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Abstract: The COVID-19 pandemic has affected many aspects of human life around the world,
due to its tremendous outcomes on public health and socio-economic activities. Policy makers
have tried to develop efficient responses based on technologies and advanced pandemic control
methodologies, to limit the wide spreading of the virus in urban areas. However, techniques such as
social isolation and lockdown are short-term solutions that minimize the spread of the pandemic in
cities and do not invert long-term issues that derive from climate change, air pollution and urban
planning challenges that enhance the spreading ability. Thus, it seems crucial to understand what
kind of factors assist or prevent the wide spreading of the virus. Although AI frameworks have
a very efficient predictive ability as data-driven procedures, they often struggle to identify strong
correlations among multidimensional data and provide robust explanations. In this paper, we propose
the fusion of a heterogeneous, spatio-temporal dataset that combine data from eight European cities
spanning from 1 January 2020 to 31 December 2021 and describe atmospheric, socio-economic, health,
mobility and environmental factors all related to potential links with COVID-19. Remote sensing
data are the key solution to monitor the availability on public green spaces between cities in the
study period. So, we evaluate the benefits of NIR and RED bands of satellite images to calculate the
NDVI and locate the percentage in vegetation cover on each city for each week of our 2-year study.
This novel dataset is evaluated by a tree-based machine learning algorithm that utilizes ensemble
learning and is trained to make robust predictions on daily cases and deaths. Comparisons with
other machine learning techniques justify its robustness on the regression metrics RMSE and MAE.
Furthermore, the explainable frameworks SHAP and LIME are utilized to locate potential positive
or negative influence of the factors on global and local level, with respect to our model’s predictive
ability. A variation of SHAP, namely treeSHAP, is utilized for our tree-based algorithm to make fast
and accurate explanations.

Keywords: XAI; COVID-19; pandemic; big data; remote sensing; NDVI; SHAP; LIME; machine
learning; random forest

1. Introduction

Infectious diseases have a significant impact on global health. The spread of infectious
diseases during a pandemic is an additional burden to the existing high level of challenges
caused by chronic disease that modern healthcare systems need to manage. Lessons learned
from countries’ responses to crises such as coronavirus disease 2019 (COVID-19) [1] is a
key factor for healthcare systems’ resilience. During the pandemic [2], various strategies
to prevent and mitigate the spread of COVID-19 were reported, using tools, response
measures, technologies and public health functions and services. Policy makers, along
with government health system managers, have developed response plans and tools to
defend humanity against the pandemic crisis [3–5]. However, these measures, such as
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social isolation and lockdown restrictions, are short-term and imposed to mitigate and
eliminate the spread of the pandemic among citizens in urban environments [6,7].

Nowadays, climate change and land-use change impose additional challenges and
novel opportunities for facilitating the spread of infectious viruses among previously geo-
graphically isolated species of wildlife [8]. Thus, there is an emerging need for identifying
these newly coming risk factors across our living environments, in order to establish long-
term measures to prevent the spread of these diseases and secure the urban environments
from future challenges. In order to establish a health-centered urban planning methodology,
the first thing to do is to find out the means for the spread of the pandemic and identify the
risk factors that promote this expansion (see Figure 1).
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Figure 1. The proposed concept in spatial epidemiology using explainable AI and remote sensing.
Explainable AI is the “language” to translate the results of the AI model, in an easy to understand
and interpretable way, to the urban planners, to support them in the decision-making process for
health-centered urban planning decisions.

Spatial epidemiology has been emerging in the era of big data growth and rapid
development in geoinformatics. Thus, there is an emerging need to monitoring the long-
term effects of environmental, behavioural, psychosocial and biological factors on health-
related states and events and their underlying mechanisms. In the literature, recently, it has
been reported that factors related to urban challenges [9], atmospheric pollution [10] and
climate change factors [11,12], that pre-exist in urban environments can possibly trigger
the rapid spread of the virus within a community.

Modelling analysis of COVID-19 outbreaks is a common process to predict confirmed
COVID-19 cases and deaths using Artificial Intelligence (AI) and strongly assists national
health agencies in developing response plans and mitigation measures [13–15]. Machine
learning (ML) and especially ensemble (supervised) learning algorithms are dominant
in the field of regression and time-series prediction tasks, achieving high performance
regarding dataset complexity [16–20]. ML algorithms accurately predict COVID-19 cases
and deaths, but now the problem is shifted in identifying the risk factors that cause the
spread in order to establish countermeasures to prevent the spread of the pandemic in
urban environments. Thus, experts of the pandemic cannot have their plans rely on black-
box procedures, as the agnostic way of analyzing non-linear signals cannot be explained
with the state-of-the-art framework or fundamental statistical analysis [21,22].

A high-interpretability ML algorithm is proposed here due to the feasibility for users
to comprehend why certain decisions or predictions have been made. So, the link between:
(1) escaping black-box procedures and (2) the investigation of models’ decisions is the calcu-
lation of advanced explanations. Explanations are provided to indicate the contribution of a
single variable to the model’s final prediction in an easy-to-understand way by the pandemic
control planers (e.g., feature importance plots). Two well-known state-of-the-art explainable
frameworks are utilized here, Shapley additive explanations (SHAP) [23] and local interpretable
model-agnostic explanations (LIME) [24]. SHAP (SHapley Additive exPlanations) utilizes and
optimizes the Shapley values from game theory, in order to measure the contribution of each
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feature in the final outcome. LIME is a model-agnostic method that calculates explanations
locally. LIME takes into account a specific area of the dataset and along with the predictions of
the trained machine learning algorithm, it trains interpretable models, which are weighted by
the proximity of the sampled instances to the instance of interest.

In this paper, we evaluate the effectiveness of an interpretable machine learning algorithm
on eight European cities for the 2 years of COVID-19. Our model asses the impact of heteroge-
neous spatio-temporal data that are related to COVID-19 morbidity and mortality, and provides
interrelationships between the multidimensional factors through an Explainable AI framework.
Among the heterogeneous datasets there are: (1) Earth observation data for monitoring the
greenery in urban spaces; (2) socio-economic factors; (3) health-related data; (4) atmospheric
data that refer to air pollution and climate change; and lastly (5) mobility trends inside cities or
centralized administrations. In particular, we develop a random-forest regression model that
predicts daily COVID-19 cases and deaths. To demonstrate its effectiveness, we also compare
our model’s predictive ability with other machine learning algorithms. Furthermore, explain-
able frameworks are implemented on top of the predictive modelling framework, in order to
detect each feature contribution to the model’s outbreak (1) on the global level using SHAP
and (2) locally utilizing the LIME framework as well. In the experimental results plots such
as feature importance, summary plots, dependence plots and heatmaps enhance the feature
analysis, with respect to each risk factor.

