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Abstract: To learn discriminative features, hyperspectral image (HSI), containing 3-D cube data, is a
preferable means of capturing multi-head self-attention from both spatial and spectral domains if the
burden in model optimization and computation is low. In this paper, we design a dual multi-head
contextual self-attention (DMuCA) network for HSI classification with the fewest possible parameters
and lower computation costs. To effectively capture rich contextual dependencies from both domains,
we decouple the spatial and spectral contextual attention into two sub-blocks, SaMCA and SeMCA,
where depth-wise convolution is employed to contextualize the input keys in the pure dimension.
Thereafter, multi-head local attentions are implemented as group processing when the keys are
alternately concatenated with the queries. In particular, in the SeMCA block, we group the spatial
pixels by evenly sampling and create multi-head channel attention on each sampling set, to reduce the
number of the training parameters and avoid the storage increase. In addition, the static contextual
keys are fused with the dynamic attentional features in each block to strengthen the capacity of the
model in data representation. Finally, the decoupled sub-blocks are weighted and summed together
for 3-D attention perception of HSI. The DMuCA module is then plugged into a ResNet to perform
HSI classification. Extensive experiments demonstrate that our proposed DMuCA achieves excellent
results over several state-of-the-art attention mechanisms with the same backbone.

Keywords: hyperspectral image classification; dual attention; contextual keys; grouping perception;
multi-head self-attention

1. Introduction

Hyperspectral images (HSI) contain rich spectral information and spatial context,
where the electromagnetic spectrum is approximately contiguous and covers the ultraviolet,
visible, near-infrared, and even mid-to-long infrared regions. The abundant spectral-spatial
information provides great opportunities for the fine identification of materials with subtle
spectral discrepancies, and at the same time brings new challenges in discriminant feature
learning, especially in mining the potential correlation of data with the high-dimensional
nonlinear distribution.

Compared with the limitations of the shallow and handcrafted extractors in complex
data representation, deep neural networks (DNNs) have proven to be more powerful in
feature learning with their excellent power in layer-wise feedforward perception, and have
become prevailing benchmarks in HSI classification tasks [1–3], including multilayer per-
ceptron (MLP) [4], stacked autoencoders (SAEs) [5], deep belief networks (DBNs) [6],
recurrent neural networks (RNNs) [7–9], convolutional neural networks (CNNs) [10–12],
graph convolutional networks (GCNs) [13], generative adversarial networks (GANs) [14],
and their variants. CNN has become populat popular due to its advantage in locally con-
textual perception and feature transformation with parameter sharing. To strengthen the
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contribution of the spectrum as spatial information dose in CNNs, multi-branch networks,
3-D-CNNs, and other more complex models are introduced to extract spectral-spatial
features. Although they improve the model ability in feature representation, new issues
will also arise, such as huge computing burdens, especially difficulty in model optimiza-
tion. Thus, many lightweight deep models [15–17] were proposed for HSI classification.
Meanwhile, shortcut connections [18] become an almost indispensable component to avoid
model degradation.

CNN shares convolution kernels among different locations in each feature map and
collects diverse information encoded in all of the channels. Although the kernel sharing
and feature recombination enable CNN with great performance in translation equivalence
and high-level feature learning, it passively focus attention on important regions, whether
in spatial or in channel dimension, while this is just exactly common in human vision.
Thus, the attention mechanism has raised much concern in remote sensing (RS) fields. This
can be treated as a dynamic selection of features by adaptively weighting, while CNN is
a static method. To focus more on significant channels for object recognition, a squeeze-
and-excitation (SE) block in the SE network (SENet) [19] calibrates the channel weights by
spatial squeeze and channel excitation. Subsequently, many of its variations were presented
for feature learning of HSI. For example, Zhao et al. [20] replaced the excitation part with
feature capture by two 1D convolution layers and aggregation by shortcut connections,
namely CBW. Wang et al. [21] performed SE on spatial and spectral dimension in parallel
(namely, SSSRN), then recalibrated features by weighted summation of the two attention
matrices. Convolutional block attention module (CBAM) [22] refines the feature maps
by two sub-modules, which squeeze respectively the spatial and channel information by
global average pooling (GAP) and max pooling, and excites channel attention via a shared
MLP and spatial attention by 2-D convolution. CBAM was then embedded into diverse
deep networks for attention recalibration, such as double-branch 3-D convolution network
(DBMA) [23].

CNN specializes in local perception and enlarges the receptive field by a deep stack of
the convolutional layers, which is relatively weak and inefficient in long-range interaction.
Transformers with self-attention, which has emerged as the dominant paradigm in natural
language processing (NLP) [24], are thus designed to model long-range dependencies in
computer vision fields [25,26]. For example, ViT [27] and BEiT [28] treat splitting patches in
an image as words in one sentence, and perform non-local operations such as self-attention
in a transformer [24]. In feature learning of HSI, spatial pixels or spectral bands are usually
regarded as tokens of words for long-range attention perception. For example, He et al. [29]
treated pixels in one input patch as tokens, and employed BRET [30] (namely HSI-BRET)
to learn the global relationships between pixel sequences by multiple Transformer lay-
ers. Sun et al. [31] insert the spatial self-attention mechanism into a deep model with
sequential spectral and spatial sub-modules (SSAN). To capture subtle discrepancies of the
spectrum with sequence attributes, He et al. [32] performed spectral feature embedding by
a pre-trained deep CNN. It regarded one spectral band as a word, and modeled sequential
spectra relationships by a modified dense transformer. Hong et al. [33] instead applied
band-wise self-attention with group-wise spectral embedding and proposed a Spectral-
Former model. To capture semantic dependencies in both spatial and channel dimensions,
dual attention network (DANet) [26] sets, two corresponding self-attention sub-modules
were used, and the outputs were combined to perform 3-D attention perception and fea-
ture calibration. This 3-D attention is appropriate to spectral-spatial feature learning of
HSI. Thus, Tang et al. [34] inserted a DANet like-wise attention block into a 3-D octave
convolution network. Li et al. [35] embedded the sub-modules of DANet respectively into
a double-branch 3-D dense convolutional network (DBDA).

HSI contains a wealth of information in both the spatial and spectral dimension; thus,
data representation will prefer 3-D attention from multiple perspectives. However, the diffi-
culty faced by 3-D multi-head attention is the increased burden in parameter optimization,
computation, and storage. As a result, the existing self-attention-based methods in HSI
classification mainly insert a one-head spectral-spatial attention into a 3-D deep model.
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Self-attention can be seen as non-local filter [25] that captures long-range dependencies
by weighted aggregation of features at all positions, while Hu et al. [36] verified that
constraining the aggregation scope to a local neighborhood will be more reasonable for
feature learning in visual recognition with less computation. Thus, in this paper, we focus
on building a 3-D multi-head attention with local interaction and with the fewer possible
parameters and lower computation cost. Beyond that, previous designs mainly capture
attention by independent pairwise query-key interaction but ignore the contextual infor-
mation among neighbor keys. Li et al. [37] proposed a contextual transformer (CoT) that
contextually encoded input keys and concatenated them with queries to learn dynamic
attention, which is much more efficient at boosting visual representation. On this basis,
we present a dual multi-head contextual attention mechanism (DMuCA) for multi-view
spectral-spatial neighborhood perception.

