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Abstract: This paper investigates the direction-of-arrival (DOA) estimation-based target localization
problem using an array radar under complex multipath propagation scenarios. Prevalent methods
may suffer from performance degradation due to the deterministic signal model mismatch, especially
when the exact knowledge of a propagation environment is unavailable. To cope with this problem,
we first establish an improved signal model of multipath propagation for low-angle target localiza-
tion scenarios, where the dynamic nature of convoluted interferences induced by complex terrain
reflections is taken into account. Subsequently, an iterative implementation-based target localization
algorithm with the improved propagation model is proposed to eliminate the detrimental effect of
coherent interferences on target localization performance. Compared to existing works, the proposed
algorithm can maintain satisfactory estimation performance in terms of target location parameters,
even in severe multipath interference conditions, where the decorrelation preprocessing and accu-
rate knowledge about the multipath propagation environment are not required. Both simulation
and experimental results demonstrate the effectiveness of the proposed propagation model and
localization algorithm.

Keywords: coherent interference effect; direction-of-arrival (DOA) estimation; iterative implementation;
multipath propagation environment; sparse representation

1. Introduction

Target localization is a fundamental task of great importance, arising in various radar
applications such as tracking targets of interest [1–3]. However, one of the challenges
for an array radar system to achieve accurate height measurement of low-angle targets
is the presence of complex reflections from the Earth’s ground surface, i.e., multipath
propagation, resulting in severe estimation error in terms of target location parameters [4–7].
The difficulty of solving this problem lies in the fact that target signals are corrupted by
spatially and temporally convoluted ground reflections. In such a scenario, classical
DOA estimation-based target localization methods suffer from the influence of coherent
multipath interferences, resulting in localization performance degradation, especially when
the exact prior knowledge of the practical propagation environment is unavailable.

During the last few decades, the target localization problem has been investigated
from different aspects (see, for example, [8–12] and references therein). High-resolution
subspace-based algorithms, such as the multiple signal classification (MUSIC) algorithm [8],
have been developed to achieve satisfactory target localization performance, where the
additional preprocessing with spatial smoothing (SS) technique [9] is commonly employed
to compensate for the rank deficiency of the signal covariance matrix, such as arising
in a multipath propagation scenario. However, such preprocessing will reduce a radar
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system’s degrees of freedom, resulting in angular resolution deterioration. While another
group of maximum likelihood (ML) algorithms can be directly employed in the presence of
multipath interferences due to the lower sensitivity to coherent signal effects [13–15], this
kind of approach would need to address the nonlinear optimization problem, resulting in
high computational complexity [16]. To ameliorate this issue, the alternating projection (AP)
technique is employed to accelerate ML [17]. Moreover, the refined maximum likelihood
(RML) method [12] is also investigated to achieve satisfactory estimates of target location
parameters with low computational load by exploring the exact knowledge of the multipath
propagation environment. However, this method may encounter a severe performance
deterioration due to the model mismatch under rugged topography conditions.

It is worth mentioning that existing methods, such as the RML algorithm, com-
monly rely on an implicit assumption of multipath propagation within the signal model.
This assumption calls for the ground surface to be flat, resulting in a deterministic signal
model that incorporates the time-invariant propagation relationship between a target and
its single reflecting path. While this simplified model can be employed in the scenario
involving a smooth ground surface, it may produce localization performance degradation
in practice due to the dynamic distribution of complex terrain reflections [18–20]. Unlike
target localization methods employing the deterministic signal model, the compressive
sensing-based algorithm can achieve satisfactory estimation performance of target location
parameters by exploiting the low-rank property [18,19]. However, the performance of
such algorithms may degrade when the rank-1 constraint is not satisfied. In addition,
the model uncertainty induced by convoluted ground reflections is also not taken into
consideration. Accurate localization for targets of interest is crucial for modern radar
systems under a multipath interference scenario when the exact knowledge of the propa-
gation environment is unavailable. Therefore, it is significant and urgent to address the
abovementioned problems.