Contribution

In this paper, we describe and analyze the spatio-temporal variations in COVID-19
disease with respect to demographic, environmental, socioeconomic and infectious risk
factors. The recent advances in geographic information systems, as well as the availability
of high-resolution, geographically referenced health and remote sensing data have created
unprecedented new opportunities to investigate environmental and other factors in order
to explain local geographic variations in disease. An explainable AI framework is adopted
to underline the links between COVID-19 morbidity/mortality with environment, socioe-
conomic and health-related issues, proposing a transparent method for the prioritization
of the attributes’ importance. In particular, we handle a large amount of heterogeneous
data with various attributes describing spatial and temporal variability by examining
different areas and time-periods of COVID-19 transmission, to identify the effects and risk
factors on COVID-19 cases and deaths, proposing a scalable and self-explanatory machine
learning model. This is achieved with the adoption of a robust explainable AI framework
to explain the rationale behind the predictive models’ learning algorithm and to discover
the links between environmental, atmospheric, health and socio-economic factors vis-a-vis
COVID-19 morbidity/mortality rates in urban areas. Interpretable AI is adopted here as a
tool that will enable us to learn from and be inspired by AI predictive modelling tools for
COVID-19 to gain knowledge about the risk factors that promote disease transmission in
urban environments.

2. Related Work

Nowadays, the rapid transmission rate of the COVID-19 pandemic has lead to research
works that study indicators that affect the spread of the virus, leading to infection, severe
infection or even to mortality. The majority of the published papers present prediction
methods of the pandemic’s spread, taking into account various data related to air quality,
health, socio-economics, mobility, etc. On the contrary, only a few papers have developed
or exploited techniques in the direction of explainability in order to provide more accurate
and robust systems.

2.1. COVID-19 Prediction Models Using ML

Sarkodie et al., in their work, propose several regression models with the aim to
provide predictions of COVID-19’s spread and mortality, taking into account environmental,
health and socio-economic data such as air temperature, age, diabetes prevalence index,
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PM2.5 concentration, GDP per capita, etc. [25]. Even though the models include a variety of
data, taking into consideration a large number of cities, the selected time period (1 January
to 11 June 2020) seems to be too short for the present time. A neural network architecture
is presented in the work of [26], which is based on a trained Long Short-Term Memory
(LSTM) network aiming to predict the upcoming daily COVID-19 cases. It was considered
to be an adequate approach, since it produced a low average relative error compared to
the state-of-the-art system provided by the Google Cloud forecasting service. Additionally,
for the purposes of this work, mobility data was used along with the environmental and
COVID-19-related data. However, the results in this study [26] are spatially limited, since
the proposed model was validated using infection records from cities of Japan. In the
work of Zoran et al. [27], the authors investigate the potential correlations between air
pollution and COVID-19 related data in the metropolitan area of Milan, Italy. According to
their results, some significant relationship among O3, NO2 and COVID-19 spread exists.
However, their research is spatially limited to the area of Milan, the time period that was
taken into account is short (January–April 2020) and there is no sophisticated pipeline for
the explanation of the findings. In the same direction, the authors in [28] investigate the
potential relationship between a long-term exposure to air pollution and the COVID-19
severity in terms of daily cases and deaths. The use of an ecological regression analysis
provided significant results, such as that higher PM2.5 exposure can potentially lead to
higher COVID-19 mortality rates. This work is restricted to environmental data and does
not include any tools for further explanations.

2.2. Explainable AI Frameworks

AI has attracted the attention of people around the world in a huge variety of topics.
Extensive effort has been put into the area of medicine in general, mostly by researchers
and doctors. There are various studies that cope with the challenges in cancer diagnosis
and treatment by utilizing segmentation and classification AI tools, such as in [29–32].
As we mentioned above, several techniques have been studied in order to develop sophis-
ticated tools, including AI features, that would assist in discovering and understanding
the unknown factors that promote COVID-19’s spread. Since this kind of utilization of
AI technologies is related to the health of people, it is crucial to ensure their accuracy and
integrity. This is one of the reasons why it is essential to develop proper mechanisms to
explain the decisions of AI models. Recently, there have been various works published,
such as [33–36], where the explanations are provided by the proposed frameworks in a
variety of target-applications.

For the time being, though, there are limited frameworks that have utilized techniques
for explainability features for COVID-19 spatio-temporal modelling. Decision tree, logistic
regression, naive Bayes, support vector machine and artificial network approaches were
utilized and compared in the work of Muhammad et al. [37], where an effort to model
the levels of progression of COVID-19 infection was done. Moreover, correlation coefficient
analysis was adopted to determine the strong relationship among the numerous health features
of the included dataset. In this way, the explainability feature was added to the proposed
pipeline. On the contrary, the dataset is limited to health-related data for the area of Mexico.
In [38], the authors propose a more sophisticated framework to assist the investigation of the
causality behind the associations that are discovered by the utilization of machine learning
techniques. Despite the well-designed structure and the robustness of this framework, it was
restricted to the environmental data analysis in relation to COVID-19’s evolution.

3. Mathematical Formulation of the Pandemic Spatio-Temporal Evolution

Our proposed framework for interpreting predictions on COVID-19 daily cases and
deaths is presented in Figure 2. In our case study, we have chosen eight pilot cities-capitals
from the area of Europe: Athens, Budapest, Prague, Madrid, Rome, Paris, Birmingham and
Berlin. Heterogeneous data from different sources are utilized in order to create a larger
dataset to investigate and exploit all the potential correlations among the data. The pro-
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posed dataset consists of environmental, atmospheric, health-related, socio-economic data
and data related to daily mobility trends from places of interest.
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•Atmospheric
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•Mobility
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Figure 2. The proposed machine learning model is responsible for interpreting predictions on COVID-
19 daily cases and deaths. On one hand, the proposed model forecasts COVID-19 cases and deaths,
and on the other hand it discovers possible links from SHAP and Lime explainability frameworks.

