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Abstract: This paper presents a soil moisture retrieval scheme from Cyclone Global Navigation
Satellite System (CYGNSS) delay-Doppler maps (DDMs) over land. The proposed inversion method
consists of a hybrid global and local optimization method and a physics-based bistatic scattering
forward model. The forward model was developed for bare-to-densely vegetated terrains, and it
predicts the circularly polarized bistatic radar cross section DDM of the land surface. This method was
tested on both simulated DDMs and CYGNSS DDMs over the Soil Moisture Active Passive (SMAP)
Yanco core validation site in Australia. About 250 CYGNSS DDMs from 2019 and 2020 over the Yanco
site were used for validation. The simulated DDMs were for grassland and forest vegetation types.
The vegetation type of the Yanco validation site was grassland. The vegetation water content (VWC)
was 0.19 kg m−2 and 4.89 kg m−2 for the grassland and forest terrains, respectively. For the case when
the surface roughness is known to the algorithm, the unbiased root mean square error (ubRMSE)
of soil moisture estimates was less than 0.03 m3 m−3 while it was approximately 0.06 m3 m−3 and
0.09 m3 m−3 for the validation results from 2019 and 2020, respectively. The retrieval algorithm
generally had enhanced performance for smaller values of soil moisture. For the case when both the
soil moisture and surface roughness are unknown to the algorithm and only a single DDM is used
for retrieval, the validation results showed an expected reduced performance, with an an ubRMSE of
less than 0.12 m3 m−3.

Keywords: SoOp; GNSS-R; CYGNSS; soil moisture retrieval; DDM; BRCS; SMAP

1. Introduction

Soil moisture is a key variable in studying the global ecosystems. Soil moisture
measurements on global and local scales provide essential information for analyzing the
processes of evapotranspiration and groundwater recharge. Thus, quantifying soil moisture
values leads to a better understanding of the water, carbon, and energy cycles [1]. As global
concern about the impact of climate change continues to grow, studies on soil moisture
variation have become even more important. Soil moisture observations contribute to many
areas of human interest, including flood and landslide prediction, weather forecasting,
drought analysis, wildfire prevention, crop productivity evaluation, and human health.

Over the past decade, many approaches have been investigated to measure soil mois-
ture on local and global scales using monostatic radars as an active mode of microwave
remote sensing [1–5]. Furthermore, passive microwave observations are also widely used
to measure soil moisture [1,6]. A radar system has a transmitter (active mode) for obser-
vations, whereas a radiometer uses brightness temperature (emission) to make passive
measurements. The conventional spaceborne and airborne monostatic radar systems for
soil moisture observation include National Aeronautics and Space Administration (NASA)
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Soil Moisture Active Passive (SMAP) [1] when the radar was operational, NASA/Jet Propul-
sion Laboratory (JPL) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) [7],
the Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) [8], the Po-
larimetric L-band Imaging SAR (PLIS) [9], and the Environmental Satellite (EnviSat) [10],
among others. The passive systems include European Space Agency (ESA) Soil Mois-
ture and Ocean Salinity (SMOS) mission [6], NASA SMAP [1], and Polarimetric L-band
Multi-beam Radiometer (PLMR) [11], among others.

Conventional monostatic radars in general offer higher spatial resolution. However, they
are expensive, and it would be a total loss should the transmitter fail. For example, the NASA
SMAP radar failed in 2015, approximately three months after commissioning. To overcome the
barriers of conventional monostatic radar systems, it is possible to use bistatic or multi-static
radars, which have the capability of receiving the scattered signals from all directions within the
beam-widths of receiving antennas, and creating a data space of higher dimensionality. Using
them enables retrieving scattered field measurements via passive receiver systems, which are
simpler and less expensive than the monostatic radars and have the potential to provide more
accurate soil moisture retrievals with higher spatial and temporal resolution. Studies recently
focused on the use of signals of opportunity (SoOp) for addressing the soil moisture observation
challenges on local and global scales [12,13].

SoOp includes signals transmitted from global navigation satellite system (GNSS)
and communications satellites. Due to the pervasive presence and reliability of L-band
Global Positioning System (GPS)/GNSS signals, using SoOp from GPS/GNSS satellites
for soil moisture retrieval has been receiving increasing attention in recent years [14–17].
For instance, NASA Cyclone GNSS (CYGNSS) was originally designed and used for sensing
sea level wind speed in tropical cyclones from GNSS signals [18]. Recently, it was used
for observations over land [19]. CYGNSS uses a constellation of eight satellites in low
Earth orbit (LEO) at 35° orbit inclination. Each CYGNSS satellite is equipped with a four-
channel GNSS bistatic radar receiver, which is capable of bistatic radar measurements
of GNSS-reflectometry (GNSS-R) from land and ocean surfaces. Unlike conventional
monostatic radars, the CYGNSS receivers and the GPS transmitters are not collocated.
Instead, the CYGNSS satellites measure GPS signals that have been scattered from land and
ocean surfaces in the vicinity of the specular direction (glistening zone) [18]. The CYGNSS
level-1a and level-1b data products present the received power and the bistatic radar cross
section (BRCS), respectively, in the form of a delay-Doppler map (DDM) [18].