In this paper, we aim to improve the estimation accuracy of target location parameters
under a complex multipath interference scenario. By considering the uncertainty of exact
prior information pertaining to the propagation environment in practical applications,
an improved multipath propagation model is first established for low-angle target localiza-
tion scenarios, where the impractical constraint imposed by the deterministic propagation
model is avoided. In addition, such a formulation enhances the accuracy and robustness of
modeling dynamic multipath effects induced by practical terrain reflections. Based on the
improved multipath propagation model, the target localization problem is reformulated
as recovering the sparse spectrum of spatial signals by employing an overcomplete rep-
resentation framework for radar observations. An iterative implementation-based target
localization algorithm is then proposed to interpret accurate target location parameters
by jointly optimizing an adaptive filter bank and a parameterized sparse coefficient vec-
tor. Finally, the model uncertainty induced by dynamic terrain reflections is taken into
account to improve the target localization performance. Compared to prevalent approaches,
the proposed algorithm can effectively ameliorate the influence of multipath interferences
without the need of spatial smoothing preprocessing and exact knowledge of multipath
propagation scenarios, such as the initialization of path detection and multipath channel pa-
rameters. Moreover, target location parameters can be achieved from convoluted multipath
interferences with improved estimation accuracy.

This paper is organized as follows. Section 2 formulates the improved signal model
of multipath propagation under a low-angle target localization environment. The pro-
posed target localization algorithm is presented in Section 3. Section 4 demonstrates the
performance of the proposed propagation model and localization algorithm via both sim-
ulation and experimental results under various scenarios. Finally, conclusions are given
in Section 5.
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2. Multipath Propagation Signal Model

Figure 1 illustrates the improved multipath propagation model under the scenario
involving convoluted ground reflections. Due to the multipath propagation phenomenon,
an M-channel isotropic array radar system is impinged by distinct paths from K narrow-
band targets located in the far-field at directions θ

dp
k , where the target index k = 1, 2, . . . , K.

We first define i = 1, 2, . . . , Pk as the path index, with Pk being the number of reflecting paths
corresponding to the propagation of the kth target signal sk(t) such that the ith reflecting
path originates from direction θ

rp
k,i. Points A, Bk,i, and Tk in Figure 1 denote the location of

the bottom sensor of the array radar, the ith reflecting position for the kth target, and the
kth target, respectively. Variables hr and hk are, respectively, the height of the bottom sensor
and the height of the kth target. In addition, Rdp

k and Rrp
k,i denote the distance between the

radar position and the kth target and the distance between the radar position and the ith
image of the kth target, respectively. Variables hrp

k,i and ϕk,i denote the vertical distance from
the kth target to its ith reflecting surface and the grazing angle of the ith reflecting path
corresponding to the kth target, respectively.

Radar system

…
…

dp

k
rp

,k i

The kth target

rh

kh
dp

kR

The ith image of the 

kth target

rp

,k iR

rp

,k ih

A

,Bk i

,k i

Horizontal plane
The ith reflecting 
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Figure 1. The improved multipath propagation model for a low-angle target localization scenario,
where the dash-dotted line denotes the ith reflecting surface plane corresponding to the kth target.

It is worth highlighting that, for the kth target, multipath reflections with the ith reflect-
ing ground surface will generate four propagation paths during the radar’s transmission
and reception processes, which is shown in Table 1. As reported in [21], the transmitted
signal that propagates through the direct and reflecting paths should simultaneously illumi-
nate the kth target and perform a coherent superposition. We assume that the superposition
signal at the kth target is

gk(t) =
√

pks(t)ej(2π f0t+φk), (1)

where pk, s(t), f0, and φk denote the signal power, the complex envelope, the carrier
frequency of the transmitted signal, and the phase term, respectively. According to the
reciprocal theorem, the signal received by the mth channel can be expressed as

xm(t) =
K

∑
k=1

βk

[
gk

(
t− τ

dp
k,m

)
+

Pk

∑
i=1

ρk,igk

(
t− τ

rp
k,i,m

)]
+ nm(t)

=
K

∑
k=1

βk
√

pkej(2π f0t+φk)

[
s
(

t− τ
dp
k,m

)
e−j2π f0τ

dp
k,m +

Pk

∑
i=1

ρk,is
(

t− τ
rp
k,i,m

)
e−j2π f0τ

rp
k,i,m

]
+ nm(t),

(2)

where βk is the scattering coefficient of the kth target, ρk,i denotes the specular reflection

coefficient of the ith reflecting path corresponding to the kth target, τ
dp
k,m and τ

rp
k,i,m are,
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respectively, time delays of the direct path and the ith reflecting path corresponding to the
kth target with respect to the mth sensor, and nm(t) is the additive Gaussian white noise of
the mth sensor.

Table 1. Multipath propagation of the kth target with its ith reflecting path.