With the aim to study the dynamics of COVID-19, we introduce a non-linear model
that incorporates all the aforementioned data towards the direction of COVID-19 progres-
sion prediction. Let X = {Xenv,Xatm,Xsoc,Xheal ,Xmob}, be a set containing sub-sets of
different-type of values, where Xenv = {xt

k1
: k1 = 1, . . . 5} denotes the environmental data,

Xatm = {xt
k2

: k2 = 1, . . . 11} denotes the atmospheric data, Xheal = {xt
k3

: k3 = 1, . . . 4}
denotes the health-related data, Xsoc = {xt

k4
: k4 = 1, . . . 4} denotes the socio-economic

data and Xmob = {xt
k5

: k5 = 1, . . . 6} denotes the mobility data. Note that in the above
subsets, t refers to the time index given the fact that the data are represented in the form of
time-series. The non-linear model uses the above values so as to predict two types of cases;
the first one corresponds to the predicted daily cases, denoted as ypdc, and the second one
to the predicted daily deaths, denoted as ypdd. Therefore, one can use a non-linear model to
predict the output yj, where j can be either ypdc or ypdd as

yj(t) = f (Xenv,Xatm,Xheal ,Xsoc,Xmob). (1)

4. Spatio-Temportal Modeling of Heterogeneous Big Data for COVID-19 with
Tree-Based Ensemble Learning

Random Forest (RF) is an ensemble machine learning algorithm used for supervised
learning and is utilized to carry out either classification or regression tasks with high perfor-
mance [39–41]. Ensemble learning is a machine learning technique that combines several
base models (e.g., decision trees) in order to achieve better predictive performance [42,43].
Three dominant ensemble learning techniques are: (1) BAGGing, (2) Stacking and (3) Boost-
ing. Note that in this work we compare algorithms from every field of ensemble learning.
BAGGing derives from Boosttrapping and AGGregation, which in combination form one
ensemble model. A large number of decision trees make predictions on boosttrapped
subsamples of the initial input, while an aggregation over the results carries out the final
prediction. One well-known ensemble learning algorithm is the proposed RF. In particular,
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RF is a meta estimator that fits a number of decision tree classifiers on various sub-samples
of the input and uses averaging to improve the predictive accuracy and control over-fitting.
In this work, we utilize an RF regressor as the non-linear model, which is used to pre-
dict daily COVID-19 cases and deaths. Furthermore, RF is an intepretable algorithm that
provides a quantified contribution of each feature to final prediction.

4.1. Improving the Interpretability of the Random Forest Regressor
4.1.1. Shapely Additive Explanation (SHAP)

Shapley additive explanation (SHAP) is a method that explains individual predictions
by the processed data features, first introduced by Lundberg and Lee (2017) in [23]. The
SHAP explanation method computes Shapley values from coalitional game theory. Ac-
cording to them, a prediction can be explained by assuming that each feature value of the
instance is a “player” in the coalition, where the prediction is the payout. Shapley values
depict the contribution of the “payout” among the features. SHAP values are defined as
the coefficients φi of the additive surrogate explanation model:

g(z′) = φ0 +
M

∑
i=1

φiz′i, (2)

where z′i represents the binary variables (z′i ∈ {0, 1}M) and φi is the feature-attribution
values (φi ∈ <). In other words, z′i represents a feature that is being observed when z′i = 1
and an unknown feature when z′i = 0. M denotes the number of input features and g
provides the explanation for the model.

SHAP values are the single unique solution of each φi in the class of additive surrogate
explanation models g(z

′
) that satisfies three desirable properties: local accuracy, missing-

ness and consistency [44]. To compute SHAP values, we denote fS(x) as the model output
restricted to the feature subset S ⊂ M, and the SHAP values are then computed based on
the classic Shapley values:

φi = ∑
S⊂M\i

| S |!(| M | − | S | −1)!
| M |! ( fx(S ∪ i)− fx(S)) (3)

where this is the conditional expectation fx(S) = E[ f (x) | xS] = Ex S |x S
[ f (x)], and xS is the

sub-vector of x restricted to the feature subset S, and S = N\S.
SHAP is a framework that has a fast implementation for tree-based models due to

the proposed TreeSHAP, a variant of SHAP for tree-based machine learning models such
as random forests. TreeSHAP was introduced by Lundberg et al. (2018) [44] as a high
speed algorithm for estimating SHAP values of tree ensembles, that also addresses the
problem of inconsistent feature attribution method. Furthermore, SHAP aims to explain
the prediction of an input set of features by computing the Shapley values and provide a
variety of tools for model explanation, e.g., feature importance, impact with summary plot
and dependence plot.

4.1.2. Local Interpretable Model-Agnostic Explanations (LIME)

Ribeiro et al., in [24], proposed a novel explanation technique named local interpretable
model-agnostic explanations (LIME), that interprets individual model predictions based on
locally approximating the model around a given prediction. LIME is a framework that can
interpret and understand any model (model-agnostic), by calculating reliable explanations
on a local scale, where we assume that every model is linear. Explanations are gathered by
approximating linear models, e.g., decision trees, near a given sample. LIME explanations
are calculated by the following equation:

explanation(x) = argmin
g∈G

L( f , g, πx) + Ω(g) (4)
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where g ∈ G is an explainable model, which belongs to a class of potentially interpretable
models G. To continue, g is responsible fir approximating our black-box model f , near a
proximity measure πx, which defines the size of the neighborhood around a given instance
x. Furthermore, Ω(g) denotes the model’s complexity according to all g ∈ G. In order
to obtain interpretable approximation of the non-linear model, LIME aims to on one
hand minimize L( f , g, πx), which is a measure of how uncertain g is (i.e., local fidelity),
and on the other hand keep Ω(g) low enough so that it can be interpretable by users
(i.e., interpretability).

In this work , we utilize LIME’s accurate and fast explanations in order to investigate
potential links between cities and factors. Locality enables us to take a closer inspection of the
entire dataset where the neighborhood around a given instance x are data related to each city.