DMuCA decouples the spatial and spectral contextual attention into two sub-modules
and builds multi-head attention on groups to control model complexity. In the spatial
attention module (SaMCA), we treat pixels in the input as tokens and employ depth-wise
convolution to contextualize the input keys in the pure spatial domain. Then, the keys are
alternately concatenated with the queries and grouped to learn multiple neighborhood
relationships. The learned multi-head local attention matrices are then broadcast across
group channels to aggregate the neighborhood inputs. CoT [37] can be seen as a special
case of SaMCA when the number of groups is equal to 1. As for spectral attention (SeMCA),
which treats each channel as a token, the feature representation of one channel involves a
bidirectional dimension. Consequently, the parameters and computation for multi-head
attention matrices will increase exponentially, especially when it is exposed to inputs with
enlarged spatial resolution. With the neighborhood consistency assumption, we therefore
group the spatial pixels by equal-interval sampling and create multi-head attention on each
neighbor block, to reduce the number of the parameter and avoid the computation burden.
The main contributions of this paper are summarized as follows.

• By decoupling 3-D self-attention perception into two sub-modules, SaMCA and
SeMCA, we build a dual contextual self-attention mechanism, DMuCA, for dynamic
spatial and spectral attention calibration.

• To avoid parameter and computation increase, we group the representation of each
token by evenly sampling, and capture multi-head self-attention with an alternate
concatenation of the queries and keys on each group.

• Extensive experiments on three public HSIs demonstrate that our proposed DMuCA
achieves excellent results over several state-of-the-art attention mechanisms with the
same backbone.

The remainder of the paper is organized as follows. Section 2 reviews the general
form of self-attention mechanisms. Section 3 details the proposed DMuCA with two well-
designed sub-modules SaMCA and SeMCA for HSI classification. Extensive contrast and
ablation experiments are conducted and discussed in Section 4. Section 5 draws conclusions
and presents a brief outlook on future work.

2. Preliminaries

Humans can focus rapidly on regions of interest to perceive an image [38]. The atten-
tion mechanism simulates human vision and guides the system to ignore irrelevant content
and focus on the important regions. In this section, we will review the general architecture
of attention mechanisms and their multi-head patterns.

2.1. Attention Mechanism

The attentional mechanism contains two main aspects: determine the important parts
of the input and allocate limited data processing resources to the regions [38]. Given an
input X, this process can be formulated as,

Z = f (g(X), X), (1)
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where g(X) generates attention weights which are generally measured by neighborhood
relationships. The resulting weights are then allocated to X by function f (g(X), X). Z is the
output of the attention layer. For the local self-attention [36], a transformation layer first
maps input X to Query (Q), Key (K), and Value (V). The self-attention weights are then
calculated by dot-product between the Q and K,

g(X) = Softmax
(

QKT
√

dk

)
, (2)

where a scaling factor
√

dk and softmax operation are employed to normalize the weights.
Finally, the attention weights are assigned to the corresponding elements of the value to
yield the output.

The above method captures self-attention through pairwise query-key interaction in
isolation, ignoring neighborhood keys’ rich contextual information. CoT [37] contextualizes
the keys by performing local convolution and concatenates them with queries to learn
attention weights (see Figure 1b), which can be defined as,

g(X) = Conv(σ(Conv([Q, K], W1)), W2), (3)

where σ is a activation function (eg., ReLU). The keys here are obtained by a 2-D convolution
and the query-key interaction is achieved through two consecutive 1× 1 convolutions.
The output of the attention layer is then given by

Z = g(X)⊗V, (4)

where ⊗ denotes local matrix multiplication.
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Figure 1. The multi-head structures of (a) local relation self-attention block and (b) CoT block.
� denotes dot product, ⊗ denotes local matrix multiplication with channel sharing, and ⊕ denotes
element-wise sum.

2.2. Multi-Head Self-Attention

A single self-attention is coarse in mining complex relationships among neighbors
in visual data. The multi-head self-attention mechanism (MHSA) [24] produces attention
blocks from multiple feature subspaces to enrich the relationships. Each i-th subspace
owns its Qi, Ki, and Vi projected by the corresponding learnable parameters Wqi , Wki

,
and Wvi . The obtained attention matrices are then concatenated together to aggregate the
neighborhood elements in a weighted manner. For the local multi-head self-attention [36],
depth-wise local dependency measurement and group weight sharing are used to per-
form multi-head attention with relatively fewer parameters and FLOPs (see Figure 1a).
The process can be written as,

Q = ConvQ(X), K = ConvK(X), V = Identity(X), (5)

where one channel in Q and K are exploited for generating one head of attention. All of the
Ch aggregation weights for Xij with k× k scope can be performed as below, if dot-product
is used here for composability measurement,

g
(
Xij
)
= DepthConv

(
Kk∈N (xij)

, Qij

)
, (6)
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where N
(

xij
)

denotes the k × k neighbors of the spatial pixel xij. The kernel of depth-
wise convolution here comes from Qij, and g

(
Xij
)
∈ Rk×k×Ch . Finally, the Ch multi-head

attention weights that shared by C/Ch channels are allocated to the neighbors of Xij for
information aggregation. To enhance the contextual representation of keys, CoT generates
multi-head attention weights by two consecutive 1× 1 convolution layers, which can be
written as,

g
(
Xij
)
= Conv

(
σ
(
Conv

([
Qij, Kij

]
, W1

))
, W2

)
. (7)

Figure 1b shows the reshaped multi-head attention weights g
(
Xij
)

of xij that is in size
of k× k× Ch.

Self-attention performs feature filtering and aggregation with dynamic kernels gen-
erated by neighborhood interactions. Cordonnier et al. [39] empirically confirms that the
attention layer with enough heads can express any convolutional layer as a special case.
HSI recodes spatial samples as a spectral sequence with extremely high resolution, which
is significantly superior at identifying ground objects with a subtle distinction or variation.
Meanwhile, however, data structures become complex as the information increases. For fea-
ture learning of HSI as a 3-D cube data, it is preferable to capture multi-head self-attention
from both spatial and spectral domains with contextual key interaction, if there is not much
increase in the number of parameters and computation cost. Encoding spectral and spatial
neighbors in a dynamic and decoupling fashion can be practical and effective at perceiving
regions of interest and extracting discriminative features. Accordingly, we propose a dual
multi-head contextual self-attention network (DMuCA) for HSI classification.