Path No. Propagation Path

1 radar—the kth target—radar

2 radar—the kth target—the ith
reflection point of the kth target—radar

3 radar—the ith reflection point
of the kth target—the kth target—radar

4 radar—the ith reflection point of the kth target—the
kth target—the ith reflection point of the kth target—radar

By selecting a reference antenna sensor, time delays τ
dp
k,m and τ

rp
k,i,m can be, respectively,

written as
τ

dp
k,m = τk,0 + τm

(
θ

dp
k

)
(3)

and
τ

rp
k,i,m = τk,0 + ∆τk,i + τm

(
θ

rp
k,i

)
, (4)

where τk,0 = Rdp
k /c denotes the time delay caused by the distance from the kth target to

the reference antenna sensor, with c being the light speed; ∆τk,i denotes the time differ-
ence induced by the length difference between the direct path and the ith reflecting path
corresponding to the kth target; τm(θ

dp
k ) and τm(θ

rp
k,i) are relative time delays measured

at directions θ
dp
k and θ

rp
k,i, respectively. Since the transmitted waveform is narrowband,

we have
s
(

t− τ
dp
k,m

)
≈ s
(

t− τ
rp
k,i,m

)
. (5)

Substituting Equations (3)–(5) into Equation (2) results in

xm(t) =
K

∑
k=1

β̃kej2π f0t
( Pk

∑
i=1

ρ̃k,ie
−j2π f0τm

(
θ

rp
k,i

)
+ e−j2π f0τm

(
θ

dp
k

) )
s(t) + nm(t), (6)

where β̃k = βk
√

pkej(−2π f0τk,0+φk) and ρ̃k,i = ρk,ie
−j2π

(
Rrp

k,i−Rdp
k

)
/λ, with λ denoting the wave-

length.
After demodulation and A/D conversion, signals received by the array radar can be

expressed via an M× 1 vector

x(t) =
K

∑
k=1

β̃k

[
a
(

θ
dp
k

)
+

Pk

∑
i=1

ρ̃k,ia
(

θ
rp
k,i

)]
s(t) + n(t), (7)

where a(θdp
k ) ∈ CM×1 and a(θrp

k,i) ∈ CM×1 denote array steering vectors towards direc-

tions θ
dp
k and θ

rp
k,i, respectively, t ∈ {t1, t2, . . . , tL}, with L being the number of available

snapshots, and n(t) = [n1(t), . . . , nm(t), . . . , nM(t)]T ∈ CM×1 with (·)T denoting the trans-
pose operator.

Equation (7) can be rewritten in matrix form as

x(t) =
K

∑
k=1

A(θk)ρk s̃k(t) + n(t), (8)
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where s̃k(t) = β̃ks(t), A(θk) ∈ CM×(Pk+1) is the array manifold matrix defined as

A(θk)
∆
=
[
a(θdp

k ), a(θrp
k,1), . . . , a(θrp

k,i), . . . , a(θrp
k,Pk

)
]

(9)

with θk
∆
=
[
θ

dp
k , θ

rp
k,1, . . . , θ

rp
k,i, . . . , θ

rp
k,Pk

]T , and the Pk × 1 vector

ρk
∆
=
[
ρ̃k,0, ρ̃k,1, . . . , ρ̃k,i, . . . , ρ̃k,Pk

]T (10)

with ρ̃k,0=1 for the direct-path component of the kth target.
It is important to note that the channel parameter ρk,i in Equation (2) reveals the

physical interaction between the ith reflecting signal and the corresponding area of the
illuminated ground surface. In general, ρk,i is defined as the ratio of the electric field phasor
of the kth target’s ith reflecting signal to that of the kth target’s direct-path signal, which
can be decomposed by [22]

ρk = ρF
k,iρ

D
k,iρ

S
k,i, (11)

where ρF
k,i, ρD

k,i, and ρS
k,i denote, respectively, the Fresnel reflection coefficient, the divergence

factor, and the specular scattering factor for the ith multipath corresponding to the kth
target. In particular, expressions of ρF

k,i for vertical and horizontal polarizations, which
are determined by the radar polarization mode, the ith reflecting path’s grazing angle
corresponding to the kth target, and the radar wavelength, are, respectively, given as [23,24]

ρFv
k,i =

ξcd
k,i sin ϕk,i −

(
ξcd

k,i − cos2 ϕk,i

)1/2

ξcd
k,i sin ϕk,i +

(
ξcd

k,i − cos2 ϕk,i

)1/2 (12)

and

ρ
Fh
k,i =

sin ϕk,i −
(

ξcd
k,i − cos2 ϕk,i

)1/2

sin ϕk,i +
(

ξcd
k,i − cos2 ϕk,i

)1/2 . (13)