5. Experimental Results and Discussion
5.1. Dataset Description

In order to evaluate the performance of machine learning algorithms, we consider
a collection of spatio-temporal datasets that derive from multiple heterogeneous sources.
The datasets are divided into five classes, including environmental, atmospheric, health, socio-
economic and mobility data. We utilize data from eight large European cities: (1) Athens,
(2) Budapest, (3) Prague, (4) Madrid, (5) Rome, (6) Paris, (7) Birmingham and lastly (8) Berlin,
with a time period spanning from 1 January 2020 to 31 December 2021, covering 2 years since
the beginning of the pandemic. Table 1 shows the summary of data utilized.

Table 1 includes the names of the variables, a short description for each variable and
its mathematical notation, as well as the class that the variable belongs to along with the
variable units, the source where the data was acquired and last the statistical values of:
(1) mean, (2) minimum, (3) maximum and (4) standard deviation.

Table 1. Description of the data inputs into the proposed non-linear model.

Input Variables Description Class Notation Units Source Mean Std Min Max

Wind speed Avg. daily wind speed Atm Xatm m/s AQ 3.2 1.65 0.2 13.1
Wind Gust Avg. daily wind dust Atm Xatm m/s AQ 6.91 3.73 0.4 26.2

Pressure Avg. daily atmospheric pressure values Atm Xatm mb AQ 1014.64 8.31 973 1041
Temperature Avg. daily temperature values Atm Xatm °C AQ 14.53 7.72 −6.4 36.1

Humidity Avg. daily humidity Atm Xatm % AQ 68.41 16.98 20 98
SO2 Avg. daily sulfur dioxide values Atm Xatm µg/m3 AQ 1.75 1.32 0.1 9.9

PM2.5 Avg. daily fine particulate matter (d < 2.5) Atm Xatm µg/m3 AQ 42.74 20.01 5 171
PM10 Avg. daily fine particulate matter (d < 10) Atm Xatm µg/m3 AQ 17.93 9.01 3 77

O3 Avg. daily ground level ozone values Atm Xatm µg/m3 AQ 21.71 9.47 0.8 55.2
NO2 Avg. daily nitrogen dioxide values Atm Xatm µg/m3 AQ 10.04 5.01 0.7 43.7

Cardiovascular DR Country cardiovascular death rate Heal Xheal /105 OWD 156.41 64.43 86.06 278.3
Diabetes Prevalence Country % number of diabetics Heal Xheal % OWD 5.98 1.47 4.28 8.31

Male smokers Country % male smokers per city Heal Xheal % OWD 34.81 7.8 24.7 52
Female smokers Country % female smokers per city Heal Xheal % OWD 27.24 4.95 19.8 35.3

Median age Population median age per city Soc Xsoc % OWD 44.4 2.23 40.8 47.9
Aged 65 older Population over 65 Soc Xsoc % OWD 20.04 1.48 18.52 23.02
Aged 70 older Population over 70 Soc Xsoc % OWD 13.73 1.61 11.58 16.24

GDP per capita Gross Domestic Product Soc Xsoc $ OWD 34,233.25 6265.04 24,574.38 45,229.25
PoVC % of land cover in vegetation Env Xenv % Copernicus 0.46 0.06 0.3 0.58

NDVI mean Mean value of NDVI image Env Xenv - Copernicus 0.27 0.12 0 0.5
NDVI max Max value of NDVI image Env Xenv - Copernicus 0.95 0.09 0.63 1
NDVI min Min value of NDVI image Env Xenv - Copernicus −0.78 0.21 −1 −0.17
NDVI std Std. value of NDVI image Env Xenv - Copernicus 0.19 0.04 0.06 0.27

Retail Recreation Daily mobility trends for retail and recreation Mob Xmob % Google −33.84 22.98 −97 19
Grocery Pharmacy Daily mobility trends for grocery and pharmacy Mob Xmob % Google −4.99 21.33 −95 182

Transit Stations Daily mobility trends for transit stations Mob Xmob % Google −36.12 18.26 −93 12
Workplaces Daily mobility trends for places of work Mob Xmob % Google −33.28 20.54 −92 95



Remote Sens. 2022, 14, 3074 8 of 20

With regards to the atmospheric variables, we adopted atmospheric data from the Air
Quality (AQ) Open Data Platform (https://openaq.org/, accessed on 3 August 2017), that
provides min, max, median and standard deviation values for each of the air pollutant
species (i.e., nitrogen dioxide (NO2), ozone (O3), particulate matter 2.5 (PM2.5), particulate
matter 10.0 (PM10), dioxygen (SO2)) as well as meteorological data (i.e., wind, temperature).
We only consider the median value for each indicator as a representative daily sample for
each city of interest.

The outputs of our model, which are COVID-19 confirmed cases and deaths, are
obtained by the Our World in Data (OWD) platform [45]. From this dataset, we have also
adopted the socio-economic (i.e., gdp, age) and health-related factors (i.e., cardiovascular
death rate, diabetes prevalence, smokers) of our model. Apart from them, OWD also
provides government response stringency index, which is a composite metric based on
nine response indicators including school closures, workplace closures and travel bans,
ranging between 0 and 100. The highest values, e.g., 100, indicate the strictest response.
Here, we highlight that we utilize this index in the explainability part of our algorithm in
order to interpret the results of our algorithms (see Section 5.4).

Urban vegetation indices are derived from remote sensing imagery data with data de-
rived from the Copernicus Sentinel-2 mission (https://scihub.copernicus.eu/, accessed on
10 October 2013) for each city of interest in a common timeline. The Normalized Difference
Vegetation Index (NDVI) is calculated, as shown in Equation (5), for the quantification of
the urban vegetation. In particular, NDVI is calculated from a normalized transform of
the near-infrared (NIR) and red (RED) amounts of the electromagnetic spectrum, that are
reflected by the vegetation and captured by the sensor of the satellite. The formula is based
on the fact that vegetation absorbs RED, whereas it strongly reflects NIR. NDVI values
range from −1 to +1, where negative values correspond to an absence of vegetation.

NDVI =
NIR− RED
NIR + RED

(5)

For each satellite imag,e we calculate the NDVI and acquire the following four statisti-
cal metrics: (1) mean, (2) minimum, (3) maximum and (4) standard deviation. Furthermore,
we quantify the Urban greenness with a two-step procedure. Firstly a threshold operation is
done to dissever the space into green and non-green areas. Secondly we divide the outcome
with the total number of pixels to outcome the percentage of land cover in vegetation
(PoVC). Note that we threshold each image with the NDVI mean, as its benefit is two-fold:
(1) as a value it is automatically extracted from each image and (2) it estimates the average
greenness regardless of the radiometric parameters of each image. Environmental data
acquisition procedure is also illustrated in Figure 3.

