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Abstract: In the last several years, deep learning has been introduced to recover a hyperspectral
image (HSI) from a single RGB image and demonstrated good performance. In particular, attention
mechanisms have further strengthened discriminative features, but most of them are learned by
convolutions with limited receptive fields or require much computational cost, which hinders the
function of attention modules. Furthermore, the performance of these deep learning methods is
hampered by tackling multi-level features equally. To this end, in this paper, based on multiple
lightweight densely residual modules, we propose a densely residual network with dual attention
(DRN-DA), which utilizes advanced attention and adaptive fusion strategy for more efficient feature
correlation learning and more powerful feature extraction. Specifically, an SE layer is applied to
learn channel-wise dependencies, and dual downsampling spatial attention (DDSA) is developed
to capture long-range spatial contextual information. All the intermediate-layer feature maps are
adaptively fused. Experimental results on four data sets from the NTIRE 2018 and NTIRE 2020
Spectral Reconstruction Challenges demonstrate the superiority of the proposed DRN-DA over
state-of-the-art methods (at least −6.19% and −1.43% on NTIRE 2018 “Clean” and “Real World”
track, −6.85% and −5.30% on NTIRE 2020 “Clean” and “Real World” track) in terms of mean relative
absolute error.

Keywords: attention mechanism; densely residual network with dual attention (DRN-DA); receptive
field; channel attention; spatial attention

1. Introduction

With the increasing applications of computer vision technology in various engineering
fields [1–11], hyperspectral images (HSIs) have proved to obtain more helpful information
than RGB images. Hyperspectral images contain the reflectance of objects or scenes in
different spectral bands, usually ranging from several dozens to hundreds, even outside the
visible spectrum (e.g., in the ultraviolet or infrared spectrum). Compared with traditional
RGB images with increased spectral range and resolution, HSIs provide much richer infor-
mation, which has been widely used in cultural heritage [1,2], medical diagnosis [3], remote
sensing [4], food quality inspection [5], color quality control [6], and various computer vision
tasks, such as face recognition, object tracking, and image classification [7–9].

Due to the growing need for HSIs, various hyperspectral imaging systems (HISs)
have been developed in the last several decades. The first HISs, such as NASA’s airborne
visible/infrared imaging spectrometer (AVIRIS) [12], employed a prism to disperse the
reflected light and a linear array detector to record the reflected light. This kind of HISs
can acquire images with high spatial/spectral resolution in “whisk broom” imaging mode,
but image acquisition is time-consuming since they adopt the point-scanning method.
Afterwards, “push broom” HISs, such as NASA’s advanced land imager (ALI) [13], and
“staring” HISs, often used in microscopy or other lab applications, have been developed.
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With a scan lens and an entrance slit, “push broom” HISs use a prism-grating-prism to
split the light and can scan one line at a time; “staring” HISs use continuously changeable
narrow bandpass filters in front of a matrix detector and can capture the image at one
wavelength at a given time. Obviously, the latter two have relatively fast speed of scanning,
but their temporal resolutions are still not high enough for dynamic scenes. Thus, many non-
scanning, snapshot HISs have been designed, including computed tomographic imaging
spectrometry (CTIS), fiber-reformatting imaging spectrometry (FRIS), and coded aperture
snapshot spectral imaging (CASSI) [14]. Unfortunately, as the total number of voxels
cannot exceed the total number of pixels on the CCD camera, these HISs involve a trade-off
between spatial and spectral resolution [15].

As aforementioned, HISs to directly acquire HSIs have disadvantages either in tempo-
ral resolution or in spatial resolution. In recent years, hyperspectral reconstruction from
RGB images has become a very active research topic. A large number of methods have
been proposed to reconstruct hyperspectral information using only RGB cameras [16–33].
In general, these methods fall into three branches: traditional, machine learning, and deep
learning methods. Traditional methods include classical methods on the basis of Wiener
estimation, pseudo-inverse estimation, or principal component analysis, and their various
modifications, such as adaptive Wiener estimation [16], regularized local linear models [17],
sequential weighted nonlinear regression models [18], and so on. Classical methods are
simple and straight but not very accurate. Modified methods tend to adaptively select or
weigh training samples, which enhances hyperspectral reconstruction accuracy, but are not
portable and can be time-consuming. Therefore, it is hard for these traditional methods to
be applied in real tasks. Fortunately, machine learning-based methods compute hyperspec-
tral data, which makes acquisition of spectral data fast. Shallow learning models such as
RBF networks [19,20], dictionary learning-based sparse coding [21,22], and manifold-based
mapping [23] are typical machine learning-based methods. Nevertheless, the expression
capacity of handcrafted prior models learned by these methods is so limited that the recon-
structed spectra are not very accurate. In recent years, deep learning methods have been
used for hyperspectral reconstruction and have achieved remarkable success. Compared to
machine learning methods, deep learning methods are capable of automatically extracting
high-level features and have a better generalization ability. Convolutional neural networks
(CNNs) [24–31] and generative adversarial networks (GANs) [32,33] have been developed
for hyperspectral reconstruction.