In Equations (12) and (13), the variable ξcd
k,i denotes the complex dielectric constant defined

as ξcd
k,i = ξrd

k,i − jλεk,i/2πcξ0, where ξrd
k,i denotes the relative dielectric constant, εk,i denotes

the conductivity of the ground surface corresponding to the ith reflecting path of the kth
target, and the constant ξ0 = 8.85× 10−12 F/m. The variable ρD

k,i is employed due to the
curvature of the Earth’s surface [25]. It is worth mentioning that the proposed propagation
model can be easily extended to take into account the spherical Earth model, while the
effect of the Earth’s curvature is not discussed in this paper. In addition, ρS

k,i models the
reduction effect induced by the roughness of the illuminated ground surface [26], which is
expressed by

ρS
k,i =

e−8π2γ2
k,i , 0 ≤ γk,i ≤ 0.1;

0.8125
1+8(πγk,i)

2 , γk,i > 0.1, (14)

where γk,i = σs sin ϕk,i/λ, with σs being the standard deviation of height distribution for
the illuminated terrain surface. Given the knowledge of array observations {x(t)}tL

t=t1
,

the key objective is to achieve accurate location parameters θ
dp
k and hk for targets of interest

from the complex multipath interference environment.

3. Methodology of Target Localization
3.1. Overcomplete Representation Framework

To exploit the sparse characteristic of incident signals in the spatial domain, we start
to reformulate the array observation vector x(t) in Equation (8) as a parameterized version
via employing the overcomplete representation [27–32]. This reformulation allows for the
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transformation of estimating target location parameters into the problem of achieving the
sparse (parameterized) spatial spectrum of incident path signals. Specifically, let Ω denote
the set of potential locations for spatial paths; an overcomplete dictionary ΦΩ ∈CM×GΩ

can be constructed by collecting steering vectors for each element of Ω such that

ΦΩ =
[
a(θ1), . . . , a

(
θg
)
, . . . , a

(
θGΩ

)]
, (15)

where
{

θg
}GΩ

g=1 denotes a sampling grid set covering Ω, and GΩ is the number of predefined

directions. We note that ΦΩ is independent of {θk}K
k=1 since Ω is predefined. With reference

to the dictionary ΦΩ, Equation (8) is rewritten as

x(t) = ΦΩv(t) + n(t), (16)

where v(t)∈CGΩ×1 is the parameterized coefficient vector holding potential spatial signals
over the sampling grid set

{
θg
}GΩ

g=1. It can be inferred from (8) and (16) that the gth element
of v(t) is

vg(t) =


β̃ks(t), θg = θ

dp
k , k = 1, 2, . . . , K;

β̃k ρ̃k,is(t), θg = θ
rp
k,i, k = 1, 2, . . . , K,

i = 1, 2, . . . , Pk;
0, otherwise.

(17)

When a sufficient sampling quantization is employed, v(t) should, in theory, be a zero

vector except for K +
K
∑

k=1
Pk non-zero elements corresponding to spatial paths. It is impor-

tant to highlight that the overcomplete representation of array observation in Equation (16)
reformulates the target localization problem as obtaining parameterized coefficient vectors
{v(t)}tL

t=t1
, from which target location parameters can be extracted. To this end, we aim to

jointly optimize an adaptive filter bank and the parameterized sparse coefficient vector.

3.2. Iterative Implementation-Based Target Location Parameter Extraction

With reference to Equation (16), the estimate of the M× GΩ adaptive filter bank F(t)
can be obtained by minimizing the constrained minimum mean-square error (MMSE)
problem [33,34]

min
F

E
{
‖v(t)− v̂(t)‖2

2

}
s.t. v̂(t) = FH(t)x(t),

F(t) ∈ F ,

(18)

where E{·}, ‖·‖2, and (·)H are, respectively, the expectation operator, the `2-norm, and the
conjugate transpose. In Equation (18), F is a closed set defined as

F =
{

F(t)∈CM×GΩ
∣∣∣Tr
{

F(t)Rxx(t)FH(t)
}
≤ ε

}
, (19)

where Rxx(t)=E
{

x(t)xH(t)
}
∈CM×M denotes the auto-covariance of x(t), Tr{·} denotes

the trace of a matrix, and ε > 0 is employed to bound the variance of v̂(t).
For an arbitrary matrix B∈CU×V , the G-weighted norm of B is defined by

‖B‖2
G = Tr

{
BGBH

}
, (20)

where G is an V ×V positive definite matrix. In particular, the G-weighted projection of
an arbitrary matrix H∈CU×V onto a closed set B ⊆ CU×V is defined by

P(G)
B (H) = arg min

B∈B
‖H− B‖2

G. (21)
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According to Theorem 2 stated in [35], the matrix that minimizes the constrained MMSE
problem in Equation (18) can be achieved by

F̂(t) = P(Rxx)
F

(
F̂0(t)

)
= arg min

F∈F

∥∥∥F(t)− F̂0(t)
∥∥∥2

Rxx
.