3. Proposed Method

The proposed framework of DMuCA network is illustrated in Figure 2. We build
a plug-and-play 3-D attention block to guide a deep convolutional network focusing on
spectral-spatial regions of interest. CoT [37] integrates both neighborhood-enriched con-
textual information and self-attention to enhance feature learning with dynamic local
perception. We inherit the advantage of CoT and decouple the spatial and spectral neigh-
borhood interaction into two separate blocks, SaMCA (see Figure 3) and SeMCA (see
Figure 4). The former allocates more attention to important spatial regions, while the latter
acts as a weighted aggregation of neighborhood spectral bands or attention-based feature
recombination. To take full advantage of the two contextual information from different
dimensions, we place the two blocks parallel to one another, and fuse their results by
element-wise weighting summation. Thus, the output of DMuCA can be defined as,

F = βFspe + (1− β)Fspa, (8)

where Fspe and Fspa are the output of SeMCA and SaMCA, respectively. β ∈ [0, 1] is a
weighting factor that can be learned when model training, with an initial value set as 0.5.
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Figure 2. The overall architecture of the proposed DMuCA network, where SaMCA and SeMCA are
plugged parallel into a ResNet with two residual blocks.
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Figure 3. Architecture of the spatial multi-head contextual self-attention (SaMCA).
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Figure 4. Architecture of the spectral multi-head contextual self-attention (SeMCA).

The integrated DMuCA can alternate any standard convolution filter. For HSI classi-
fication, we replace some convolutional layers in a ResNet backbone with our proposed
DMuCA module, to strengthen the model with spectral-spatial contextual interdepen-
dencies and attention perception. As illustrated in Figure 2, the backbone contains two
residual blocks, and one of the convolution layers in each block is replaced by a DMuCA
module. All of the other convolution layers are followed by batch normalization and
ReLU activation layer. A global average pooling (GAP) and FC layer are performed to
integrate the global spatial information and to project the learned feature into label space
for probability prediction of classification. Table 1 shows the detailed model structure of
the DMuCA network, taking the IN dataset as an example.

Table 1. The detailed construction of our DMuCA network, a case on IN dataset.

Layer/Block Kernel Type Kernel Size Input Sizes Output Sizes

Conv1 Conv2D 3× 3 (200, 11, 11) (64, 11, 11)

Res_Block1
Conv2D 3× 3 (64, 11, 11) (64, 11, 11)
DMuCA k = 5, d = 9 (64, 11, 11) (64, 11, 11)

Res_Block2
Conv2D 3× 3 (64, 11, 11) (64, 11, 11)
DMuCA k = 5, d = 9 (64, 11, 11) (64, 11, 11)

GAP&FC - - (64, 11, 11) (1, 16)
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3.1. Spatial Multi-Head Contextual Self-Attention

The SaMCA block aims to assign appropriate weights to the spatial neighborhood
pixels and aggregates them for presentation of the central pixel. Formally, given the input
X ∈ RS×S×C, where S× S denotes the spatial dimension and C is the channel number. We
treat each pixel as an independent token and transform X into queries Q = Identity(X)
and values Vspa = PointConv(X, Wv) with kernel Wv of size 1× 1. For absolute mining of
spatial relation with relatively few parameters, we transform X into keys by depth-wise
convolution with kernel Wk of size k× k, defined as Kspa = DepthConv(X, Wk).

In HSI, neighbor bands contain similar spatial distribution but certain noise interfer-
ence. So in order to avoid weight allocation suffering from noise interference, we alternately
concatenate the queries and keys, and then group them to capture the local relationships
for multi-head attention. This processing can be defined as

g̃spa(X) = GConv(σ(GConv(Alter[Q, Kspa], W1)), W2), (9)

where Alter[·] and GConv(·) denote the alternate concatenation and group convolution
operation for short, respectively. Two consecutive group convolutions with kernel of size
1× 1 and group number of Ch are set here to generate multi-head attention weights. Then,
the spatial weights are normalized by Softmax function as

gspa
(
Xij
)

t, :, : = Softmax
(

g̃spa
(
Xij
)

t, :, :

)
. (10)

gspa
(
Xij
)

t, :, : ∈ Rk×k represents the attention weight of the t-th head (t ∈ [1, Ch]) for Xij with

neighbor scope of k× k. The normalized attention weights gspa(X) ∈ RH×W×k2Ch are then
allocated to the corresponding elements of Vspa ∈ RS×S×C in a C/Ch channel-sharing man-
ner, and get the output feature map Zspa ∈ RH×W×C with dynamic weighted aggregation

Zspa = gspa(X)⊗Vspa, (11)

where ⊗ denotes local matrix multiplication broadcasting across C/Ch channels. The chan-
nel sharing here can reduce the number of model parameters and facilitate memory schedul-
ing on the GPU for efficiency.

The keys Kspa generated by depth-wise convolution, which shares weights in the
spatial domain, can be seen as a static context, while pixel-wise self-attention is in a
dynamic fashion. The former is adept at spatial translation invariance while the latter can
adaptively capture aggregation weights. To combine both of the advantages, we fuse the
static context from Kspa into the dynamic contextual representation Zspa and get the final
output Fspa of SaMCA, which focus more on rich spatial information,

Fspa = Zspa + Kspa. (12)

3.2. Spectral Multi-Head Contextual Self-Attention

The far abundant spectral information of pixels in HSI, compared with the color (RGB)
dataset, brings a greater challenge to finer spectral neighborhood perception. Therefore,
we design a SeMCA block (see Figure 4) to mine spectral neighborhood information from
multiple perspectives. Similarly, given the input feature map X ∈ RS×S×C as the same
in SaMCA block, we treat each channel or band as a token. The queries (Q), keys (Kspe),
and values (Vspe) are defined respectively as

Q = Identity(X),
Kspe = DepthConv1D(X, Wk),
Vspe = DepthConv2D(X, Wv).

(13)

Specifically, 1-D depth-wise convolution with the kernel of size 1× d is introduced here
to contextualize the keys. This means each pixel owns its convolution kernel, which helps
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prevent interference between groups of samples and provides diversity to the followed
multi-head self-attention. X is projected to values Vspe by a spatial transformation layer,
a 2-D depth-wise convolution layer with a kernel of size k× k.

In spectral attention, each token is featured from one two-dimensional feature map,
which will sharply consume the memory if generating multi-head attention matrices by
a regular convolution. Meanwhile, the parameters and computation cost will exponen-
tially increase with the increase in spatial resolution. Fortunately, there is a fairly strong
neighborhood consistency in the spatial domain. Thus, we evenly sample multiple groups
of data (filled with different textures in Figure 4) to represent each channel and generate
multi-head attention on the sampling groups. More specifically, pixels sampled from both
queries Q and keys Vspe in the same location are concatenated together to learn one head
of attention weights by an MLP, which can be written as

g̃spe(X)t = FC
(

σ
(

FC
([

Q∆t,:, Kspe
∆t,:

]
, W1

))
, W2

)
, (14)

where ∆t ∈ Z2 (t ∈ [1, 2, · · · , Ch]) refers to the t-th set of sampling offsets. MLP with two
fully connected (FC) layers are employed for relevance learning of neighborhood channels.
W1 ∈ R2HW/Ch×HW/Ch and W2 ∈ RHW/Ch×d represent the corresponding embedding
matrices of FC layers, where d is the neighbor scope for channel aggregation. The final multi-
head spectral attention weights gspe(X) ∈ RdCh×C for all the channels can be defined as

gspe (X) = Softmax
(

GMLP
(

Alter
[
Q∆,:, Kspe

∆,:

]
, W
))

, (15)

where ∆ denotes all of the sampling offsets stored in groups. GMLP denotes a grouped
MLP where the group number equals Ch, the head number in self-attention. Note that
the aggregation weights in each head are per channel normalized by the Softmax function.

