with n segments {S1, S2, . . . Sn} and
reference results R with m objects {R1, R2, . . . Rm}; Rimax and Simax were the corresponding
reference object and segment with the largest overlapping areas, i.e., Si and Ri, respectively;
and |Ri| denotes the area of Ri. A large precision value (Pob) and a small recall value (Rob)
indicate more severe over-segmentation errors, whereas a large Rob and a small Pob denote
under-segmentation errors. Fob exhibits the overall segmentation quality by combining Pob
and Rob.

4. Results
4.1. The Optimal Texture Features Selected for MSAOS

Based on the Planet images in July when crops grow most vigorously in this area,
we extracted candidate texture features and analyzed their separability to determine the
optimal texture features used for MSAOS. Figure 7A showed the separability index of
each candidate texture feature. Features Homogeneity and Entropy exhibited the highest
separability between croplands and non-cropland objects, indicating these texture features
were most important for obtaining cropland objects. Meanwhile, although Dissimilarity and
Angular second moment also showed high separability, they were discarded because of the
high correlations with Homogeneity and Entropy (Figure S4 in Supplementary Materials).
Features Variance and Contrast also responded to high separability index, which could be
because they can reflect the local contrasts within images and helped delineating objects’
boundaries. Since Contrast was easily affected by internal variabilities and pseudo edges,
the Variance remained as the input texture feature for MSAOS. An example that shows
the maps of optimal texture features was shown in Figure 7B. We found the three features
strengthened the edge differentiation between cropland and non-cropland objects. This
indicates the usefulness of combining diverse texture features across different observation
periods to improve the completeness and precision of cropland parcel extraction in the
regions of fragmented agricultural landscapes.
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4.2. Maps of Extracted Cropland Parcels

Figure 8 illustrates the cropland parcel extraction results of eight selected tiles at
different segmentation steps, including coarse segmentation by k-means clustering, fine
segmentation with the optimal segmentation scale and region merging, random forest
classification, and the final cropland parcel extraction results. Row B shows that a lot of
non-croplands with quite irregular shapes were removed by the coarse segmentation, while
a majority of potential cropland objects remained in the coarse segmentation process. How-
ever, due to the impacts of inherently high landscape fragmentation, the k-means clustering
generated discrete boundaries with under-segmented objects. Based on the coarse segmen-
tation results, fine segmentation was further implemented on the homogenous regions, and
individual objects with more precise boundaries were generated (Figure 8C). Moreover,
Figure 8C shows cropland objects were more regularly shaped than non-cropland, as ex-
pected. Row D displays the object-based classification results, from which we can observe
that a variety of cropland parcels in the diverse landscape types were well identified. Since
the boundaries among cropland parcels were too narrow to be shown clearly in row D, the
boundaries and extents of the individual extracted cropland parcels were further illustrated
in rows E and F, respectively.
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Figure 8. Cropland parcel extraction results derived at different processing steps for eight test
tiles. (A) Pseudo-color composite imagery of each tile; (B) the coarse segmentation results, with the
homogenous regions denoted by the white color; (C) the fine segmentation results, indicated by the
use of a random color for each object; (D) the object-based classification results derived using the
trained random forest model (the generated croplands are shown with a cyan color); (E) the extracted
boundaries (white lines) of the final cropland parcels; and (F) the final cropland parcels denoted by
random colors.

4.3. Accuracy Assessment of Extracted Cropland Parcels

Table 3 shows the mapping accuracies of cropland parcels for eight test tiles using
area- and object-based evaluation methods. Overall, the proposed MSAOS image seg-
mentation combined with random forest classification achieved satisfactory results for
cropland parcels, with average Fab and Fob of 0.839 and 0.779, respectively. Specifically,
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the mapping accuracy was highly related to the landscape fragmentations. The PL group
showed the highest accuracy with the average Fab and Fob of 0.872 and 0.829, respectively,
followed by the HIS and PS groups. These results indicated that the size of cropland
parcels might be the most important factor for the accuracy of cropland parcels extraction,
which can be explained by the smallest cropland parcels of PS group in Figure 2D. Never-
theless, the relationship between geometric characteristics and the accuracy of cropland
parcels extraction should be further analyzed with the quantitative metrics. Furthermore,
it can also be observed that the recall and the precision of the area- (i.e., Rab and Pab)
and object-based (i.e., Rob and Pob) evaluations were similar over almost all test tiles,
indicating the good capability of the proposed MSAOS method for balancing over- and
under-segmentation errors.