Though considerable progress has been made for hyperspectral reconstruction, chal-
lenges remain in deep learning-based models as noted below: (1) when using dense skip
connections, the feature of each layer is propagated into all subsequent layers, resulting in
a very wide network at the cost of reducing the depth of the network [34]; (2) the commonly
used non-local spatial attention involves big matrix multiplications, raising the cost of
computation and memory requirement, thus hindering the frequent application in the
network [35]; (3) deep learning-based models for hyperspectral reconstruction neglect that
the importance of different intermediate layers varies. To address these issues, we propose
a densely residual network with dual attention (DRN-DA) for more powerful feature
representation, which adequately enjoys the benefits of both the residual block [36] and the
dense block [34]. In our proposed DRN-DA network, the basic building blocks are densely
residual block (DRB) and densely residual attention block (DRAB). The difference between
DRB and DRAB is that DRAB has channel attention (CA) and dual downsampling spatial
attention (DDSA) to capture channel-wise and long-range spatial dependencies. Then,
to reuse the features, the output features of DRB and DRAB are adaptively fused. Addition-
ally, an adaptive multi-scale block (AMB) with larger receptive fields is used to process the
features generated by the previous network. Extensive experiments demonstrate that the
proposed DRN-DA network performs better when compared to the state-of-the-art methods.

In summary, the contributions of this paper are as follows:
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• We propose a novel model, named densely residual network with dual attention
(DRN-DA), which enhances the representation ability of feature learning for hyper-
spectral reconstruction.

• We propose a lightweight dense skip connection, where each layer is connected to the
next layer rather than all the subsequent layers. Although this block is different from
the classic DenseNet [34], it also reuses features and eliminates gradient vanishing.

• We propose a simple but effective non-local block named dual downsampling spatial
attention (DDSA) to decrease the computation and memory consumption of the
standard non-local block, which makes it feasible to insert multiple non-local blocks
in the network for enhancing the performance.

• To further improve the learning ability of the network, we introduce an adaptive
fusion block (AFB) to adaptively reuse the features from different intermediate layers.

The remainder of this paper is organized as follows. Section 2 briefly introduces the
related work. Section 3 illustrates the details of the proposed method. Experiment studies
and discussion of results are given in Section 4. Finally, the conclusion is drawn in Section 5.

2. Related Works
2.1. Hyperspectral Reconstruction with Deep Learning Methods

Many deep learning methods have been proposed for hyperspectral reconstruction.
According to their learning manner, these methods can be grossly divided into three groups:
supervised learning [24–30], semi-supervised learning [32,33], and unsupervised learn-
ing [31]. Supervised learning methods can extract discriminative information, but are
easy to overfit if the models are very complex; semi-supervised learning methods conduct
supervised learning of labeled data in conjunction with unsupervised learning of unlabeled
data; unsupervised learning methods can learn patterns without labeled data. In this paper,
only supervised learning methods are taken into account. Supervised learning methods
often use CNN models to learn feature representations. For example, inspired by the VDSR
network for spatial super-resolution [37], Xiong et al. [24] utilized spectrally upsampled
images to learn an end-to-end mapping. Shi et al. [25] proposed two advanced convolu-
tion neural networks (HSCNN-R and HSCNN-D) for a hyperspectral reconstruction task.
With a long skip connection, a number of short residual blocks were stacked in HSCNN-R,
and these short residual blocks were replaced by dense blocks with a novel fusion strategy
in HSCNN-D. Both ranked in the 2nd and 1st place in NTIRE 2018 Spectral Reconstruction
Challenge [38]. Zhang et al. [26] introduced dense skip connections in a deep network to ex-
tract features and map features to HSIs and designed a customized loss function to acquire
the correlation among different spectra. This method outperformed several state-of-the-art
methods. Zhao et al. [27] presented a 4-level hierarchical regression network (HRNet) uti-
lizing PixelShuffle to build up inter-level interaction. This HRNet ranked 3rd in the NTIRE
2020 Spectral Reconstruction Challenge. Zhang et al. [28] employed a mixing function
to adaptively determine the receptive field for each pixel. After an SE module [39] was
added at the tail of each branch and each module, this pixel-aware deep function-mixture
network ranked 2nd in the NTIRE 2020 Spectral Reconstruction Challenge [40]. Li et al. [29]
proposed a novel network called adaptive weighted attention network (AWAN), which
captured channel-wise contextual information and long-range spatial dependencies. Fur-
thermore, this network integrated the discrepancies of RGB images and HSIs as a finer
constraint for more accurate reconstruction and ranked in the 1st place in the NTIRE 2020
Spectral Reconstruction Challenge [40]. Afterwards, Li et al. [30] also proposed a hybrid
2-D-3-D deep residual attentional network (HDRAN) consisting of 2D-RANs followed by
3D-RANs to extract spatial and interband correlations simultaneously. Although these
deep-learning methods can extract deep features, it is still necessary to pay more attention
to some key informative features from abundant information.
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2.2. Attention Mechanism