In order to capture the spectral information from multiple perspectives without an
increase in storage, we share the attention matrix in one head only to the corresponding
spatial sampling set. This means that each head of attention weighted aggregate a specific
set of neighborhood pixels. Thus, weighted aggregation of the neighbors of the i-th channel
on the sub-sampling set ∆t can be formulated as

Z∆t ,i = Conv
(

Vspe
∆t ,N (ci)

, gspe(X)(t−1)d+1:td, i

)
, (16)

where N (ci) ∈ [i− d/2 : i + d/2] refers to a set which saved d offsets of neighbors around
the i-th channel, i = 1, 2, · · · , C. Spatial samples in ∆t share the same filter kernel
gspe(X)(t−1)d+1:td, i. The multi-head attention calibration in the spectral domain can be
implemented on diverse sub-sampling sets, which are staggered in local space as different
texture marks in Figure 4.

Similar to the SaMCA block, we fuse the static spectral context Kspe with the dynamic
contextual representation Zspe, and obtain the final spectral local perception Fspe,

Fspe = Zspe + Kspe. (17)

4. Experiments

In this section, we conduct a comprehensive set of experiments to verify the effective-
ness of DMuCA, including ablation studies for the major modules, sensitivity analysis of
the hyperparameters, and comparison with some state-of-the-art classification models.

4.1. Datasets and Experimental Setup

To verify the stability of our model, we conduct experiments on three real datasets
that come from different sensors and have diverse spatial resolutions.

The Indian Pines (IP) dataset, collected by the AVIRIS sensor over northwest Indiana,
consists of 145× 145 pixels with a spatial resolution of 20 m per pixel, and 200 spectral bands
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after 20 noisy ones are removed due to atmospheric absorption or low SNR. The available
ground truth contains 16 classes. Figure 5a,b shows its false-color image and the ground-
truth map, respectively.

The University of Pavia (UP) dataset was collected by the ROSIS-03 sensor over
the University of Pavia. It consists of 610× 340 pixels with a spatial resolution of 1.3m
per pixel, and 103 spectral bands after removing 12 noisy bands. The available ground
reference contains 9 classes of interest. Figure 5c,d shows its false-color image and the
ground-truth map, respectively.

The University of Houston (UH) dataset was acquired by the ITRES CASI-1500 sensor
over the University of Houston campus and the neighboring urban area. The data consist
of 349× 1905 pixels with a spatial resolution of 2.5 m and 144 bands with a wavelength
ranging from 364 nm to 1046 nm. The corresponding ground truth map consists of 15 types
of land cover. Figure 6 shows its false-color image and the ground-truth map.

Alfalfa Corn-notill Corn-mintill Corn

Grass-pasture Grass-trees Grass-pasture-mowed Hay-windrowed

Oats Soybean-notill Soybean-mintill Soybean-clean

Wheat Woods Buildings-Grass-Trees-Drives Stone-Steel-Towers

Meadows

Gravel

Trees

Painted metal sheets

Bare Soil

Bitumen

Self-Blocking Bricks

Shadows

Asphalt

(b)(a) 

(d)(c)

Figure 5. The false-color image (a) and the ground truth (b) for the IN dataset; The false-color image
(c) and the ground truth (d) for the UP dataset.

Healthy grass Stressed grass Synthetic grass Trees Soil

Water Residential Commercial Road Highway

Running TrackRailway Parking Lot 1 Parking Lot 2 Tennis Court

(a)

(b)

Figure 6. The false-color image (a) and the ground truth (b) for the UH dataset.

For the experiments that do not concern the effect of training sample size on model
performance, we all select randomly 10%, 3%, 3% of samples per class from the ground-
reference data for model training on IP, UP, and UH datasets, respectively, and the remaining
samples are exploited for model testing. Before feature learning, the original HSI data is
firstly normalized to [0, 1] for dimensionless transformation and acceleration of model
optimization. The average accuracy (OA), overall accuracy (AA), and kappa statistic
(κ) are adopted to evaluate the classification efficiency, and we provide OA results as a
function of the parameters to be analyzed. All of our results are reported as the mean
of ten runs. For model training, the cross-entropy loss function is used to supervise the
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model prediction. Stochastic gradient descent (SGD) is adopted as the optimizer to update
the model parameters with the momentum of 0.9 and the weight decay of 1 × 10−4.
Furthermore, we train models on the dataset with a batch size of 32 for 100 epochs and set
the learning rate to 0.005. All of the experiments are implemented on the PyTorch platform
using a workstation with i9-10900K CPU and an NVIDIA GeForce RTX 3090 graphics card.
The code of our model is available at: https://github.com/mrpokere/DMuCA (accessed
on 23 December 2021).

4.2. Model Analysis

In this part, we first verify the effect of the proposed components in our proposed
DMuCA network by ablation study, and then analyze the model robustness at different
parameter settings.

4.2.1. Ablation Study

In DMuCA, three main components are designed for discriminative feature learning,
including grouping representation of tokens, contextual self-attention from spatial and
spectral dimension, and fusion of features from static and dynamic perception. This part
discusses the importance of different components in DMuCA through several sets of
ablation studies. In addition, we try to verify the effectiveness of DMuCA in key bands
perception.

Table 2 shows the model performance as the number of spatial attention heads ranging
from 1 to 64, where “1” means single self-attention with no channel grouping and “64”
means each channel generates an attention matrix. It can be seen that single self-attention
produced over all the input is 1.3% worse than the best setting for the UH dataset, and is
also slightly worse for IN and UP datasets. Meanwhile, the parameters and FLOPs decrease
gradually as the group number increases. We finally set 16, 32, and 32 spatial self-attention
heads for IN, UP, and UH datasets, respectively. As the same way in Table 3, we vary the
number of spectral attention heads, where “1” means single self-attention with no pixel
grouping or sampling and “Pixel-wise” means each pixel produces its own attention matrix.
It shows a similar trend in both accuracy and computation cost. We choose the best setting,
25, 49, and 25 spatial self-attention heads, for IN, UP, and UH datasets, respectively.

Table 4 demonstrates the influence of the two self-attention sub-blocks on the clas-
sification accuracy when two convolutional layers in ResNet backbone (Base Model) are
replaced respectively by just SaMCA, SeMCA, and by the final DMuCA block. The re-
sults show that the OAs are improved when we replace the convolutional layers by either
SaMCA or SeMCA block, except for a slightly lower result when inserting only SeMCA
for classification of the IN dataset. This is mostly due to its lower spatial resolution that
exists with many mixed pixels, while SeMCA may amplify the spectral noise. However, it
is worth noting that DMuCA achieves significant performance gains with a combination of
the spatial and spectral self-attention blocks, illustrating the effectiveness of DMuCA in
feature learning.

https://github.com/mrpokere/DMuCA
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Table 2. Ablation study with different numbers of channel grouping and corresponding spatial
attention heads ranging from 1 to 64. The best results are highlighted in bold font.