Table 3. Evaluation of the area- and object-based accuracy of the cropland parcel extraction results.
PS, PL, and HIS indicate three different agricultural landscape types, i.e., plain areas with large
cropland parcels, plain areas with small cropland parcels, and hilly areas with irregularly shaped
cropland parcels, that were described in Section 2.3.

Evaluation Methods
PS PL HIS

AVG
Tile 1 Tile 5 Tile 2 Tile 3 Tile 4 Tile 6 Tile 7 Tile 8

Area-based
evaluation

Rab 0.786 0.795 0.834 0.864 0.886 0.806 0.813 0.881 0.833
Pab 0.798 0.817 0.935 0.888 0.829 0.844 0.806 0.851 0.846
Fab 0.792 0.806 0.882 0.876 0.856 0.824 0.809 0.865 0.839

Object-based
evaluation

Rob 0.720 0.745 0.822 0.853 0.867 0.708 0.753 0.827 0.787
Pob 0.749 0.746 0.901 0.829 0.720 0.736 0.714 0.799 0.774
Fob 0.734 0.745 0.860 0.841 0.786 0.722 0.737 0.813 0.779

Moreover, the stratified evaluation was implemented to further analyze the perfor-
mance of the MSAOS in cropland parcels with different sizes (i.e., 0–1 ha, 1–2 ha, and
>2 ha) over eight tiles, as shown in Figure 9. Due to the small cropland parcel usually
characterized by the narrow and indistinct boundaries, the extraction accuracy of small
cropland parcels was lower than that of large cropland parcels as expected. Therefore, the
accuracy of smaller cropland parcel (i.e., <1 ha) extraction needs to be further improved in
future studies. Overall, these results were consistent with previous studies that indicated
the higher landscape fragmentation, and more irregular shaped small cropland parcels
could introduce more uncertainties to cropland parcel mapping accuracy.
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4.4. Evaluating the Transferability of MSAOS to Other Regions

Table 4 presents the segmentation accuracy for four tiles using the object-based evalu-
ation method. Overall, MSAOS showed similar performance (average Fob of 0.775) to the
evaluation results in Section 4.3 (average Fob of 0.779), indicating the good transferability of
MSAOS method over different regions. Nevertheless, the MSAOS performance was highly
related to cropland parcel size. For regions with large parcels (e.g., Eva.4), MSAOS obtained
the highest accuracy with the Fob of 0.878. By contrast, Eva.1–3 with relatively smaller
parcels performed worse with the decreasing of Fob by 0.197, 0.127, and 0.090, respectively.
Moreover, the better performance of Eva. 2–3 than Eva. 1 also indicated that the cropland
with regular shapes can improve the accuracy of cropland parcel extraction.

Table 4. Accuracy assessments of tiles in different provinces.

Evaluation Methods Eva.1 Eva.2 Eva.3 Eva.4 AVG

Area-based
evaluation

Pab 0.931 0.936 0.993 0.975 0.959
Rab 0.666 0.711 0.803 0.938 0.780
Fab 0.777 0.808 0.888 0.956 0.857

Object-based
evaluation

Pob 0.793 0.872 0.889 0.972 0.882
Rob 0.596 0.660 0.707 0.801 0.691
Fob 0.681 0.751 0.788 0.878 0.775

Additionally, the area-based evaluation method was also implemented to under-stand
the commission and omission errors of cropland identification. Overall, the measurement
accuracy was consistent with the size and shape of cropland parcels. Eva.4, with the largest
regular cropland parcels, obtained the highest Fab of 0.956, whereas Eva.1 derived the worst
results due to the small and irregularly shaped cropland parcels. Specifically, the low Fab
was mainly caused by the omission error denoted by the low Rab, which can be further
explained by the exclusion of heterogeneous regions in coarse segmentation stage. As for
regions with small and fragmented agricultural landscapes (e.g., Eva.1), the cropland may
be grouped into heterogeneous regions that would be not used in the fine segmentation to
extract the cropland parcels. Therefore, the cropland identification in the heterogeneous
regions for small and fragmented agricultural landscapes need to be further explored to
reduce the misclassification errors.