Inspired by human visual perception [41], attention mechanisms have been employed
to adaptively process visual information in many applications. Wang et al. [35] proposed
a non-local neural network to rescale spatial features in video classification. Hu et al. [36]
proposed a squeeze-and-excitation (SE) block to model channel-wise dependencies to
obtain significant improvement in performance for image classification. However, the
SE block only explored first-order statistics. Therefore, Dai et al. [42] utilized second-
order statistics and developed a second-order channel attention (SOCA) module for more
discriminative representations. Meanwhile, considering that the traditional non-local
operation was used to compute the global-level long-range dependencies, which cost a
lot of memory, Dai et al. [42] proposed region-level non-local operations for image super-
resolution. Anwar et al. [43] made the attention block obtain larger receptive fields by
applying the Laplacian pyramid to learn the critical features at different scales for highly
accurate image super-resolution. More recently, some attention mechanisms have been
applied in the hyperspectral reconstruction task. Zhang et al. [40] inserted an SE block
to acquire the channel-wise dependencies of a function-mixture block for hyperspectral
reconstruction. Li et al. [29] proposed adaptive weighted channel attention (AWCA) module
and a patch-level second-order non-local (PSNL) module to capture channel-wise and
spatial contextual information, which strengthened discriminative learning of the network
used to recover HSIs. Compared with the traditional non-local network, the region-level
non-local, and patch-level non-local modules need relatively less computational time,
but the process of calculating the attention map is not efficient enough yet.

2.3. Adaptive Fusion Block

Recently, an adaptive fusion strategy has been introduced to CNN to extract more
features in computer vision tasks [44,45] and remote sensing [46,47]. In [44], an adaptive
weighted multi-scale module was proposed to remove some scale branches with lower
contributions, and the features from nonlinear mapping module were made full use of
to improve single-image super-resolution quality. In [45], adaptive weighted groups
were introduced into dense links to adaptively select informative features and reduce
the feature redundancy. In [46], adaptive fusion blocks were employed to preserve the
features of size-varied objects from different levels, which improved the performance
of remote sensing image segmentation. More recently, to better take advantage of the
complementary information of spectral and spatial features, a feature fusion module was
designed to adaptively adjust the voting weights of spectral features and spatial features
on hyperspectral image classification results [47].

3. Methodology

In this section, we firstly introduce the network structure of DRN-DA, and then detail
the densely residual attention block (DRAB), adaptive fusion block (AFB), and the adaptive
multi-scale block (AMB).

Some basic nomenclature is first introduced before the proposed network is described
in detail. Different convolutions are distinguished by superscript numbers. For example,
Conv1×1(·) denotes the function of a 1 × 1 convolutional layer, and Conv3×3(·) represents
the function of a 3 × 3 convolutional layer. Additionally, [·] and δ(·) denote the concatena-
tion operation and PReLU activation function, respectively.

3.1. Network Architecture of DRN-DA

The overall architecture of DRN-DA is shown in Figure 1. DRN-DA falls into four
stages, including a shallow feature extraction stage, a feature mapping stage, an adap-
tive fusion stage, and a reconstruction stage. Let us denote IRGB ∈ RN×3×H×W and
IHSI ∈ RN×31×H×W as the input and output of DRN-DA. Here, 3 or 31 is the band number,
N is the batch size, H is the height, and W is the width.



Remote Sens. 2022, 14, 3128 5 of 22

Conv 5  5 Conv 1  1Conv 3  3

AMB⋯⋯

Multi-scale Residual Attention Block 
(MRAB)

CA

DDSA

MRBMRBMRB

Sum Hadamard 
productDRBPReLU DRAB Concat

Densely Residual Attention Block (DRAB)

          MRAB MRAB MRAB

Shallow
Feature

Extraction

Feature
Mapping

Adaptive
Fusion Reconstruction

Figure 1. Network architecture of DRN-DA.

Firstly, we use two 3 × 3 convolutional layers with an activation function called a
parametric rectified linear unit (PReLU) [48] between them to extract the shallow features
F0 from RGB input images

F0 = HSF(IRGB) (1)

where HSF(·) represents the shallow feature extraction function. Then, the shallow features
F0 ∈ RN×C×H×W are fed to the feature mapping stage for higher-level feature extraction. C
is the channel number of the feature map. The procedure can be described as follows:

FFM = HFM(F0) (2)

where HFM(·) represents the feature mapping function, which consists of M1 DRBs and
M2 DRABs. FFM is composed of a set of feature maps as

FFM =
{

FDRB_1, · · · , FDRB_M1 , FDRAB_1, · · · , FDRAB_M2

}
(3)

Then, in the adaptive fusion stage, the feature maps extracted by multiple DRBs and
DRABs are adaptively fused. This procedure is expressed as

FAFB = HAFB(FFM) (4)

where HAFB(·) represents the fusion function described in Section 3.3. At the end of the
adaptive fusion stage, global residual learning is introduced to keep the network stable.
For the identity mapping branch, a 5 × 5 convolutional layer is utilized to further process
the shallow features. The global residual learning can be formulated as

FGRL = FAFB + Conv5×5(F0) (5)

In the final stage, the global feature representation FGRL is reconstructed via a recon-
struction module as follows:

IHSI = HRC(FGRL) = HDRN−DA(IRGB) (6)
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where HRC(·) and HDRN−DA(·) are the reconstruction module and the function of the
network of DRN-DA, respectively. The reconstruction module is composed of an adaptive
multi-scale block (AMB) and a 3 × 3 convolutional layer. The AMB block has three branches
with multiple scale convolutions, and corresponding weights can be automatically learned
to make full use of more important representations. Finally, the convolutional layer is used
to compress the dimension to N × 31× H ×W, which is the same as the dimension of the
ground-truth HSIs.