DATA 
Acquisition

•Weekly

•Sentinel-2

NDVI

•MEAN

•MAX

•MIN

•STD

Vegetation 
Classification

•Threshold NDVI

•NDVI – Mean

PoVC

NDVI MEAN

NDVI MAX

NDVI MIN

NDVI STD

Environmental Factors

Figure 3. The environmental data acquisition step from remote sensing resources and the adopted
process for the calculation of the urban greenery.

Mobility data are obtained by Google COVID-19 Community Mobility Reports (https:
//www.google.com/covid19/mobility/, accessed on 15 April 2022) and provide movement

https://openaq.org/
https://scihub.copernicus.eu/
https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
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trends over time by region, across different categories. These categories are clustered as
follows: (1) places of retail and recreation (restaurants, shopping centers etc.); (2) areas of
groceries and pharmacies (grocery markets, food warehouses, farmers markets); (3) parks;
(4) transit stations (subway, bus and train stations); (5) workplaces; and (6) residential areas.

5.2. Model Performance Evaluation
5.2.1. Comparisons for Different Machine Learning Models

Here, we train a single model that includes all eight cities, forming a dataset of
4854 records in total, with daily pandemic-related data spanning across 2 years. The dataset
was split in 70/30 train/test sets. Note that for both the train and test set the number of
records are equally distributed for each city and contain values from all cities and all years
of evaluation.

Table 2 presents comparisons according to the performance of the proposed Random
Forest (RF) in the regression task, accompanied with the following machine learning ap-
proaches: (a) linear regression (LR), (b) decision tree (DT), (c) support vector regressor
(SVR), (d) lasso regression (Lasso), (e) Gaussian process regressor (GPR), (f) multi-layer
perceptron (MLP), (g) extreme gradient boosting regressor (XGBoost) and (h) light gradient
boosting regressor (LightGBM). The metrics that were selected for the evaluation of regres-
sion task were the root mean square error (RMSE) and mean absolute error (MAE). These
metrics are defined as follows:

MAE =
1
n

n

∑
i=1
|yi(t)− ŷi(t)| (6)

RMSE =

√
1
n

n

∑
i=1

(yi(t)− ŷi(t))
2 (7)

where ŷi(t) is the predicted value of the i-th sample, yi(t) is the corresponding true value
and n denotes the number of samples.

Table 2. The overall performance of machine learning algorithms.

Machine Learning Algorithm
Cases (/106 People) Deaths (/106 People)

RMSE MAE RMSE MAE

Linear regression 436.12 268.28 3.63 2.41
Decision tree regressor 380.41 210.23 4.00 2.62

Support vector regressor 340.43 249.57 3.22 2.42
Lasso regression 498.76 267.02 4.94 3.65

Gaussian process regressor 436.14 268.13 3.63 2.41
Multi-layer percepton 252.13 149.39 2.98 1.87

XGBoost regressor 209.86 125.44 2.60 1.56
Light GBM regressor 208.40 97.63 2.20 1.18

Proposed random forest regressor 192.44 93.76 2.15 1.12

MAE measures the average magnitude of the error in a set of forecasts, without consid-
ering their direction, while RMSE is a quadratic scoring rule which measures the average
magnitude of the error. MAE and RMSE are used complementarily one another to diagnose
the variation in the errors in a set of forecasts. The RMSE will always be larger or equal to the
MAE: the greater the difference between them, the greater the variance in the individual errors
in the sample. If the RMSE is equal to MAE, then all the errors are of the same magnitude.

From Table 2 it is observed that Lasso regression results in the lowest score, regard-
less of the evaluation metric among the eight algorithms considered for both cases and
deaths. Focusing on both RMSE and MAE metrics, RF achieved the highest performance
in both cases and deaths predictions. Here, we highlight that the differences between the
performance of LightGBM and the proposed RF are negligible.

The difference between RMSE and MAE is almost double, indicating that either spatial
variability (different cities) or temporal variability (difference between the years and how
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COVID-19 was treated) introduces errors with high variability, and causes difficulties
during the training process of the model and worsens its performance. To overcome this
issue, and dive into the explainability technique, in the next section (see Section 5.2.2), we
evaluate the performance of the model for different time periods. The first testing period
is during the year 2020, and the next period is in the year 2021, in an attempt to identify
which year introduces the largest error.

5.2.2. Temporal Variability of the Performance Errors—Analysis for Different Time Periods

According to Table 3, all the machine learning models are fitted in a smoother manner
for 2020-related data, which is justified from the RMSE and MAE results. Lasso regression,
regardless of the year and the performance metric, results in the lowest score.

Table 3. The effect of the COVID-19 pandemic during two different time periods. The table shows
the performance evaluation of the machine learning algorithms for two different testing periods.

2020 2021

ML Algorithm Cases (/106 People) Deaths (/106 People) Cases (/106 People) Deaths (/106 People)

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Linear regression 149.70 93.85 3.31 2.37 549.06 359.03 3.96 2.54
DT regressor 156.39 98.70 3.75 2.38 503.17 303.63 4.19 2.74

SVM regressor 133.15 89.79 2.74 1.97 354.89 262.07 3.63 2.52
Lasso regression 193.34 136.94 5.00 3.91 723.90 399.82 5.40 3.60

GP regressor 149.68 94.00 3.32 2.37 549.15 359.14 3.97 2.54
MLP regressor 146.96 95.50 2.61 1.69 296.33 181.64 3.42 2.06

XGBoost egressor 116.78 63.58 2.43 1.40 255.89 144.41 2.89 1.45
LightGBrM regressor 112.12 56.30 2.33 1.23 240.39 124.76 2.86 1.24

RF regressor 111.40 54.04 2.27 1.16 226.03 110.25 2.65 1.12

Random Forest achieves the highest performance in 2020 and 2021 year data individu-
ally. LightGBM achieves similar performance in 2020, although in 2021 it seems that has
larger deviations compared to RF, but they remain negligible.

T he difference between the years can only be described as a prior form of explainable
AI. Machine learning models struggle to make robust predictions and one of the major
factors is the introduction of vaccinations in 2021 as an additional solution to the pandemic
control, gradually leaving behind strict lockdown approaches [46–48].