5. Discussion
5.1. Sensitivity of the Temporal Information Used for Cropland Parcels Extractions

Due to the narrow swath widths and long revisit cycles, high-resolution sensors
onboard satellites may have difficulty in obtaining sufficient multi-temporal images over
large areas. Thus, it is essential to investigate the sensitivity of temporal information to
the performances of cropland identification [20,45,46]. Specifically, we performed two
additional classification experiments for MSAOS-derived image objects based on different
single-date observations, which were acquired during the growing season (i.e., on 29 July)
and nongrowing season (i.e., on 11 October), respectively. The cropland parcel maps
obtained for these two single dates and the aforementioned multi-temporal images were
assessed by the same validation data.

Table 5 illustrates the cropland parcels extraction results obtained using multi-temporal
and single-date images, respectively. The cropland parcels’ accuracy that was assessed
by area-based indicators was largely influenced by the crop growth stage. Compared to
the classification with single-date information collected in the nongrowing season (SDN),
the single-date information collected in the growing season (SDG) provided more useful
information for discriminating between croplands and non-croplands, and thus improved
the mapping accuracy with average Rab, Pab, and Fab values increased by 0.157, 0.205, and
0.183, respectively. Moreover, the classification based on the multi-temporal images out-
performed the two single-date cases, as expected (Rab = 0.833, Pab = 0.846, and Fab = 0.839).
Nevertheless, the classification accuracy changed with different agricultural landscapes.
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For PL regions with large and regular croplands, the SDG-based classification showed
a similar accuracy to the multi-temporal-based classification. By contrast, the other two
regions (i.e., PS and HIS) that involved multi-temporal information for classification ex-
hibited significant improvement based on three evaluation metrics. In particular, since
the cropland parcels were large and crop spectral characteristics in July were different
from those of the forest areas within Tile 8, the SDG-based crop identification method also
achieved good performance (Fab = 0.854).

Table 5. The area-based accuracy evaluation results obtained using object-based classification with
multi-temporal (MT) information, single-date observation in the growing season (SDG) information,
and single-date observation in the nongrowing season (SDN) information. “AVG” represents the
average value of the eight test tiles. The bold numbers in the table denote the accuracy of the
classification strategy adopted in this study.

Tile
Rab Pab Fab

SDN SDG MT SDN SDG MT SDN SDG MT

PS
Tile 1 0.514 0.725 0.786 0.584 0.766 0.798 0.547 0.745 0.792
Tile 5 0.521 0.740 0.795 0.450 0.801 0.817 0.483 0.769 0.806

PL
Tile 2 0.693 0.807 0.834 0.715 0.912 0.935 0.704 0.856 0.882
Tile 3 0.650 0.844 0.864 0.780 0.901 0.888 0.709 0.872 0.876
Tile 4 0.741 0.875 0.886 0.700 0.834 0.829 0.720 0.854 0.856

HIS
Tile 6 0.532 0.661 0.806 0.407 0.797 0.844 0.461 0.722 0.824
Tile 7 0.601 0.711 0.813 0.642 0.737 0.806 0.621 0.724 0.809
Tile 8 0.723 0.872 0.881 0.666 0.837 0.851 0.693 0.854 0.865