(22)

In Equation (22), F̂0 is the unconstrained MMSE estimator given by

F̂0(t) = R†
xx(t)Rxv(t), (23)

where R†
xx(t) is the Moore–Penrose pseudo-inverse of Rxx(t) and Rxv(t)∈CM×GΩ is the

cross-covariance matrix of x(t) and v(t). By utilizing the Lagrange multiplier, the solution
to (22) can be achieved by F̂(t) = λR†

xx(t)Rxv(t), where λ denotes the largest value for
which Tr{Rv̂v̂} ≤ ε holds.

Substituting (16) in (23) yields

F̂0(t) =
(

ΦΩE
{

v(t)vH(t)
}

ΦH
Ω + Rn

)†
ΦΩE

{
v(t)vH(t)

}
, (24)

where Rn∈CM×M denotes the noise correlation matrix, which can be generally estimated by

R̂n =
1

Tn

Tn

∑
t=1

x(t)xH(t), (25)

where Tn denotes the number of time samples during an observation interval in which no
target signal response is present.

While the diagonal elements of the correlation matrix E
{

v(t)vH(t)
}

reveal the spa-
tial power distribution of incident path signals, such information, in general, cannot
be determined a priori. To address this issue, we employ an iterative implementation
strategy [36,37] such that the initialization of the parameterized vector can be achieved via

v̂(0)(t) = ΦH
Ωx(t). (26)

We define q = 0, 1, . . . , Q as the iteration index, with Q being the maximum iteration
number. Let F̂(q)(t) and v̂(q)(t), being the estimated adaptive filter bank and parameter-
ized vector in the qth iteration, respectively. With reference to Equations (24) and (26),
the estimate of F(t) in the (q + 1)th iteration can be achieved by

F̂(q+1)(t) = λ
(

ΦΩR̂v,(q)(t)Φ
H
Ω + R̂n

)†
ΦΩR̂v,(q)(t). (27)

In Equation (27), R̂v,(q)(t) = E
{

v̂(q)(t)v̂H
(q)(t)

}
� INθ

, where � and INθ
denote the

Hadamard product and the identity matrix of size Nθ × Nθ , respectively. The Hadamard
product operation is employed based on the fact that the temporal correlation is a statistical
measurement over time and joint optimization essentially operates on each snapshot inde-
pendently, or, at best, combines the independent estimations of spatial power distribution
via noncoherent integration [38]. Given F̂(q+1)(t), the estimated parameterized vector in
the (q + 1)th iteration can then be determined via

v̂(q+1)(t) = F̂H
(q+1)(t)x(t). (28)

It is worth highlighting that the iterative application between (27) and (28) provides a
stepwise refinement of the spatial resolution until only the locations of incident paths are
preserved. During interim iterations, however, the estimated power distribution of spatial
paths over components of the determined parameterized coefficient vector in Equation (28)
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produces an intrinsic scale factor that may be very small, which will detrimentally affect
the power estimate of spatial paths and thus decrease the estimation accuracy of location
parameters. To ameliorate this issue, the energy normalization operation at each iteration is
employed to guarantee component estimates of the parameterized coefficient vector, where
the recovered signal possesses the same energy as the actual received signal. With reference
to Equation (28), the (q + 1)th energy estimate of the recovered signal can be achieved by

P̂(q+1)(t) = x̂H
(q+1)(t)x̂(q+1)(t)

= v̂H
(q+1)(t)Φ

H
ΩΦΩv̂(q+1)(t).

(29)

Therefore, the estimate v̂(q+1)(t) in Equation(28) can then be modified as the energy-
normalized version such that

̂̃v(q+1)(t) =

√
Pobs(t)

P̂(q+1)(t)
v̂(q+1)(t), (30)

where Pobs(t) = xH(t)x(t) denotes the energy of the received signal.