5.2.3. Spatial Variability of the Performance Errors-Per City Analysis

In this section, we continue our analysis, and apart from the yearly evaluation
on regression metrics, we study the effect of each city in the performance error. Thus,
Tables 4 and 5 show the performance of the proposed model at each city and at each year
respectively. According to Table 4, Rome is the city in which the model achieves the highest
predictive performance in COVID-19 cases, followed by Athens and Berlin in the rank.
The city that achieves the lowest RMSE and MAE is Prague. Apart from cases, both Athens
and Berlin achieve the highest predictive performance. As in the previous metric, Prague
continues to have the lowest performance for deaths according to RMSE and MAE.

5.2.4. Spatio-Temporal Variability of the Performance Errors

Table 5 depicts the results combining the two above mentioned approaches in
Sections 5.2.2 and 5.2.3. As is shown, Athens in 2020 is the city that RF fits with the highest
score among all other cities. Madrid, however, achieves the lowest performance for 2020 in
both cases and deaths. In the following year for the city of Rome, the model fits better to the
input data, according to the results. The city of Athens along with Birmingham and Berlin
have, in general, good performance, in contrast to Prague which seems to have the lowest
model performance in terms of cases.Although Prague has a moderate performance in
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deaths, city of Budapest has the lowest score in both RMSE and MAE. Unlike Berlin, input
data of this year seem to have fit from the proposed model with the best possible accuracy.

Table 4. The effect of COVID-19 pandemic for different cities. The table shows the performance
evaluation of the random forest algorithm for the different cities.

City
Cases (/106 People) Deaths (/106 People)

RMSE MAE RMSE MAE

Athens 149.79 69.50 1.31 0.84
Budapest 255.22 118.34 3.67 1.92

Prague 293.91 163.54 2.16 1.25
Madrid 245.08 138.69 2.62 1.20
Rome 72.38 39.22 1.26 0.76
Paris 196.97 102.83 2.16 1.25

Birmingham 87.85 56.80 1.60 1.07
Berlin 118.48 69.11 0.97 0.60

Table 5. The spatial and temporal variability of the performance errors in the proposed RF model.

2020 2021

City Cases (/106 People) Deaths (/106 People) Cases (/106 People) Deaths (/106 People)

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Athens 53.11 26.11 1.06 0.56 105.46 74.07 1.21 0.73
Budapest 115.18 62.46 1.58 0.91 297.97 150.31 5.25 2.57
Prague 189.40 92.46 2.48 1.12 430.92 224.67 4.25 2.06
Madrid 144.78 74.20 3.92 2.12 201.98 104.45 1.77 0.97
Rome 58.97 35.72 1.42 0.83 86.87 45.95 0.90 0.53
Paris 118.13 68.06 2.64 1.51 218.63 125.18 1.59 0.78

Birmingham 63.86 43.93 2.19 1.50 99.20 77.95 0.89 0.64
Berlin 61.21 36.02 1.00 0.62 132.55 79.44 1.00 0.52

All performance differences of the model according to both RMSE and MAE corre-
sponding to each year and city are due to the heterogeneous nature of the data. These
differences can guide researchers to possible explanations but can not provide robust
feature importance and feature contribution to either global or local explanations of the
pandemic. Therefore, explainable frameworks are employed in this work so as to identify
how heterogeneous factors affect the spread of the pandemic.

5.3. Global and Local Explanations

The aim is to improve our model’s interpretability using an explainable AI framework.
Figure 4 illustrates the results using (a) feature importance and (b) summary plot diagrams.
Feature importance shows, quantitatively, how features contribute in the final model output
(global explanations), while the summary plot depicts the indication of the relationship
between the value of a feature and the impact on the prediction (local explanations).
Figure 4a,c illustrate the feature importance for cases and deaths models respectively, while
summary plots are illustrated in Figure 4b,d.

SHAP feature importance depicts the average of absolute Shapley values per feature
across the input dataset. Afterwards, the features are plotted in bars with a decreasing
importance, providing a better understanding of the most important factors. As regards
the model that predicts the confirmed cases, the results suggest that temperature variable
is the most important indicator, following with three mobility trends from: (a) grocery
and pharmacy, (b) retail and recreation and (c) workplaces. Humidity and mobility trends
from transit stations along with ground-level ozone air pollution (O3) follow the rank of
importance. Other variables contribute to the models’ outcomes too, and are illustrated
in feature importance plot, but they have a minimal contribution compared to the pre-
viously mentioned variables. Regarding the COVID-19 deaths, temperature is the most
important variable as shown in Figure 4c. Stringency index seems to have a significant
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importance along with the percentage of vegetation cover. Moreover, two mobility trends
contribute in the death model predictions and are: (a) from workplaces and (b) from transit
stations. Lastly, GDP per capita along with people aged 70 or older and cardiovascular
death rate, contribute as country-profile factors but with lower Shapley values. Feature
importance plot is a useful, fast and understandable way to demonstrate which factor
affects the model predictions the most, but it does not provide information beyond the
importances. So, apart from the feature importance plot, Figure 4 contains SHAP summary
plots for feature based analysis. Each point on the summary plot is a Shapley value of
an individual feature and a sample. Similar to feature importance, summary plot also
sorts the variables by the summary of SHAP values magnitudes over all samples. Then,
it uses SHAP values to show the distribution of the impact that each feature has on the
model output. The y-axis shows the variables/features and the x-axis indicates the SHAP
values. Instances that have negative SHAP values are linked with decreased predictions,
while positive ones have a high positive contribution. Color depends from the value of
the feature in a scale from low to high. In more detail for the summary plot, red dots
indicate high feature values, whereas blue dots represent low feature values. Furthermore,
the distribution of the Shapley values per feature can be located by overlapping points in
y-axis.
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Figure 4. The global aspect of feature understanding using SHAP framework is achieved with the
feature importance diagram. In addition to the global explanations, summary plots are adopted as a
model interpretation tool for local explanations. Each row corresponds to the model type: the first
depicts the cases model while the second depicts deaths. (a) SHAP feature importance for cases;
(b) SHAP summary plot for cases; (c) SHAP feature importance for deaths; (d) SHAP summary plot
for deaths.
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5.4. Feature Understanding and Feature Explanation

The summary plot provides the user with a fine observation of each feature relationship
with the prediction (local explanations); however, a more detailed monitoring between
individual feature values with the impact on the model (Shapley values) can only be
provided by the SHAP dependence plots. Figure 5 presents the SHAP dependence plots
for the three most important features for cases (first column) and deaths (second column).
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Figure 5. SHAP dependence plots for feature understanding. The first column represents SHAP
dependence plots for the 3 most important features for the cases model, while the second for the
one predicting deaths. SHAP dependence plots depict the contribution of each features value to the
models prediction. All graphs interact with the Government Response Stringency Index. (a) Tem-
perature; (b) temperature; (c) grocery and pharmacy; (d) stringency index; (e) retail and recreation;
(f) percentage of vegetation cover.