3.2. Densely Residual Attention Block

As shown in Figure 1, the backbone of the proposed network DRN-DA is stacked
with multiple densely residual blocks (DRB) and densely residual attention blocks (DRAB).
As the only difference between DRB and DRAB lies in that DRB does not incorporate
attention mechanisms, while DRAB has them, here, only DRAB is described in detail.
As shown in Figure 1, DRAB consists of a lightweight dense connection and local residual
learning. The lightweight dense connection is inspired by DenseNet [34] to alleviate the
vanishing-gradient problem and strengthen feature propagation. However, the feature
maps are used as inputs into all subsequent layers in the original DenseNet, which results
in the DenseNet becoming wider and wider with increasing depth. Therefore, here, a sim-
plified densely connected network is developed to reduce the computation cost. The output
of each multi-scale residual attention block (MRAB) is only used as the input into the
following second MRAB. After the feature maps of two consecutive layers are concatenated,
a 3 × 3 convolutional layer is added to reduce the dimension, which further lowers the
width of the dense connection. The procedure of DRAB can be formulated as

x1 = Conv3×3([ fMRAB(x0), x0)])

x2 = Conv3×3([ fMRAB(x1), fMRAB(x0), x0)]) (7)

x3 = Conv3×3([ fMRAB(x2), fMRAB(x1), fMRAB(x0), x0)])

where x0, x1, x2, and x3 denote the input of the first, second, and third MRAB, and the
feature map which is output from the third MRAB and processed via a convolutional layer,
respectively; fMRAB(·) is the function of MRAB .

As shown in Figure 1, MRAB is composed of three subcomponents, namely multi-scale
residual block (MRB), channel attention (CA), and dual downsampling spatial channel
(DDSA). The features are processed by three branches: the first branch is stacked with three
MRBs; the second branch consisting of CA is parallel to the second MRB; and the third
branch consisting of DDSA is parallel to the second MRB as well. Both CA and DDSA work
on the second MRB, and the feature maps are fused with concatenation and compression in
the channel dimension. The procedure of MRAB is described by the following equations:

y1 = fMRB(y0)

y2 = fMRB(y1) (8)

y3 = fMRB(Conv3×3([y2 ⊗ fCA(y1), y2 ⊕ fDDSA(y1)]))

where y0, y1, y2, and y3 denote the input of MRAB and the outputs of the first, second, and
third MRB, respectively; fMRB(·), fCA(·), and fDDSA(·) represent the functions of MRB, CA
and DDSA; ⊗ and ⊕ denote the element-wise multiplication and addition, respectively.

Next, we give more details on the multi-scale residual block (MRB), channel attention
(CA), and dual downsampling spatial channel (DDSA).

3.2.1. Multi-Scale Residual Block

Since it has been proven that wider features before the activation layer of the residual
block can exploit the multi-level features better [49,50], a multi-scale residual block (MRB)
is used in the basic building block MRAB. Different from the MRB in [50], a modified
MRB is adopted. Inspired by Inception-V2 [51], the 5 × 5 convolutional layer and the 7 × 7
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convolutional layer in the multi-scale convolution block from [50] are replaced by two 3 × 3
convolutional layers and three 3 × 3 convolutional layers, respectively. This strategy is
adopted to reduce parameters as well as the computational time, but can make the stacked
convolutions reach the same receptive fields as the convolutions in [43]. Additionally,
the activation function ReLU is replaced by PReLU to introduce more nonlinearity and
accelerate convergence. The MRB in this work consists of several parts: a multi-scale
convolution block, a PReLU activation function, a feature fusion bottleneck layer, a 3 × 3
convolution layer, and a local residual learning block (see Figure 2).
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Figure 2. Multi-scale residual block (MRB).

Multi-Scale Convolution Block: The computations of the three paths in multi-scale
convolution block are formulated as

s1 = Conv3×3
1,1 (s0)

s2 = Conv3×3
2,2 (Conv3×3

2,1 (s0)) (9)

s3 = Conv3×3
3,3 (Conv3×3

3,2 (Conv3×3
3,1 (s0)))

where s0, s1, s2, and s3 are the input of the multi-scale convolution block and the out-
puts of the first, second, and third paths; Conv3×3

1,1 (·), Conv3×3
2,1 (·), Conv3×3

2,2 (·), Conv3×3
3,1 (·),

Conv3×3
3,2 (·), and Conv3×3

3,3 (·) are the 3 × 3 convolutional layer in the first path, the first and
second 3 × 3 convolutional layers in the second path, and the first, second, third 3 × 3
convolutional layers in the third path.

Feature Fusion: The feature maps output from three paths are concatenated and
activated. As a result, 3 × C feature maps are generated. Then, a 1 × 1 convolutional layer is
used to fuse the multi-scale features and compress the number of channels. Finally, a 3 × 3
convolutional layer is employed to extract spatial-wise features. This procedure of feature
fusion can be formulated as

p = Conv3×3(Conv1×1(δ([s1, s2, s3]))) (10)

Local Residual Learning: considering that there are multiple convolutional layers in
the above architecture, local residual learning is used to enhance the feature map. The final
output feature map of MRB is given by

s = p + s0 (11)

3.2.2. Channel Attention

In previous tasks, channel-wise attention has been proven to be efficient to select
significant features [29,39,40,42,43]. The channel attention in the MRAB architecture is
the same as the SE layer [39] shown in Figure 3. First, the input feature U ∈ RC×H×W
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is compressed through a global average pooling and made into a global statistics vector
q ∈ RC×1×1:

q =
1

H ×W

H

∑
i=1

W

∑
j=1

U(i, j) (12)
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Figure 3. Channel attention (CA) module.