3.3. Model Uncertainty Enhancement

While perfect knowledge of the overcomplete dictionary ΦΩ in Equation (16) is gen-
erally assumed, such an assumption may not be valid in practice due to the convoluted
terrain reflection, resulting in model uncertainties. This limitation motivates us to take
into account the modeling error for the iterative implementation method to enhance the
target localization performance in practical applications. To this end, the signal model in
Equation (16) is generalized as

x(t) = [ΦΩv(t)]� e + n(t), (31)

where the M× 1 vector e incorporates unknown modeling errors. The mth element of
e can be expressed as em = 1 + ∆em, with ∆em denoting the deviation that characterizes
the modeling error effect in the mth sensor. We assume that the distribution of modeling
errors {∆em}M

m=1 is i.i.d. for each sensor with mean-zero and variance of σ2
e . In addition,

modeling errors are assumed to be independent with the target signal and direction.
Therefore, Equation (31) can be rewritten as

x(t) = ΦΩv(t) + ne(t) + n(t), (32)

where
ne(t) = [ΦΩv(t)]� (e− 1M) (33)

with 1M denoting the all-one column vector of size M× 1.
Substituting (32) in (23) results in

F̂0(t) =
(

ΦΩE
{

v(t)vH(t)
}

ΦH
Ω + Rn + E

{
ne(t)nH

e (t)
})†

×ΦΩE
{

v(t)vH(t)
}

.
(34)

With reference to Equations (30), (32), and (34), the (q + 1)th estimate of F(t) in
Equation (27) can be modified as

̂̃F(q+1)(t) = λ
(

ΦΩ
̂̃Rv,(q)(t)Φ

H
Ω + R̂e,(q)(t) + R̂n

)†
ΦΩ

̂̃Rv,(q)(t), (35)
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where

R̂e,(q)(t) =
(

ΦΩ
̂̃Rv,(q)(t)Φ

H
Ω

)
� σ2

e IM, (36)̂̃Rv,(q)(t) = E
{̂̃v(q)(t)̂̃vH

(q)(t)
}
� INθ

. (37)

By utilizing Equation (35), the (q + 1)th estimate of the parameterized vector in the presence
of model uncertainty can be achieved by

̂̃v(q+1)(t) =
̂̃FH
(q+1)(t)x(t). (38)

We note that Equations (35)–(38) serve as the core of the iterative implementation-based tar-
get localization algorithm, where the integration of time samples and the model uncertainty
are considered. The above process is repeated until a stable power distribution of spatial
signals is obtained or a predefined maximum iteration number is reached, and the final
estimate v̂(t) can then be achieved. Elements within v̂(t), therefore, reveal the estimate of
energy distribution corresponding to the spatial signals. Let G be the set of indices g that
generate peaks to the following function

Ps(g) = 10log10[vs(g)], (39)

where

vs = diag

{
1
L

tL

∑
t=t1

v̂(t)v̂H(t)

}
(40)

and vs(g) is the gth element of vs. Therefore, the DOA estimate set can be achieved by
θ̂ =

{
θg | g ∈ G

}
.

It is important to note that the kth target direction estimate denoted by θ̂
dp
k can be

identified from θ̂ based on the geometry relationship between the direct and reflecting
paths corresponding to the kth target [18]. With reference to the geometrical relationship in
the improved multipath propagation model shown in Section 2, the kth target height can
then be achieved by

ĥk = Rdp
k sin

(
θ̂

dp
k

)
+ hr. (41)

For clarity, the procedure for extracting target location parameters of the proposed algo-
rithm is summarized in Algorithm 1.

Algorithm 1: The proposed target height estimation algorithm

Input: Radar observations {x(t)}tL
t=t1

, the dictionary ΦΩ, the termination threshold ∆η,
and the predefined iteration number Q

Output: Estimation of target location parameters in terms of {θ̂dp
k }

K
k=1 and {ĥk}K

k=1
1 Compute the initialization of the MMSE estimate by using (26);
2 for q = 0, 1, · · · , Q do

3 Update ̂̃F(q+1)(t) using (35)–(37);

4 Update ̂̃v(q+1)(t) using (38);

5 if 1
L

tL

∑
t=t1

‖̂̃v(q+1)(t)−̂̃v(q)(t)‖2

2

‖̂̃v(q)(t)‖2

2

≤ ∆η then

6 Terminate the iteration;
7 else
8 q← q + 1 and go back to step 3;
9 end

10 end

11 Obtain target directions {θ̂dp
k }

K
k=1 by using (39);

12 Compute target heights {ĥk}K
k=1 by using (41).
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4. Results
4.1. Simulation Results with Synthetic Data

We verify the performance of the proposed algorithm via simulation results, where an
uniform linear array (ULA) radar of 20 isotropic antenna sensors spaced a half-wavelength
apart is employed. To assess the performance of different algorithms, comparisons under
various scenarios are conducted with some baseline algorithms, including the RML algo-
rithm [12], the AP-ML algorithm [17], the SS-MUSIC algorithm [9], the rank-1 constraint-
based method [18], and the OMP algorithm [32]. The estimation performance of target
location parameters is evaluated via the root mean-square error (RMSE), defined by