A SHAP dependence plot depicts, for a unique factor, the feature value on the x-axis
and the corresponding Shapley value on the y-axis, for each data instance. The color
in Figure 5 demonstrates the interaction of the dependent feature with the stringency
Index (see Section 5.1). This interaction provides additional explanations according to
each government’s decisions, which are related to mobility trends and climate change
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factors. Both summary and dependence plots will be considered in order to make robust
explanations for the pandemic factors.

According to Figure 4, temperature has important impact on models’ outcome, for cases
and deaths models. Figure 4b,d depict that high temperature values reduce the predicted
cases and deaths, while lower values increase the models’ predictions. Focusing on SHAP
dependence plots Figure 5a,b, we observe a negative slope, which means that when the
temperature values are increased, the probability of reported cases and deaths is decreased.

Red dots depict a high stringency index in the reported dates of each plot, while blue
ones depict lower stringency index measures. According to this, tight health measures
along with comparatively higher temperatures seem to have the lowest probability of cases
and deaths according to the calculated SHAP values. Furthermore, temperature values that
are higher than 15 °C report negative SHAP values while the dominant color is the blue
one, meaning that on the one hand governments lowered measurements and on the other
hand higher temperature values lower the probability of transmitting the virus, reaching
lower daily cases [49–51].

Mobility trends from grocery and pharmacy is the second most important factor after
the temperature for the cases model according to Figure 4. Summary plot in Figure 4b
shows that higher mobility percentages from baseline have positive SHAP values, while
lower percentages seem to have negative ones. According to SHAP dependence plot in
Figure 5a, mobility trends from grocery and pharmacy places are mainly negative and
range from 0 to −100%, while apart from some local outliers, positive mobility trends
range from 0 to 50%. From −100 to 0% mobility trends, SHAP values are negative and dots
mainly have red color (high stringency index), which demonstrates samples from lockdown
periods. When mobility trends are low and stringency index is high, the probability of
an increasing number of cases is significantly lower. Focusing on positive trends, SHAP
values have an increasing slope and color of dots gradually becomes blue, which suggests
that increasing mobility trends from grocery and pharmacy places increases the probability
of new cases [52,53].

Figure 4 denotes that stringency index as the second most important factor according
to the deaths model. As it seems from Figure 5d, values of stringency index between 0 and
70 have negative SHAP Values, which means that they negatively affect the probability of
increasing deaths. Higher values of stringency index, on the other hand, report positive
SHAP values, forming an increasing slope of the graph. The outcome of this graph might
be confusing, because it shows that low government responses help the reduction of deaths
from COVID-19 while tight measurements do not. It should be mentioned that lower
values of stringency index have been taken from governments since the introduction of
vaccinations, a response that does not favor the transmission of the virus [54,55].

Besides the second most important feature in the cases model, another type of mobility
trend appeared to have significant importance: mobility trends from retail and recreation. This
SHAP dependence plot illustrates a straight slope between−100% to−2 % with interaction red
dots, which corresponds to tight government responses. According to previous bounds, most of
the depicted instances have both negative and low SHAP values. From −20% to 20% SHAP
values start to increase, while dots begin to have blue color, describing instances from places
with lower stringency index. The function distribution suggests that reducing movements to
places such as restaurants, cafes, shopping centers, etc., with tight government responses reduce
the probability of reporting high new daily cases [52,53].

For the deaths model, percentage of vegetation cover (PoVC) is the third most im-
portant factor. Lower values of PoVC illustrate cities in epochs with low vegetation cover,
while high values of PoVC describe cities in epochs with high vegetation cover. Figure 5f
shows a similar distribution as of the previous factor (mobility trends from retail and
recreation). In more detail, from 35% to 54% vegetation land cover have negative and low
SHAP values, while instances with urban greenness above 50% start to have increasing
SHAP values. It is important to note that instances are vertically distributed, which means
that different cities might have similar percentages in vegetation cover for different epochs
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of the years of interest. Moreover, the dominant color is red, while individual blues appear
in the graph, providing us information about cities that had bigger PoVCs and still reached
high confirmed deaths from COVID-19. According to this, the lack of urban public green
areas due to either seasonal vegetation change or urban planning issues in periods where
governments’ countermeasures were tight seem to reduce the probability of reporting a
high number of confirmed deaths from COVID-19.

5.5. City-to-City and Year-to-Year Analysis with LIME

Here, we utilize the LIME explanation technique, to explain the predictions of the
regressor, by learning an interpretable model locally around each prediction. The tech-
nique learns the weights for each city for a given time period via least square approach.
Figures 6 and 7 illustrate the estimated weights of LIME algorithm. The relative weights—
risk factors that affect COVID-19 progression—either contribute to the prediction (in red) or
are evidence against it (in green). The color saturation in heatmaps shows how much each
feature contributes to the model output. Figure 6 focuses on samples selected for 2020 and
Figure 7 for 2021 respectively. Subfigures of each one of them illustrate the explanations for
(a) cases and (b) deaths.
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Figure 6. Local feature understanding using LIME framework. The contribution of each feature to
each city is illustrated with heatmaps for 2020. Each row represents, for each city (y-axis), the LIME-
calculated weights for each indicator (x-axis). Green color suggests negative influence to the model’s
outcome, while a red one is positive. (a) Heatmap of LIME weights for cases model; (b) heatmap of
LIME weights for deaths model.
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Figure 7. Local feature understanding using LIME framework. The contribution of each feature to
each city is illustrated with heatmaps for 2021. Each row represents, for each city (y-axis), the LIME
calculated weights for each indicator (x-axis). Green color suggests a negative influence on the model’s
outcome, while a red one is positive. (a) Heatmap of LIME weights for cases model; (b) heatmap of
LIME weights for deaths model.