Next, two fully-connected (FC) layers are used to obtain a bottleneck. The first
FC layer is a channel-reduction layer with reduction ratio r, and the second FC layer
restores the number of channels. Between the two FC layers, a PRELU is used to increase
the nonlinearity.

Finally, a sigmoid function is applied as a gating mechanism to acquire the chan-
nel statistics.

3.2.3. Dual Downsampling Spatial Attention

The non-local self-attention mechanism proposed by Wang [35] can capture the long-
range dependencies at all positions throughout the entire image. It has been used in various
computer vision applications such as video classification and image recognition, and yields
great improvement. However, the standard non-local network consumes a large amount
of computational memory since each position’s signal is calculated on the whole image,
and the computational cost is prohibitive when the image has a large size. Though region-
level non-local modules [42] and patch-level non-local modules [29] reduce computational
time to some extent, these methods are not efficient enough yet. To address this problem,
modified non-local attention is developed in this work to model spatial correlation. In this
attention block, a dual downsampling strategy is used to reduce the channel dimension and
the size of the input image as illustrated in Figure 4. Let g0 ∈ RC×H×W be the input feature
map; then, three convolutions are used to convert g0 into three different feature maps,
g1 ∈ R(C/s)×H×W , g2 ∈ R(C/s)×(H/t)×(W/t), and g3 ∈ R(C/s)×(H/t)×(W/t). Concretely,
the three convolutions are in the size 1× 1× (C/s), and the latter two convolutions have a
stride with t to downsample the image in size. This process can be expressed as

g1 = Conv1×1
1 (g0)

g2 = Conv1×1
2 (g0) (13)

g3 = Conv1×1
3 (g0)

Next, the three feature maps are flattened to R(C/s)×HW , R(C/s)×(HW/t2), and
R(C/s)×(HW/t2). Then, a spatial attention map is calculated through multiplying the trans-
posed first feature map by the second feature map and normalized by a Softmax activation
function as

B = τ(gT
1 × g2) (14)

where τ(·) denotes the Softmax function, and B is the spatial attention matrix. Subsequently,
the feature map g3 is multiplied by the transposed B to acquire the weighted feature map
g4, which is formulated as

g4 = g3 × BT (15)
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At last, g4 is reshaped to R(C/s)×H×W and then recovered to the same channel dimen-
sion as the input feature map g0 by a 1 × 1 convolution. Therefore, the final output is
obtained by

g5 = Conv1×1(g4) (16)
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Figure 4. Dual downsampling spatial attention (DDSA) module.

3.3. Adaptive Fusion Block

A traditional fusion structure integrates the hierarchical features from early layers to
make full use of features from different levels [28,52]. However, most global fusion blocks
treat different layers equally. This causes the network to omit more important information,
and the quality of reconstructed image is reduced. Therefore, an efficient structure is
developed to make the fusion block more effective. Taking the inter-layer relationships into
account, in this work, an adaptive fusion block (AFB) is used to fuse the outputs of all DRBs
and DRABs (see Figure 1). Each output has an independent weight that is adaptively and
automatically adjusted in [0, 1] according to training loss. The features from different layers
are weighted, concatenated, and fused by a convolution. Mathematically, the procedure
can be formulated as

FAFB = Conv3×3([ωDRB_1FDRB_1, · · · , ωDRB_M1FDRB_M1 ,

ωDRAB_1FDRAB_1, · · · , ωDRAB_M2FDRAB_M2 ])
(17)

where ωDRB_1, ωDRB_M1 , ωDRAB_1, and ωDRAB_M2 are trainable weights representing weights
of the first, M1th DRB, the first and M2th DRAB, respectively; Conv3×3(·) reduces the chan-
nel number.

3.4. Adaptive Multi-Scale Block

For a deep learning network, a larger receptive field usually brings the network better
representative capability. In this work, at the tail of the proposed network DRN-DA,
an AMB with larger receptive fields than the previous multi-scale convolution block in
Figure 2 is added to further improve the performance of the network as shown in Figure 1.
The AMB is comprised of three kinds of scale convolutions (see Figure 5) with kernel
sizes of 3 × 3, 5 × 5, and 7 × 7. After each convolution, the PReLU function is added to
increase nonlinearity, and the other convolution with the same size is used to make the
receptive field larger. The weight of each scale branch is automatically learned according
to the training loss, which results in a trade-off between the reconstruction quality and
parameters. The computational process of AMB can be formulated as
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h = ω1 × Conv3×3(δ(Conv3×3(h0)))

+ω2 × Conv5×5(δ(Conv5×5(h0)))

+ω3 × Conv7×7(δ(Conv7×7(h0)))

(18)

where h0 and h represent the input and the output of AMB, respectively; and ω1, ω2, and
ω3 are the weights of the three branches.
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Figure 5. Adaptive multi-scale block (AMB).