RMSE
(

θ
dp
k

)
=

√√√√ 1
PMC

PMC

∑
p=1

(
θ̂

dp
k,p − θ

dp
k

)2
(42)

and

RMSE(hk) =

√√√√ 1
PMC

PMC

∑
p=1

(
ĥk,p − hk

)2
, (43)

where PMC denotes the predefined number of Monte Carlo trials; θ̂
dp
k,p and ĥk,p are, respec-

tively, the DOA and height estimates of the kth target in the pth simulation trial.
We first validate the localization performance of the respective algorithms under

a multipath propagation scenario, where a single target of interest with two coherent
interference paths is considered. The parameter list used for this simulation setup is
shown in Table 2. It is worth mentioning that the exact knowledge of the multipath
propagation scenario is unknown beforehand. In Figure 2, we present the RMSE result of
the respective algorithms versus the input signal-to-noise ratio (SNR). We can note that a
severe performance degradation occurs for the RMLE algorithm due to the mismatch of the
classical two-ray signal model, even under high SNR conditions. This result explains why
the deterministic propagation model-based methods cannot achieve satisfactory localization
performance in practical applications. We can also note from Figure 2 that the estimation
accuracy obtained by the SS-MUSIC algorithm is worse than that obtained by the AP-ML
algorithm, the OMP algorithm, the rank-1 constraint-based method, and the proposed
algorithm when SNR is larger than −5 dB. This is because the decorrelation preprocessing
employed in the SS-MUSIC approach decreases the angular resolution. In addition, the rank-
1 constraint-based method, the OMP algorithm, and the AP-ML approach show similar
performance, while the proposed algorithm exceeds the other five algorithms. These results
indicate that the proposed algorithm can obtain satisfactory estimation performance for
target location parameters under the coherent multipath environment considered in this
simulation, where the requirement for exact knowledge of the propagation scenario can
be avoided.

Table 2. Parameter list for the first simulation.

Variables Parameter Values

Radar site altitude 100 m
Target distance 55 km
Target height 5.5 km

Sample number 128
Grazing angles 3◦ and 6◦

Vertical distance 4.5 km and 5 km
Relative dielectric constant 4 and 6

Ground conductivity 2× 10−1 S/m and 4× 10−2 S/m
Ground standard deviation 0.12 m and 0.2 m
Termination threshold ∆η 10−6
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(a) (b)

Figure 2. Comparison of RMSE results in terms of target location parameter estimates versus input
SNR under the scenario involving a single target and two coherent interference paths. (a) The estimate
result of target direction. (b) The estimate result of target height.

In the second simulation, we consider a more generalized scenario to evaluate the
parameter estimation performance of the proposed algorithm, where two targets with
three coherent reflection interferences are employed. Parameters utilized in this simulation
are shown in Table 3. Similarly, the exact knowledge of the propagation environment
is also unknown for this simulation. We compare the estimation performance of the
proposed algorithm and baseline algorithms; RMSE results of target location parameters
versus input SNRs for targets with different height values are shown in Figure 3a,b and
Figure 3c,d, respectively.

Table 3. Parameter list for the second simulation.

Variables Numerical Value

Radar site altitude 100 m
Target distance 50 km
Target height 5 km and 7 km

Sample number 128
Grazing angles 3◦, 5◦, and 8◦

Vertical distance 3.5 km, 4.6 km, and 6.2 km
Relative dielectric constant 2, 4, and 7

Ground conductivity 4× 10−2 S/m, 1× 10−3 S/m,
and 2× 10−4 S/m

Ground standard deviation 0.15 m, 0.10 m, and 0.2 m
Termination threshold ∆η 10−6

We can note from Figure 3 that both the RML and the AP-ML algorithms suffer
from a severe impact induced by ground interference in this scenario. As a result, it is
difficult for them to achieve effective target localization performance even under high SNR
conditions. Furthermore, the OMP and the SS-MUSIC algorithms are also influenced by
the detrimental effect contributed by the complex propagation environment, especially
for the low SNR conditions. On the contrary, it is worth highlighting that the localization
performance achieved by the proposed algorithm is better than that achieved by other
comparison algorithms under the same SNR condition. These results indicate that the
proposed algorithm can achieve satisfactory estimation performance for target location
parameters under the considered multipath interference scenario.
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(a) (b)

(c) (d)

Figure 3. Comparison of RMSE results in terms of target location parameter estimates under the
multipath environment involving two targets with three coherent interference paths. (a) Direction
estimate of the target with h1 = 5 km. (b) Height estimate of the target with h1 = 5 km. (c) Direction
estimate for the target with h2 = 7 km. (d) Height estimate for the second target with h2 = 7 km.