Heads 1 2 4 8 16 32 64

IN

OA (%) 97.37 97.39 97.42 97.62 97.79 97.65 97.51
Param (M) 1.378 1.362 1.353 1.349 1.347 1.346 1.346
FLOPs (M) 28.14 27.15 26.66 26.41 26.29 26.23 26.21

UP

OA (%) 99.04 99.06 99.06 99.07 99.10 99.18 99.16
Param (M) 3.655 3.638 3.630 3.626 3.624 3.623 3.623
FLOPs (M) 39.88 38.03 37.11 36.65 36.43 36.32 36.27

UH

OA (%) 92.12 92.49 92.78 92.91 93.37 93.49 93.14
Param (M) 2.239 2.223 2.214 2.210 2.208 2.207 2.207
FLOPs (M) 33.51 32.13 31.44 31.09 30.92 30.84 30.81

Table 3. Ablation study with different numbers of channel grouping and corresponding spatial
attention heads. The best results are highlighted in bold font.

Heads 1 9 25 49 81 Pixel-Wise

IN

OA (%) 96.55 97.57 97.79 97.67 97.66 97.63
Param (M) 1.443 1.345 1.347 1.337 1.348 1.331
FLOPs (M) 29.33 26.22 26.29 25.95 26.32 25.75

UP

OA (%) 99.09 99.09 99.11 99.18 99.11 99.10
Param (M) 3.985 3.625 3.597 3.623 3.598 3.590
FLOPs (M) 47.87 36.36 35.46 36.32 35.49 35.23

UH

OA (%) 90.74 92.95 93.49 92.60 92.59 92.53
Param (M) 2.416 2.236 2.207 2.197 2.208 2.195
FLOPs (M) 37.52 31.74 30.84 30.51 30.87 30.45

Table 4. Effect of spatial and spectral attention in DMuCA (OA%). X denotes the corresponding
attention block present in DMuCA. The best results are highlighted in bold font.

Spatial Spectral IN UP UH

X 97.62 99.06 92.95
X 97.13 98.78 92.38

X X 97.79 99.18 93.49

Base Model 97.19 98.00 90.23

Table 5 reports the performances of utilizing the static and dynamic contextual in-
formation in the DMuCA network. Here, the solely static context means each of the two
convolutional layers in ResNet backbone is replaced by a set of parallel 2-D and 1-D depth-
wise convolution, while the dynamic context means no skip connections are set between
the static Keys and the calibrated dynamic features. The results indicate that our model
with static or dynamic context alone achieves higher performance than the baseline on the
three datasets, while static and dynamic contexts complement each other and their fusion
can further enhance the classification accuracy.
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Table 5. Effects of different methods on contextual information exploration (OA%). The best results
are highlighted in bold font.

Feature Type IN UP UH

Static Context 97.37 99.10 93.02
Dynamic Context 97.68 99.04 92.86

DMuCA 97.79 99.18 93.49

Base Model 97.19 98.00 90.23

To reveal DMuCA in key bands perception, we further perform HSI classification
by DMuCA with full or selected bands (reference the results from [40,41]) as the input,
and compare it with the ResNet base (Base). The results in Table 6 show that DMuCA
achieves a significant increase over the base when performing classification with the full
spectral bands, and a slight increase with the selected bands. This illustrates that DMuCA
can effectively focus on important bands, and band selection limits its advantages, even
with a slight increase. Besides, band selection will result in some loss of information, while
DMuCA can try to maximize all the information and achieve a 1% increase.

Table 6. Classification performance of DMuCA with full or selected bands as the input (OA%). The
best results are highlighted in bold font.

Methods Bands (#) IN (15) UP (14) UH (22)

Base
Full bands 97.19 98.00 90.23

Selected bands 95.68 98.11 92.25

DMuCA
Full bands 97.79 99.18 93.49

Selected bands 95.87 98.64 92.36

4.2.2. Parameter Analysis

In our proposed DMuCA network, the main parameters that affect the model perfor-
mance are the input patch size for neighborhood information assistance and the number of
DMuCA modules for spectral-spatial contextual attention-based feature extraction.

As a pixel-wise classification task, the input patch size determines how many spatial
neighborhoods are used to assist feature extraction. We verify the model performance
when the patch size ranges from 7 to 19. The results in Table 7 show that a larger input
patch size is beneficial to capture contextual information and thus significantly improve
the recognition performance. However, the statement ’the larger the better’ is not true in
this case. The best scale should provide sufficient spatial texture, while also avoiding much
noise interference. It can be found that the more noise interfered with the dataset, the less
suitable it was for a larger patch size. Finally, we set IN, UP, and UH datasets with input
sizes of 11, 15, and 13, respectively.

Table 7. OAs (%) of DMuCA network with different size of input patches. The best results are
highlighted in bold font.

Patch Size 7 9 11 13 15 17 19

IN 96.60 97.27 97.79 97.69 96.31 95.36 94.35
UP 98.19 98.78 99.15 99.12 99.18 99.03 98.92
UH 90.66 92.29 93.15 93.49 92.67 92.17 91.31
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To improve the high-level contextual perception, more residual blocks are usually
stacked to deepen the model. We further explore our DMuCA network with an increas-
ing number of residual blocks and compare it with the ResNet backbone (Base Model).
As shown in Table 8, only one residual block, or too shallow a network, has limited capa-
bility in high-level feature learning. However, this does not mean ‘the deeper the better’,
particularly for HSI datasets with much obscure high-level semantic information but de-
tailed shallow texture. UP and UH have more distinct spatial context information than the
IN dataset; thus, they benefit more from deeper backbone networks, while four residual
blocks cause the OA result of IN dataset to decrease. Our DMuCA network achieves
the best results by a network with just two residual blocks, presenting a more significant
advantage in shallow information mining.

Table 8. Comparison of our proposed DMuCA network and the ResNet backbone with increasing
number of residual blocks (OA%). The best results are highlighted in bold font.

Block Number
DMuCA Base Model

IN UP UH IN UP UH

1 96.99 98.87 92.21 96.56 97.43 86.41
2 97.79 99.18 93.49 97.19 98.00 90.23
3 97.68 99.07 93.26 97.70 98.11 91.74
4 97.39 98.97 92.54 97.53 98.32 92.04

4.3. Comparison with the State-of-the-Art Methods

The key motivation of our proposed method is to construct an efficient spectral-spatial
attention mechanism for discriminative feature learning. For fair performance evaluation,
we create 10 groups of training sets by randomly sampling on ground truth without
replacement and the resting samples from each set for cross-validation. We firstly compare
our proposed DMuCA module with some classical attention mechanisms, such as squeeze-
and-excitation (SE) [19], dual attention network (DANet) [26], and convolutional block
attention module (CBAM) [22]. All of the attention modules are embedded respectively
into the same ResNet base model for HSI classification. Table 9 shows the mean OAs and
the standard deviations of the 10 set runs with the percentage of training samples per class
ranging from 3% to 20%. We can see that our DMuCA achieves the best results all the time,
with either limited or more training samples. These results assure that our model has good
generalization ability in feature extraction.