4. Experiments
4.1. Settings
4.1.1. Data Sets

In this section, we perform several experiments to verify the effectiveness of the
proposed network on four data sets from the NTIRE 2018 and NTIRE 2020 Spectral Recon-
struction Challenges [38,40]. In each challenge, there are two data sets: the “Clean” track
and the “Real World” track. The “Clean” track contains noise-free and uncompressed 8-bit
RGB images obtained from a CIE 1964 color matching function, and the “Real World” track
involves JPEG-compressed 8-bit RGB images created by applying an unknown camera
response function to ground truth HSIs. Each track in the NTIRE 2018 challenge has 256
natural images for training and 5 + 10 additional images for validation and testing with
a size of 1392 × 1300. The reflectance of HSIs in the NTIRE 2018 challenge is in the range
of [0, 4095]. Each track in the NTIRE 2020 challenge has 450 images for training and
10 + 20 additional images for validation and testing with a size of 512 × 482. The reflectance
of HSIs in the NTIRE 2020 challenge has been normalized to be in [0, 1]. All the HSIs have
31 bands from 400 nm to 700 nm, with a 10 nm step. Since the official testing HSIs in both
challenges are confidential, in this work, the official validation HSIs are used for testing,
which is the same as the work [30].

4.1.2. Experimental Configuration

In the proposed DRN-DA, we adopted 2 DRBs and 2 DRABs, namely, M1 = M2 = 2.
In the intermediate layers, the number of channel dimension C was 64. The channel
reduction ratio r of the CA module was 16, and the channel reduction ratio s and the size
reduction ratio t of DDSA module were set to be 8 and 4, respectively.

In the training stage, all the training images were resized to be 64 × 64. The model
was trained using a batch size of 32 with the Adam optimizer [53] by setting β1 = 0.9,
β2 = 0.999, and ε = 10−8. The learning rate was initialized as 10−4, and the polynomial
function was set as the decay policy with power = 1.5. The training process was terminated
at the 100th epoch. The model was trained using a PyTorch framework and a NVIDIA RTX
3090 GPU.
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4.1.3. Quantitative Metrics

As in the NTIRE 2018 and NTIRE 2020 challenges [38,40], mean relative absolute error
(MRAE) is chosen as the quantitative metric of the proposed method. MRAE is defined as

MRAE =
1
N

N

∑
i=1

∣∣∣r′i − ri

∣∣∣
ri

(19)

where ri and r
′
i denote the ground-truth and reconstructed spectral vectors of the ith pixel,

respectively; N is the total number of pixels.
MRAE represents the spatial distance between the ground-truth and reconstructed

spectral curves. In general, a smaller MRAE indicates better performance. Moreover, the
peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) [54], and spectral angle
mapper index (SAM) [55] are used as complementary measures. PSNR and SSIM measure
the similarity between the ground truth and the reconstructed spectra. The higher the
measures, the better the quality. SAM denotes the angle between the two spectral vectors.
The lower the measure, the better the quality.

4.2. Comparisons with State-of-the-Art Methods

As comparisons, several state-of-the-art methods were selected to be compared with
the proposed DRN-DA. These methods included Arad [22], HSCNN-R [25], HSCNN-
D [25], PDFM [28,40] , AWAN [29], and HDRAN [30]. Arad is a method based on sparse
coding, and except for HDRAN, the other methods are the top two methods in the two
challenges. In addition, to further improve the performance of DRN-DA and make the
results more convincing, an ensemble strategy was introduced; the ensemble DRN-DA is
denoted as DRN-DA+. Specifically, DRN-DA was trained three times without adjusting
any parameters, and the testing results were averaged into the final results, which can
avoid the influence of random factors on the results. For a fair comparison, other CNN-
based methods use ensemble strategy as well. As the ensemble strategy in the original
papers [25,29], HSCNN-R, HSCNN-D, and AWAN with different depths and widths were
trained and denoted as HSCNN-R+, HSCNN-D+, and AWAN+. Similar to DRN-DA+,
an ensemble strategy was applied to PDFN and HDRAN, and the corresponding models
were denoted as PDFN+ and HDRAN+.

4.2.1. Quantitative Evaluation

The results of the hyperspectral reconstruction are summarized in Tables 1 and 2.
For the “Real World” tracks, a self-ensemble strategy used in [29] was adopted, which
means that the RGB testing images were flipped up/down and fed to the network. Then,
the mirror output and the original output were averaged into the final results. It is noted
that the Arad method is only suitable for the “Clean” tracks since the camera response
function generating the “Real World” tracks is unknown. Except for HSCNN-R, HSCNN-D
on the NTIRE 2018 data sets and AWAN on the NTIRE 2020 “Clean” track, the other
networks learned from scratch.

In Tables 1 and 2, the best and second-best results are bold and underlined, respectively.
As can be seen, the proposed DRN-DA performs better than previous methods. Specifically,
compared with the second-best method, DRN-DA brings a decrease in MRAE of 6.19% and
1.43% on the NTIRE 2018 “Clean” and “Real World” track; it brings a decrease in MRAE of
6.85% and 5.30% on the NTIRE 2020 “Clean” and “Real World” tracks. In addition, for other
measures, DRN-DA also performs better then or equally well as the second-best method.
Overall, the CNN-based methods perform much better than the Arad method.

In Tables 3 and 4, the best and second-best results are bold and underlined, respectively.
It can be seen that the proposed DRN-DA+ also outperforms other methods on the four
data sets in terms of MRAE, PSNR, and SAM, though it performs equally with HDRAN+
on the NTIRE 2018 “Real World” track in terms of SSIM. Specifically, compared with the
second-best method, it produces a reduction in MRAE of 4.59% and 1.84% on the NTIRE
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2018 “Clean” and “Real World” tracks and a reduction in MRAE of 5.13% and 4.06% on
the NTIRE 2020 “Clean” and “Real World” tracks.