4.2. Experimental Results with Real Measured Data

We show experimental results derived from real measured datasets to demonstrate
the effectiveness of the proposed algorithm in a realistic target localization scenario in-
volving multipath propagation. The utilized dataset was collected by an experimental
8-channel array radar, where the adjacent sensors were separated by half a wavelength.
It is important to note that the employed array radar was located in a rugged terrain
environment, where the ground surface reflection would generate convoluted multipath
interferences. In particular, the original radar observation data were processed by several
preprocessing operations, including the pulse compression (PC), the moving target indica-
tion (MTI), and the constant false alarm detection (CFAD), to detect and track the target.
The true values of target direction and distance relative to the radar position across the
observation time, which were achieved by the global position system (GPS), are shown in
Figures 4 and 5, respectively. It can be observed that, during the observation period, the di-
rection and distance of the target vary from 6.4◦ to 8.0◦ and 90.7 km to 74.5 km, respectively.
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Figure 4. The ground truth of target direction recorded by the global position system across the
observation time.

Figure 5. The ground truth of target distance recorded by the global position system across the
observation time.

The processed results of target direction and height obtained by the respective algo-
rithms are given in Figure 6. We can note that the RML algorithm, the AP-ML algorithm,
the OMP algorithm, the SS-MUSIC algorithm, and the rank-1 constraint-based method
are influenced to varying degrees by convoluted reflection interferences for most of the
observation time. The result reveals that these four algorithms produce more significant
estimation fluctuations than the proposed algorithm. As a result, they cannot accurately
estimate target location parameters in this realistic environment. In contrast, the proposed
algorithm outperforms the baseline algorithms and can achieve relatively satisfactory target
angle and height estimates. In addition, a comparison result of the average running time
for different methods at one observation time index is shown in Table 4. These experiments
were implemented using 64-bit MATLAB R2021b on a Windows 11 system computer with
a 2.3-GHz Intel Core i7 CPU and 16 GB memory. The result in Table 4 shows that the pro-
posed algorithm achieves a significant estimation performance improvement with slightly
more computation time compared to the RML algorithm or the SS-MUSIC algorithm.
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(a)

(b)

Figure 6. Estimation results of target location parameter across the observation time. (a) Target
direction estimates achieved by different algorithms. (b) Target height estimates achieved by differ-
ent algorithms.

Table 4. Average running times of different algorithms.

Algorithm Search Interval (deg.) Running Time (s)

RML 0.1 0.196
0.01 0.337

AP-ML 0.1 0.761
0.01 2.963

OMP 0.1 0.342
0.01 1.021

SS-MUSIC 0.1 0.182
0.01 0.312

the rank-1 constraint-based method 0.1 1.425
0.01 4.265

Proposed Method 0.1 0.293
0.01 1.127

To validate the robustness performance in terms of the location parameter estimation
of the proposed algorithm, Figure 7 shows the statistical result for target height estimates
of the respective algorithms under different threshold values. We note that the proposed al-
gorithm can achieve better estimation performance than the other four baseline algorithms
at most threshold value points; it can consistently estimate the target location parame-
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ter. In particular, estimation percentages of the RML algorithm, the AP-ML algorithm,
the OMP algorithm, the SS-MUSIC algorithm, and the rank-1 constraint-based method are,
respectively, 11.1%, 5.6%, 1.9%, 3.7%, and 13% when the threshold value is equal to 150 m.
On the contrary, the proposed algorithm achieves a 81.5% estimation percentage at the
same threshold value. The results in Figures 6 and 7 indicate that the proposed algorithm
can significantly improve the parameter estimation accuracy in the realistic multipath
propagation environment.

Figure 7. Statistical result of the estimation percentage in terms of target height across different
threshold values.

5. Conclusions

We studied the DOA estimation-based target localization problem under complex
multipath effects without the exact knowledge of the propagation environment. First, an im-
proved multipath propagation model for target localization under multipath propagation
scenarios was established, where the impractical assumption within the classical deter-
ministic propagation model has been avoided. Therefore, the accuracy and generalization
ability of the propagation signal model related to the array observation can be improved.
Then, after analyzing the propagation mechanism of the multipath channel parameter,
the iterative implementation-based target localization algorithm was proposed to alleviate
the detrimental effect of the convoluted coherent interference due to multipath propagation
on target location parameter estimates. It has been shown by simulation and experimental
results that the proposed algorithm can achieve satisfactory estimation performance for
target location parameters compared with other baseline methods.
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