We further compare our proposed DMuCA network with the traditional SVM method
and some of the best deep learning-based methods, such as the DRNN model with LSTM [7]
that see the patch block as a sequence, the spectral-spatial residual network (SSRN) with
3-D convolution [10], the deep feature fusion network (DFFN) with spectral-spatial fu-
sion [11], the residual spectral-spatial attention network (RSSAN) [42] that insert CBAM
into a residual network, the compact band weighting-based attention network (CBW) [20],
the spectral-spatial attention network (SSAN) [31] that inserts the self-attention block into
a 3-D convolution network, and the ResNet backbone (Base). To be fair, we set all the
state-of-the-art frameworks with the same input patch size, while the other parameters
involved in the competitors are set as provided in the corresponding references.
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Table 9. Comparison of the DMuCA module with some classical attention mechanisms (OA%). The
best results are highlighted in bold font.

Dataset Training Set (#%) SE CBAM DANet DMuCA

3 86.23 ± 1.11 86.43 ± 0.77 86.47 ± 1.40 86.73 ± 1.71
5 92.13 ± 0.79 91.85 ± 1.05 92.63 ± 1.12 92.82 ± 0.79

IN 10 96.91 ± 0.55 96.75 ± 0.60 96.63 ± 0.46 96.95 ± 0.44
15 97.54 ± 0.41 97.68 ± 0.35 97.64 ± 0.43 97.83 ± 0.37
20 98.28 ± 0.27 98.32 ± 0.24 98.09 ± 0.38 98.36 ± 0.26

3 98.91 ± 0.17 98.71 ± 0.29 98.67 ± 0.20 98.95 ± 0.27
5 99.30 ± 0.13 99.26 ± 0.10 99.24 ± 0.09 99.57 ± 0.06

UP 10 99.63 ± 0.07 99.58 ± 0.05 99.60 ± 0.07 99.80 ± 0.07
15 99.75 ± 0.06 99.74 ± 0.05 99.75 ± 0.06 99.92 ± 0.03
20 99.79 ± 0.02 99.78 ± 0.04 99.79 ± 0.06 99.94 ± 0.02

3 90.61 ± 3.09 91.28 ± 1.02 91.65 ± 1.23 92.60 ± 0.68
5 94.68 ± 1.26 94.98 ± 0.60 95.13 ± 0.55 95.43 ± 1.17

UH 10 97.89 ± 0.54 97.96 ± 0.49 98.00 ± 0.58 98.07 ± 0.41
15 98.85 ± 0.19 98.89 ± 0.27 98.86 ± 0.31 98.93 ± 0.18
20 99.34 ± 0.29 99.02 ± 0.91 99.37 ± 0.24 99.41 ± 0.20

The mean accuracy and the standard deviation of the 10 set runs are reported in
Tables 10–12, including the accuracy of each class and overall quantification from our
proposed model and the competitors on the IN, UP, and UH datasets, respectively. Table 13
counts the computational FLOPs, parameters, and the running time of the corresponding
experiments. The results indicate that the 3-D convolution-based SSRN and the attention-
based models all present comparable results. Our DMuCA network outperforms all of
them in classification accuracy, especially with comparatively small variance volatility.
Besides, our method shows an outstanding performance of AAs, about a 2% increase over
the ResNet base, and is encouragingly competitive on the classification of the UH dataset
(a 3% significant increase over the base). RSSAN has a similar backbone to ours, and the
information squeeze in CBAM is indeed a lightweight means of attention perception,
containing the fewest training parameters and FLOPs. However, this comes somewhat at
the expense of classification accuracy. Our method is not advantageous in computation cost,
with about three times the running time over the ResNet base as reported in Table 13, but the
increase is acceptable relative to improving classification accuracy, especially compared
with other competitors.
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Table 10. Testing results over IN dataset with 10% samples per class for model training. The best results are highlighted in bold font.

Class SVM RNN SSRN DFFN RSSAN CBW SSAN DMuCA Base

1 59.67 ± 12.66 69.91 ± 9.21 96.72 ± 2.80 94.34 ± 2.27 85.29 ± 14.13 94.48 ± 3.59 86.99 ± 10.15 94.59 ± 6.06 95.16 ± 4.59
2 73.35 ± 1.42 83.30 ± 5.24 94.91 ± 2.35 92.66 ± 1.30 96.29 ± 0.54 95.07 ± 0.98 95.34 ± 1.49 97.85 ± 1.16 96.87 ± 1.33
3 65.47 ± 1.98 77.40 ± 6.51 91.81 ± 5.21 92.90 ± 2.28 94.37 ± 2.14 92.72 ± 3.35 95.31 ± 1.62 97.32 ± 0.84 96.81 ± 1.63
4 53.78 ± 7.47 88.10 ± 2.87 92.40 ± 4.14 92.78 ± 1.33 91.41 ± 3.98 95.78 ± 2.22 92.93 ± 3.61 96.41 ± 1.61 97.18 ± 1.57
5 86.83 ± 1.41 83.27 ± 2.14 96.57 ± 1.47 97.40 ± 1.15 96.14 ± 1.08 97.39 ± 1.29 97.78 ± 0.91 98.07 ± 1.06 97.04 ± 2.38
6 91.31 ± 1.02 93.98 ± 2.08 98.18 ± 0.78 95.98 ± 0.68 97.99 ± 1.57 96.57 ± 1.00 98.28 ± 0.98 97.33 ± 1.48 97.44 ± 1.18
7 70.25 ± 13.67 74.60 ± 11.29 91.66 ± 10.40 91.68 ± 5.42 87.53 ± 11.01 91.56 ± 5.89 81.29 ± 12.42 96.65 ± 5.49 91.67 ± 11.60
8 96.09 ± 0.98 97.53 ± 1.03 99.51 ± 0.72 99.63 ± 0.37 99.21 ± 0.73 99.48 ± 0.46 99.21 ± 0.48 99.80 ± 0.36 99.71 ± 0.31
9 33.05 ± 17.64 64.53 ± 8.64 84.83 ± 13.17 78.98 ± 17.38 84.27 ± 17.05 87.25 ± 9.57 78.03 ± 14.74 96.20 ± 4.32 81.4 ± 13.72