Table 1. Comparison between the proposed method and other state-of-the-art methods without the
ensemble strategy based on the NTIRE 2018 data sets.

Method

NTIRE 2018

Clean Real World

MRAE PSNR SAM SSIM MRAE PSNR SAM SSIM

Arad 0.0746 34.4848 4.8086 0.9507 - - - -
HSCNN-R 0.0140 49.9568 1.0432 0.9988 0.0303 45.2228 1.6176 0.9952
HSCNN-D 0.0135 50.4873 0.9929 0.9988 0.0293 45.3876 1.5944 0.9953

PDFN 0.0124 51.5143 0.9013 0.9990 0.0288 45.7187 1.5197 0.9956
AWAN 0.0115 52.2588 0.8022 0.9993 0.0287 45.7325 1.5035 0.9956

HDRAN 0.0113 52.1924 0.8038 0.9992 0.0279 45.8122 1.4578 0.9957
DRN-DA 0.0106 52.9249 0.7478 0.9994 0.0275 45.9295 1.4501 0.9957

Table 2. Comparison between the proposed method and other state-of-the-art methods without the
ensemble strategy based on the NTIRE 2020 data sets.

Method

NTIRE 2020

Clean Real World

MRAE PSNR SAM SSIM MRAE PSNR SAM SSIM

Arad 0.0886 30.0583 6.3112 0.9366 - - - -
HSCNN-R 0.0389 38.4837 2.6834 0.9905 0.0687 35.8132 3.5955 0.9777
HSCNN-D 0.0383 39.0426 2.6330 0.9915 0.0702 35.8528 3.5633 0.9760

PDFN 0.0362 40.2493 2.4051 0.9936 0.0674 35.9353 3.4106 0.9781
AWAN 0.0321 40.7767 2.2108 0.9940 0.0666 36.2859 3.3793 0.9793

HDRAN 0.0338 40.3583 2.2706 0.9941 0.0660 36.2287 3.2887 0.9777
DRN-DA 0.0299 41.3852 2.0516 0.9952 0.0625 36.8841 3.0945 0.9814

Table 3. Comparison between the proposed method and other state-of-the-art methods with the
ensemble strategy based on the NTIRE 2018 data sets.

Method

NTIRE 2018

Clean Real World

MRAE PSNR SAM SSIM MRAE PSNR SAM SSIM

HSCNN-R+ 0.0135 50.4526 0.9919 0.9989 0.0297 45.3689 1.5889 0.9953
HSCNN-D+ 0.0132 50.6399 0.9829 0.9988 0.0287 45.5924 1.5469 0.9955

PDMN+ 0.0120 51.6619 0.8742 0.9991 0.0283 45.8206 1.5066 0.9956
AWAN+ 0.0112 52.4566 0.7823 0.9993 0.0282 45.8196 1.4788 0.9957

HDRAN+ 0.0109 52.4758 0.7712 0.9993 0.0277 45.9015 1.4481 0.9958
DRN-DA+ 0.0104 53.0600 0.7358 0.9994 0.0272 45.9864 1.4311 0.9958
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Table 4. Comparison between the proposed method and other state-of-the-art methods with the
ensemble strategy based on the NTIRE 2020 data sets.

Method

NTIRE 2020

Clean Real World

MRAE PSNR SAM SSIM MRAE PSNR SAM SSIM

HSCNN-R+ 0.0372 39.2337 2.5544 0.9920 0.0673 36.0495 3.4131 0.9785
HSCNN-D+ 0.0377 39.1697 2.6012 0.9918 0.0696 36.0132 3.5028 0.9767

PDMN+ 0.0331 40.4981 2.2144 0.9985 0.0660 36.1770 3.3103 0.9789
AWAN+ 0.0312 40.9987 2.1552 0.9943 0.0646 36.2757 3.2328 0.9795

HDRAN+ 0.0337 40.4786 2.2611 0.9937 0.0640 36.4580 3.2030 0.9793
DRN-DA+ 0.0296 41.4652 2.0279 0.9954 0.0614 36.8029 3.0351 0.9811

4.2.2. Visual Evaluation

In order to compare the reconstruction quality of different methods visually, the error
maps of four images on five sampled bands (450 nm, 500 nm, 550 nm, 600 nm, and 650 nm)
are shown in Figures 6–9. The first and last rows show the ground-truth HSIs and the error
maps reconstructed by the proposed DRN-DA, and the middle rows show the error maps
reconstructed by other benchmark methods. These error maps are the heat maps of MRAE
between the ground truth and the reconstructed spectra. As seen from Figures 6–9, for the
example images from the NTIRE 2018 “Clean” track, and the NTIRE 2020 “Clean” and
“Real World” track, the superiority of the proposed DRN-DA is more significant at the long
wavelength 650 nm; however, for the example image from the NTIRE 2018 “Real World”
track, the differences between the proposed DRN-DA and other benchmark methods are
larger at the long wavelength 600 nm. On the whole, the proposed method generates
smaller spectral errors.