AVG 0.622 0.779 0.833 0.618 0.823 0.846 0.617 0.800 0.839

5.2. Comparison with Multi-Resolution Segmentation

To further investigate the performance of MSAOS, we compared the cropland parcels
derived by MSAOS with that of multi-resolution (MR) segmentation algorithm [20,47].
The reason why we selected the MR segmentation algorithm can be explained from two
perspectives. On the one hand, the MR is one of the most popular methods in image
segmentation, which has been widely adopted by previous studies [34,48,49]. On the
other hand, the MR was also developed based on the bottom-up strategy that is similar
to MSAOS method [50]. The scale parameter in the MR algorithm was a prerequisite for
achieving good performance for cropland parcel extraction. In this study, five candidate
scale parameters (100, 120, 145, 165, and 190) were selected based on the Estimation of Scale
Parameter (ESP) tool and visual assessments in eCognition Developer 9.0.2 software [51]
so as to obtain the optimal scale parameter value and analyze the relationship between
mapping accuracies and segmentation scales (Part 2 in Supplementary Materials). The
other segmentation parameters of the MR algorithm, i.e., shape weight and compactness
weight, were empirically set as the default values of 0.1 and 0.5, respectively. Similar to
MSAOS, a random forest model was used to identify the final cropland parcels from the
segmentation results derived using the MR method.

Figure 10 shows the average mapping accuracy of cropland parcels obtained with
MSAOS and MR for the eight test tiles, which were both assessed by the segment-based
indicators. Overall, the MSAOS method significantly outperformed all MRs with different
segmentation scales, showing the highest Rob, Pob, and Fob values among all groups.
Although minor changes were observed in the Fob values obtained for MR with different
segmentation scales, the major sources of segmentation errors from different MR were
distinct. Specifically, the MR algorithm with a segmentation scale of 100 had the highest
Pob but the lowest Rob, indicating that more severe over-segmentation errors occurred at a
small scale. As the segmentation scale increased, the size of MR-derived segments became
bigger, leading to smaller over-segmentation errors (an increased Rob value) but larger
under-segmentation errors (a decreased Pob value). Compared with the large variations
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in MR-derived mapping accuracy, the more stable and better performance of MSAOS
indicated that it can provide a good tradeoff between over- and under-segmentation errors.
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In detail, Figure 11 displays two representative examples of typical segmentation
errors resulting from MR method for Tile 8. For the cropland parcel extraction in example
A, MR produced over-segmented results at small scales (e.g., at segmentation scale of
100, 120, and 145) but well-segmented at a larger scale (e.g., segmentation scale of 165 or
190). Furthermore, cropland parcels in example B were well-segmented at small scales
(e.g., segmentation scale of 100 and 120) but under-segmented at larger scales (e.g., seg-
mentation scale of 145, 165, and 190). These two examples indicated that the MR method
was inferior in obtaining good segmentation results for all cropland parcels at a fixed
scale. In contrast, the proposed MSAOS method, which automatically pre-estimated the
optimal scale with a two-stage segmentation strategy, could adaptively generate complete
and correct cropland parcels, presenting higher robustness for mapping cropland parcels
with diverse agriculture landscapes. For instance, the better performance of MSAOS than
MR-145, MR-165, and MR-190 for cropland parcel extraction can greatly benefit from the
coarse segmentation that assigned the road as heterogeneous region. Thus, the MSAOS
was not only helpful for estimating the optimal segmentation scales but also identified the
heterogeneous boundaries that cannot be easily recognized by MR methods.
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scales of the MR method.

5.3. Strengths and Potential Improvements

High landscape fragmentation with small and irregularly shaped cropland parcels
commonly exists in smallholder farming systems, making it challenging for accurate image
segmentation based on traditional methods with fixed segmentation scales in such areas.
This paper developed an MSAOS method to efficiently extract cropland parcels using
high spatial resolution images. Compared to other similar studies [24,34,48], the MSAOS
method can automatically pre-estimate the optimal scale to adapt to diverse landscapes
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with a three-stage segmentation strategy, which significantly improved the accuracy of
cropland parcel extraction. Accuracy assessment results indicated that MSAOS provided a
good tradeoff between over- and under-segmentation and can largely reduce uncertainties,
particularly in regions with fragmented landscapes. Moreover, the experiments of evaluat-
ing transferability across spaces (Section 4.4) indicated that the MSAOS can be suitable for
extracting cropland parcels in other regions with complex landscapes. Additionally, the
computational efficiency of cropland parcel extraction can greatly benefit from the coarse
segmentation and the optimal scale selection that were ingested by the MSAOS method
(Table S1 in Supplementary Materials).