10 69.98 ± 1.72 84.97 ± 4.25 93.18 ± 2.64 92.10 ± 2.33 94.21 ± 1.10 93.52 ± 1.63 94.36 ± 2.04 96.59 ± 1.58 95.17 ± 1.22
11 75.72 ± 0.98 91.30 ± 3.03 95.23 ± 1.96 94.68 ± 0.40 97.33 ± 1.14 96.92 ± 0.74 97.27 ± 0.83 98.28 ± 0.73 97.46 ± 0.59
12 71.75 ± 2.73 79.28 ± 3.05 89.40 ± 4.57 92.50 ± 1.94 91.75 ± 2.11 88.01 ± 4.25 92.66 ± 2.10 95.12 ± 2.05 92.36 ± 2.45
13 93.30 ± 1.53 94.52 ± 2.20 99.01 ± 0.77 99.19 ± 0.49 97.32 ± 3.03 99.52 ± 0.50 98.43 ± 2.87 99.38 ± 0.66 99.19 ± 1.10
14 91.89 ± 1.15 93.35 ± 1.19 97.41 ± 1.19 96.46 ± 0.90 95.94 ± 1.40 98.70 ± 0.90 96.22 ± 1.00 96.46 ± 0.68 96.41 ± 0.62
15 57.48 ± 4.63 78.05 ± 6.38 92.02 ± 3.82 81.67 ± 4.13 81.70 ± 7.03 77.48 ± 4.49 82.05 ± 5.04 82.13 ± 3.27 84.00 ± 4.20
16 94.01 ± 2.94 78.78 ± 4.98 91.93 ± 6.14 91.11 ± 3.34 89.89 ± 3.13 90.57 ± 4.14 91.12 ± 5.82 93.80 ± 2.62 91.32 ± 2.76

OA (%) 77.64 ± 0.56 87.45 ± 2.39 95.02 ± 1.45 94.10 ± 0.55 95.41 ± 0.71 96.28 ± 0.72 95.91 ± 0.53 96.95 ± 0.44 96.26 ± 0.55
AA (%) 74.00 ± 1.67 83.30 ± 1.44 94.06 ± 2.48 92.75 ± 1.11 92.54 ± 1.49 94.65 ± 1.00 92.66 ± 2.00 96.00 ± 0.79 94.33 ± 1.66

Kappa (%) 74.52 ± 0.65 85.67 ± 2.72 94.30 ± 1.66 93.27 ± 0.63 94.76 ± 0.81 95.00 ± 0.84 95.37 ± 0.95 96.52 ± 0.59 95.73 ± 0.63
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Table 11. Testing results over UP dataset with 3% samples per class for model training. The best results are highlighted in bold font.

Class SVM RNN SSRN DFFN RSSAN CBW SSAN DMuCA Base

1 90.83 ± 0.65 95.72 ± 1.56 97.42 ± 0.46 99.03 ± 0.62 98.06 ± 0.83 99.05 ± 0.34 99.21 ± 0.22 99.26 ± 0.36 97.13 ± 0.71
2 94.22 ± 0.38 97.97 ± 0.53 99.12 ± 0.50 99.17 ± 0.23 99.46 ± 0.29 99.72 ± 0.15 99.43 ± 0.03 99.61 ± 0.21 99.67 ± 0.11
3 72.14 ± 1.62 82.48 ± 4.46 93.66 ± 1.49 96.64 ± 1.56 95.26 ± 1.57 92.17 ± 7.06 93.98 ± 1.62 96.86 ± 1.67 92.71 ± 2.63
4 91.41 ± 0.81 95.51 ± 0.66 96.39 ± 0.74 96.86 ± 0.60 93.98 ± 1.56 97.76 ± 0.95 98.93 ± 0.27 97.49 ± 1.20 95.64 ± 0.66
5 98.20 ± 0.74 98.43 ± 1.00 99.35 ± 0.24 98.75 ± 0.18 97.77 ± 1.09 99.62 ± 0.18 99.24 ± 0.05 99.65 ± 0.11 98.69 ± 0.68
6 82.28 ± 1.35 93.48 ± 1.90 97.14 ± 1.61 97.32 ± 0.85 98.96 ± 0.62 99.23 ± 0.8 99.83 ± 0.07 99.87 ± 0.35 99.47 ± 0.21
7 75.85 ± 3.58 89.57 ± 1.28 99.17 ± 0.26 98.48 ± 1.10 97.61 ± 2.47 99.04 ± 0.73 99.29 ± 0.37 99.35 ± 0.84 92.72 ± 2.20
8 80.39 ± 0.97 91.57 ± 1.65 92.89 ± 1.02 97.68 ± 1.07 96.23 ± 1.21 95.22 ± 2.29 96.10 ± 0.90 97.43 ± 0.80 96.76 ± 0.84
9 99.83 ± 0.05 92.63 ± 3.44 97.99 ± 0.74 97.27 ± 0.68 91.47 ± 2.55 97.60 ± 1.02 98.96 ± 0.85 98.10 ± 0.62 93.11 ± 1.33

OA (%) 89.53 ± 0.49 95.20 ± 1.17 97.64 ± 0.36 98.01 ± 0.45 98.32 ± 0.50 98.61 ± 0.47 98.82 ± 0.25 98.95 ± 0.27 97.98 ± 0.36
AA (%) 87.24 ± 0.64 93.04 ± 1.54 97.11 ± 0.30 98.13 ± 0.59 96.91 ± 0.79 97.73 ± 1.06 97.51 ± 0.37 98.50 ± 0.47 96.21 ± 0.65

Kappa (%) 86.11 ± 0.64 93.66 ± 1.53 96.86 ± 0.47 98.04 ± 0.60 97.85 ± 0.66 98.16 ± 0.62 97.83 ± 0.26 98.61 ± 0.36 97.33 ± 0.48
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Table 12. Testing results over UH dataset with 3% samples per class for model training. The best results are highlighted in bold font.