Moreover, two samples from each example image are selected (see Figure 10), and the
corresponding spectra recovered by different methods are plotted in Figures 11–14, where
the black and red curves denote the ground-truth and recovered spectra by the proposed
method, and the green, blue, magenta, cyan, and orange curves represent the recovered
spectra from Arad, HSCNN-R, HSCNN-D, PDFN , AWAN, and HDRAN, respectively. It
can be observed that the recovered spectra from the proposed DRN-DA are closer to the
ground-truth spectra.

4.3. Ablation Study for Different Modules

In this section, an ablation study is carried out on NTIRE 2020 data sets to verify the ef-
fects of different ingredients, including CA, DDSA, AMB, and AFB in the proposed network.
The results in MRAE are reported in Table 5. Ea is a baseline network, which only contains
ordinary convolutions. Based on Ea, CA, DDSA, AMB, and AFB are added in succession to
the baseline network to obtain Eb, Ec, Ed, and Ee. The gradual reduction of MRAEs on the
two data sets demonstrates that these blocks do work for spectral reconstruction.

Table 5. Effects of different ingredients in the proposed network.

Ea Eb Ec Ed Ee

CA % " " " "
DDSA % % " " "
AMB % % % " "
AFB % % % % "

Clean 0.0371 0.0348 0.0343 0.0338 0.0299
Real World 0.0670 0.0652 0.0649 0.0637 0.0625
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Figure 6. Visual hyperspectral reconstruction results and visual comparisons of five selected bands for
hyperspectral reconstruction error maps from one NTIRE 2018 “Clean” RGB image. The significant
differences are shown in the red frames. Please zoom in for better view.
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Figure 7. Visual hyperspectral reconstruction results and visual comparisons of five selected bands
for hyperspectral reconstruction error maps from one NTIRE 2018 “Real World” RGB image. The
significant differences are shown in the red frames. Please zoom in for better view.
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Figure 8. Visual hyperspectral reconstruction results and visual comparisons of five selected bands for
hyperspectral reconstruction error maps from one NTIRE 2020 “Clean” RGB image. The significant
differences are shown in the red frames. Please zoom in for better view.
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Figure 9. Visual hyperspectral reconstruction results and visual comparisons of five selected bands
for hyperspectral reconstruction error maps from one NTIRE 2020 “Real World” RGB image. The
significant differences are shown in the red frames. Please zoom in for better view.

(a) (b) (c) (d)
Figure 10. Two selected samples in each example image. (a) NTIRE 2018 “Clean” track. (b) NTIRE
2018 “Real Word” track. (c) NTIRE 2020 “Clean” track. (d) NTIRE 2020 “Real Word” track.
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Figure 11. Spectral reflectance of selected samples from NTIRE 2018 “Clean” track. (a) Sample 1.
(b) Sample 2.

400 450 500 550 600 650 700
Wavelength (nm)

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

R
ef

le
ct

an
ce

NTIRE 2018 Real World-Sample 1

Ground truth
HSCNN-R
HSCNN-D
PDFN
AWAN
HDRAN
DRN-DA

(a)

400 450 500 550 600 650 700
Wavelength (nm)

0.05

0.1

0.15

0.2

0.25

R
ef

le
ct

an
ce

NTIRE 2018 Real World-Sample 2

Ground truth
HSCNN-R
HSCNN-D
PDFN
AWAN
HDRAN
DRN-DA

(b)
Figure 12. Spectral reflectance of selected samples from the NTIRE 2018 “Real World” track: (a) Sam-
ple 1. (b) Sample 2.
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Figure 13. Spectral reflectance of selected samples from the NTIRE 2020 “Clean” track. (a) Sample 1.
(b) Sample 2.
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Figure 14. Spectral reflectance of selected samples from the NTIRE 2020 “Real World” track. (a) Sam-
ple 1. (b) Sample 2.

4.4. Effectiveness of Multi-Scale Convolution Scheme

To validate the effectiveness of the multi-scale convolution scheme, we experimen-
tally analyzed the effects of multi-scale convolutions based on the NTIRE 2020 data sets.
As shown in Table 6, the performance increases with the use of multi-scale convolutions.
For the NTIRE 2020 “Clean” and “Real World” track, the network with multi-scale convo-
lutions gains over the network with 3 × 3 convolutions with 3.86% and 4.14% in terms of
MRAE, respectively.

Table 6. Effects of multi-scale convolutions in the proposed network.

E f Ee

Multi-scale convolutions % "
Clean 0.0311 0.0299

Real World 0.0652 0.0625

5. Conclusions

In this paper, we propose a deep neural network (DRN-DA) for hyperspectral recov-
ery from a single RGB image. The basic block of DRN-DA adopts a simplified densely
connected structure, which can reuse features and avoid the basic block from becoming
too wide. Different from the original nonlocal module, a dual downsampling strategy
is applied to learn the long-range contextual features with much less computation and
memory consumption. The dual downsampling spatial attention module, together with
a channel attention module, obtains spatial-wise and channel-wise features in a parallel
manner to enhance the discriminative ability of the network. Moreover, the adaptive fusion
strategy is utilized to fuse multiple-layer features to explore the correlated information from
inter-layers via dynamically computing the weight of each layer. Extensive experiments
over four data sets demonstrate that the proposed method provides better performance
compared with several state-of-the-art methods. However, the efficiency of the network
is not taken into account. In the future, we will work on a lightweight hyperspectral
reconstruction network to save runtime. Moreover, we hope that this work can be applied
to real-world applications.
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