However, several limitations of MSAOS method should be considered in future stud-
ies. First, we performed MSAOS image segmentation using only single-date imagery. As
different land surface types might have similar spectral characteristics on a single observa-
tion dates, it could result in indistinct boundaries among various land surface types on that
specific date and thus add difficulty to cropland parcel segmentation [52]. However, the
traditional high-resolution satellites were limited to obtaining VHR images with multiple
dates by their narrow swath widths and long revisit cycles [24]. Thus, we only adopted
single-date imagery to illustrate the robustness of the MSAOS over different regions. With
the rapidly launching high spatial resolution sensors onboard many satellites, the integra-
tion of these for obtaining multi-temporal images throughout the crop growing season
could be utilized not only for cropland identification (Section 5.1) but also for MSAOS
segmentation in the future. Second, although the coarse segmentation was widely imple-
mented using the unsupervised clustering method (i.e., k-means clustering) in which the
original images were partitioned based on the differences inherent to the images themselves,
this approach might be insufficient for partitioning images containing high landscape frag-
mentation (e.g., Eva.1 in Section 4.4). In contrast, the application of supervised methods
along with training samples may be advantageous to generate more accurate partitions
and improve the optimal pre-estimation of the fine segmentation scale [53]. Finally, several
studies recently suggested that the combination of edge-based (such as canny operator) and
region-based segmentation can detect more accurate boundaries [54], and the proposed
MSAOS method could be integrated with edge-based approach to improve the accuracy of
delineating cropland parcel boundaries.

6. Conclusions

The irregularly shaped cropland parcels and high landscape fragmentation associated
with smallholder farming systems introduce the challenges for extracting cropland parcels
in practice. This study developed a new MSAOS method for image segmentation, which
was adapted from the mean shift algorithm and implemented the automated selection
of the optimal segmentation scale. MSAOS includes three components: (1) First, coarse
segmentation was used to divide the whole images into homogenous and heterogeneous re-
gions using k-means clustering based on optimal texture features; (2) then, for homogenous
regions, fine segmentation was conducted to determine the optimal segmentation scale for
potential croplands parcels based on average local variance (ALV) functions; and (3) finally,
the region-merging algorithm was used to merge and dissolve the over-segmented objects
with small areas.

Huanggang City of Hubei Province, China, where the agricultural landscape is frag-
mented and crop planting patterns are complex, was selected as the test area. With MSAOS-
derived potential cropland objects, a random forest classification was used to identify
the final cropland parcels. The extracted cropland parcels were assessed using digitized
benchmark datasets. The results showed that the MSAOS method performed well for
extracting cropland parcels, with an average Fab of 0.839 and Fob of 0.779 over eight differ-
ent landscapes. Compared to the widely used multi-resolution segmentation algorithm,
MSAOS provided a better tradeoff between over- and under-segmentation and simul-
taneously achieved higher average Rob and Pob values of 0.787 and 0.774, respectively.
Four evaluation tiles in different provinces were then employed to understand the spatial
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transferability of the MSAOS method, and the similar results with the average Fab of 0.857
and Fob of 0.775 obtained in transferability evaluation suggested the good performance of
the MSAOS over different agricultural regions. Furthermore, texture features Homogeneity
and Entropy were the most important features for MSAOS to extract potential cropland
parcels, with the highest separability index of 0.286 and 0.272, respectively. Moreover, the
use of multi-temporal images was significantly superior to single images in separating
cropland and other classes. Overall, the MSAOS method was advantageous for adaptively
segmenting cropland parcels of diverse shapes and sizes in complex landscapes, which is
promising for mapping cropland parcels in other smallholder farming systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14133067/s1, Figure S1: The distribution of cropland parcel
size in 8 test tiles; Figure S2: The candidate scale parameters of multi-resolution segmentation over
8 test tiles using the Estimation of Scale Parameter (ESP) tool; Figure S3: The clustering results of
k-means with different clusters numbers; Figure S4: The correlation coefficient between each two
texture features; Figure S5: (A) The correlation coefficient between each two co-occurrence shifts,
(B) The separability index of Homogeneity feature extracted by different shifts; Figure S6: The
relationship between spatial bandwidth and ALV, FOALV and SOALV over the study area; Table S1:
The running time of the MSAOS over 8 test tiles.
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