Class SVM RNN SSRN DFFN RSSAN CBW SSAN DMuCA Base

1 90.10 ± 3.64 90.38 ± 1.59 94.25 ± 2.49 82.68 ± 10.26 89.79 ± 2.37 93.13 ± 2.47 93.79 ± 2.54 94.48 ± 3.96 91.79 ± 2.23
2 95.82 ± 1.97 89.26 ± 3.75 96.04 ± 2.27 90.74 ± 7.68 94.50 ± 2.33 97.08 ± 1.51 97.57 ± 1.17 98.28 ± 1.25 90.38 ± 3.11
3 98.91 ± 0.36 95.00 ± 2.72 99.06 ± 1.13 98.17 ± 1.18 97.24 ± 3.04 98.81 ± 1.33 99.48 ± 0.57 97.22 ± 1.95 96.48 ± 2.55
4 92.43 ± 2.83 89.21 ± 2.15 96.29 ± 1.52 86.00 ± 8.38 89.05 ± 2.76 95.35 ± 2.92 96.49 ± 0.77 93.51 ± 2.84 91.55 ± 2.37
5 93.53 ± 1.20 94.12 ± 2.08 97.74 ± 0.90 98.34 ± 0.91 96.22 ± 1.29 97.42 ± 1.03 98.47 ± 1.17 98.18 ± 1.37 95.34 ± 1.12
6 89.46 ± 2.01 86.05 ± 4.55 93.60 ± 3.60 86.91 ± 4.68 83.00 ± 7.05 84.94 ± 5.39 89.52 ± 3.76 83.22 ± 5.75 89.59 ± 2.84
7 82.34 ± 2.01 85.94 ± 3.63 90.38 ± 2.13 89.37 ± 3.66 90.17 ± 1.85 93.32 ± 1.89 90.14 ± 2.38 92.79 ± 1.82 89.67 ± 2.43
8 67.09 ± 4.83 78.31 ± 6.06 86.30 ± 3.36 83.46 ± 4.89 86.26 ± 3.75 90.78 ± 2.98 89.88 ± 2.22 91.45 ± 1.98 79.34 ± 3.01
9 70.65 ± 2.85 81.84 ± 2.51 88.92 ± 5.30 83.44 ± 5.51 85.12 ± 3.15 88.69 ± 1.99 84.68 ± 3.42 89.34 ± 2.33 86.15 ± 1.65
10 77.13 ± 2.26 78.88 ± 3.80 85.65 ± 3.08 85.55 ± 2.79 87.82 ± 2.56 87.51 ± 3.03 89.20 ± 2.51 89.41 ± 2.61 86.39 ± 2.90
11 76.85 ± 3.02 83.53 ± 5.61 87.73 ± 3.37 88.76 ± 3.74 91.79 ± 0.98 95.03 ± 1.75 93.03 ± 2.84 95.19 ± 2.13 92.87 ± 1.78
12 66.43 ± 2.16 78.68 ± 4.31 76.70 ± 9.83 78.77 ± 4.72 85.84 ± 3.16 89.63 ± 2.28 87.25 ± 3.16 88.08 ± 3.47 87.47 ± 1.81
13 33.19 ± 7.75 80.58 ± 6.49 81.40 ± 8.63 84.70 ± 6.45 86.84 ± 3.88 94.49 ± 1.66 73.95 ± 4.13 95.86 ± 3.50 87.97 ± 3.18
14 93.93 ± 3.15 86.55 ± 5.90 99.18 ± 1.23 98.48 ± 0.94 97.72 ± 1.35 97.99 ± 0.04 97.84 ± 1.60 99.31 ± 0.48 96.58 ± 2.08
15 97.87 ± 0.35 89.92 ± 4.13 97.91 ± 1.44 96.79 ± 1.49 95.01 ± 3.09 96.96 ± 0.57 97.34 ± 0.60 94.10 ± 3.01 92.59 ± 2.26

OA (%) 82.21 ± 0.62 85.65 ± 2.81 91.09 ± 1.83 88.05 ± 2.45 91.20 ± 1.26 92.32 ± 1.85 92.12 ± 0.99 92.60 ± 0.68 89.82 ± 1.13
AA (%) 81.71 ± 0.69 85.88 ± 2.71 91.56 ± 1.92 88.88 ± 2.03 90.42 ± 0.98 92.18 ± 0.87 92.01 ± 1.04 92.29 ± 1.50 90.28 ± 0.99

Kappa (%) 80.76 ± 0.67 84.49 ± 3.04 90.36 ± 1.99 87.09 ± 2.65 89.41 ± 1.37 91.97 ± 0.86 91.39 ± 1.07 91.70 ± 1.65 89.00 ± 1.22
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Table 13. The number of training parameters, computational FLOPs, and the running time of the
corresponding experiments from the deep frameworks. The best results are highlighted in bold font.

Dataset Evaluations RNN SSRN DFFN RSSAN CBW SSAN DMuCA Base

IN

Parameters (M) 0.23 0.34 0.38 0.10 2.76 2.10 1.32 1.29
FLOPs (M) 27.54 235.54 45.43 9.49 11.41 59.96 25.52 23.45

Training time (S) 54.94 104.81 66.78 47.79 34.12 46.34 64.17 23.77
Testing time (S) 2.96 3.47 3.54 1.95 1.12 1.49 2.82 0.89

UP

Parameters (M) 0.19 0.19 0.38 0.06 2.75 3.78 3.58 3.53
FLOPs (M) 42.83 225.83 84.48 11.28 16.12 62.76 34.81 31.03

Training time (S) 88.94 187.86 89.24 52.53 75.64 57.62 71.91 24.04
Testing time (S) 49.33 31.12 42.93 19.08 10.52 15.99 28.04 8.37

UH

Parameters (M) 0.21 0.25 0.38 0.08 2.76 2.88 2.18 2.15
FLOPs (M) 34.83 236.01 63.48 10.49 12.40 62.39 30.07 27.30

Training time (S) 22.01 73.65 24.19 20.31 29.01 18.89 21.22 7.35
Testing time (S) 125.76 106.75 112.27 61.95 35.73 49.83 87.60 28.43

Figures 7–9 visualize the best classification maps from all the competitors on IN, UP,
and UH datasets, respectively. Although SVM produces a noisy map, it keeps clear contour
information. RNN, SSRN, DFFN, and RSSAN all overly smooth the boundaries, particularly
apparent in the region of "Self-Blocking Bricks" on the UP dataset. CBW and SSAN do
better in boundaries, which will benefit greatly from the special spectral attention in CBW
and the self-attention-based feature calibration in SSAN. Our DMuCA module decouples
the 3-D self-attention into two parallel blocks, and perceives key region of spectral and
spatial feature from multiple perspectives. This structure performs well in capturing local
relationships, and generate more accurate boundary location, achieving the expected effect.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Classification maps of the IN data set obtained by: (a) SVM, (b) RNN, (c) SSRN, (d) DFFN,
(e) RSSAN, (f) CBW, (g) SSAN, (h) DMuCA.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Classification maps of the UP data set obtained by: (a) SVM, (b) RNN, (c) SSRN, (d) DFFN,
(e) RSSAN, (f) CBW, (g) SSAN, (h) DMuCA.

(c) (d)

(e) (f)

(g) (h)

(a) (b)

Figure 9. Classification maps of the UH data set obtained by: (a) SVM, (b) RNN, (c) SSRN, (d) DFFN,
(e) RSSAN, (f) CBW, (g) SSAN, (h) DMuCA.

5. Conclusions

In this paper, we presented a dual multi-head contextual self-attention (DMuCA)
network, which decouples the spectral-spatial contextual attention into SaMCA and SeMCA
sub-modules, for contextual dependencies learning of HSI with fewer possible parameters
and lower computation costs. The former serves to filter and aggregate the local information,
while the latter leads to weighted aggregates of the neighborhood channels. Grouping
tokens by channels or pixel sampling, and performing multi-head attention on each group
effectively prevents the increase of parameters and computation burden, with no accuracy
drop. A careful study of those proposed components demonstrates the effectiveness of
discriminant feature learning and accurate classification.
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Some questions still exist, such as why DMuCA achieves a noticeable improvement on
ground object recognition of the UH dataset, but with a large deviation. Adaptive boundary
perceptual location and neighborhood smoothing may possibly ameliorate the situation.
Thus, we would like to build multi-scale attention on different semantic layers in the future,
with the purpose of refining region perceptions and reducing noise interference.
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