According to Figure 6a, the most important factor that negatively influence the models
predicted cases is the O3 variable, in all cities except Paris and Birmingham. Despite the
increased air quality index in [56], high O3 levels are linked to reduced COVID-19 cases.
Temperature is another variable that seems to have a negative contribution as well for
all the cities. Humidity and stringency index influence negatively the predictions for the
cases in cities such as Athens, Budapest, Prague, Madrid, Rome and Berlin; however,
the colors are light green, which means that the weights are not so important. In Paris,
the stringency index maintains a negative affect on the predictions, while on the other
side in Birmingham both humidity and stringency index variables have high positive
correlations. Positive contributions are also reported from the PoVC factor for the city of
Paris along with Madrid and Athens, while in Birmingham and Paris, wind gust factor
also affects the model predictions. Note that wind gust negatively affects other cities,
but with lesser impact. In contrast to temperature, mobility trends from places of retail
and recreation have positive explanations in all cities except Madrid. Positive influences
with lower impact are also reported for the factor of NO2 in Madrid and Paris, people aged
70 or older in Budapest, Prague and Birmingham and mobility trends from workplaces in
Prague, Athens and Rome as well.

In Figure 6b, the most important factor is stringency index, which has a negative
influence on the model’s predicted deaths, for every city of interest. Along with stringency
index, temperature is second in terms of negative contribution impact as a factor in all cities,
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while O3 has lower impact than temperature in all cities except Birmingham. According to
the exception of the previous city, humidity and O3 report a significant positive influence
on the predicted deaths. In contrast with a high positive contribution, humidity negatively
affects cities such as Berlin, Athens, Budapest and Madrid. Strong positive correlations are
also shown in two more factors: aged 65 or older and cardiovascular death rate variables, for
Budapest and Prague. Other factors contribute mostly positive but moderately compared
to the previous ones. Some of them are mobility trends from workplaces and transit stations
along with NDVI statistical values, all for specific cities.

Focusing on the cases model in Figure 7a the most important indicators that negatively
affect the model’s predicted cases are the mobility trends from workplaces, grocery and
pharmacy and, lastly, from retail and recreation. Note that mobility trends from retail and
recreation have a positive influence on the model’s outcome in Athens and Rome, while in
Athens, mobility trends from grocery and pharmacy seem to have a positive and strong
contribution too. A negative contribution is also reported from the atmospheric indicators
and especially from temperature and humidity in all cities, except Birmingham and Berlin.

Figure 7b illustrates, in a heatmap, the explanations for the deaths model for 2021,
showing the significant contributions of heterogeneous factors for different cities. The three
most important factors that contribute to the model’s predicted deaths are temperature,
stringency Index, PoVC and cardiovascular death rate. The atmospheric factor temperature,
regardless of the city, continuously seems to have a strong negative influence on the
model’s outcome. Stringency index has the same behaviour for the model’s predicted
deaths, but with lower impact. Note that Rome is not affected by the previous factor.
The environmental index PoVC has negative contribution on the models predictions for all
cities except Budapest and Prague, where a strong correlation with high predicted values is
detected. The same behaviour is also detected for the health factor called cardiovascular
death rate. Lastly, according to Figure 7b, Berlin and Athens seem to be affected by the
mobility trends from workplaces variable, due to its negative contribution.

6. Conclusions

In this work, we presented a tree-based interpretable Machine Learning model that
adopts the bagging concept, namely Random Forest, for robust COVID-19 cases/deaths
predictions. Furthermore, a data fusion approach was used in order to evaluate how multi-
dimensional data affect our model’s predictive ability. These data are spatio-temporal time
series and derive from open-source platforms describing: (1) Earth observation data for de-
tecting urban vegetation; (2) socio-economic factors; (3) health-related data; (4) atmospheric
data; and (5) mobility trends. Along with the predictive operation, our model utilizes two
explainable frameworks responsible for providing global and local feature understanding.
The XAI framework used to identify global correlations between indicators is a modified
version of SHAP focusing on explaining tree-based ML models, named treeSHAP, and it is
able to detect fast and accurate explanations overcoming mandatory challenges that other
feature attribution methods face. From the local aspect of explanations, LIME was utilized
to explain the relationship between cities and factors individually, by utilizing instances
from them. The four most important factors that are related to the spread of the pandemic
for each city are temperature, varieties of mobility trends such as grocery and pharmacy,
retail and recreation, the location of existing urban green areas along with stringency index.
However, a closer investigation of each city suggests that climate change and air pollution
factors such as temperature, humidity and O3 influence our model’s behaviour on both
morbidity and mortality. Regarding the model that predicts the reported COVID-19 cases,
our explanations suggest that in 2020, strong positive correlations between factors related to
vegetation indices, such as PoVC, and COVID-19 spread are appeared in Paris, whereas at-
mospheric and air-pollution factors, such as humidity and wind gust, have strong influence
on COVID-19 in case of Birmingham. On the contrary, O3 ground-level air pollution factor
is dominant on the spread of COVID-19 for most of the cities and decelerates the spread
of the virus in the same testing period. In 2021, positive correlations related to mobility
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trends are reported for the cities of Athens and Rome. As regards the rest of the cities, a
strong negative correlation between the reported COVID-19 cases along with the mobility
trends related to workplaces is observed, for both retail and recreation as well as grocery
and pharmacy. Explanations for the model that predicts daily deaths suggest that, in 2020,
stringency index has strong influence on the results. It is also worth mentioning that in
Birmingham risk factors, such as humidity and O3, positively influence the daily deaths.
During the year 2021, explanations show that temperature risk factor is the dominant factor
with a negative contribution in all the cities. Moreover, stringency index maintains its
negative behaviour for all cities except for Rome. On the other hand, a positive correlation
is derived from cardiovascular death rate and most importantly from PoVC in Budapest
and Prague. The rest of the cities contribute negatively for the same factors. In our future
work, we will investigate the effectiveness of vaccinations in the year 2021 and compare
it with the preventive measures that were implemented in 2020. Furthermore, we aim to
introduce an even more robust framework that will represent more cities from Europe and
provide more generalized explanations for Europe. Along with in the proposed framework,
deep learning models will also be included in our comparisons and fastSHAP explainable
framework will be utilized for even faster explanations.
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