Previous approaches for soil moisture retrieval from CYGNSS observations include
empirical- and machine learning (ML)-based methods. An example of the empirical
retrieval techniques is the UCAR/CU retrieval algorithm [20]. Chew et al. [20] presented a
method for soil moisture retrieval, which uses the CYGNSS data, calibrated to the SMAP
soil moisture data. According to [20], this retrieval algorithm has limitations, including
potential errors in SMAP retrieved soil moisture data, using a preliminary vegetation
model, which only addresses the attenuation due to the vegetation layer, and a low spatial
resolution (36 km). Moreover, Senyurek et al. [21] presented an ML-based model for soil
moisture retrieval from CYGNSS data over International Soil Moisture Network (ISMN)
sites in the Continental United States (CONUS). They compared three different ML-based
approaches, namely artificial neural network (ANN), random forests (RF), and support
vector machine (SVM) for soil moisture retrieval from CYGNSS data. In [22], the authors
extended their retrievals from CONUS to the CYGNSS global coverage. Furthermore,
they included retrievals from more densely vegetated terrains, compared to their previous
work. Only the RF ML-based approach was used. The ISMN sites were used for the
training, and SMAP observations were used for validations. Some of the limitations in [21]
were addressed in [22]. Al-Khaldi et al. [23,24] presented a time-series-based method for
retrieving soil moisture from CYGNSS data. This method uses Hagfors’ law for computing
the incoherent scattering component and retrieves a three-day soil moisture value using
multiple observations with different incidence angles. Considering the limitations in the
existing retrievals methods based on empirical or data-based approaches, it is worthwhile
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to use a physics-based microwave bistatic scattering model for soil moisture retrieval from
GNSS-R. Physics-based methods are more resistant to site bias and may provide more
accurate retrievals for scenarios that were not in the training/fitting data.

In our previous works, we reported on a polarimetric bistatic scattering forward
model, which uses the approximate solution of Maxwell’s equations [12,25,26]. In this
model called Single-Species Bistatic scattering Model (SSBM) [27], the scattered wave was
formulated based on the distorted Born approximation (DBA). In this paper, the SSBM,
was used in an inversion algorithm for soil moisture retrieval from CYGNSS DDMs over
land. We note that it is also possible to use any other available and validated bistatic
forward scattering model for this purpose, and that the choice of SSBM is made due to the
fact that we developed and validated this model and have ready access to it. The SSBM
has three main categories of contributions: (1) direct bistatic scattering from the rough
ground surface with the assumption of flat topography, (2) direct bistatic scattering from
the vegetation layer, and (3) double-bounce bistatic scattering from the vegetation layer
and ground. In order to simulate the CYGNSS observations (DDMs), the SSBM was used
to predict the circularly polarized BRCS of the region of interest observed by CYGNSS
satellites [25]. The circularly polarized BRCS values computed by the forward model were
then used to construct the desired DDM. The inversion technique proposed in this paper
is based on the hybrid global and local optimization method of [28]. The hybrid global
and local optimization scheme used in the inversion algorithm takes advantage of the
speed of a local optimization method while ensuring convergence to the global minimum
of the inverse problem [28]. Compared to the conventional simulated annealing methods,
this optimization technique was shown to be faster and more accurate [28]. The proposed
inversion method was developed and validated in simulation, as well as with data over the
SMAP Yanco site located in Australia. The retrieved soil moisture values were validated
with the Yanco in situ soil moisture sensor measurements.

This paper is structured as follows: A summary of the SSBM, which is used to compute
the normalized bistatic radar cross section (NBRCS), is presented in Section 2. Section 3
presents the scattering point position calculations and the method used to convert the
NBRCS values to a BRCS DDM. The soil moisture retrieval algorithm is defined in Section 4.
Section 5 provides the simulation setup and the validation site. The results and the dis-
cussions are shown in Sections 6 and 7, respectively. Finally, the conclusion is stated in
Section 8.

2. Bistatic Scattering Forward Model

The SSBM is a physics-based bistatic scattering model from SoOp with either linearly
or circularly polarized incident waves, for various land cover types, including vegetated
terrains. It is built on the existing well-known monostatic (backscatter) single-species
model proposed by Durden et al. [29]. Figure 1a shows the major scattering mechanisms of
the signal in the SSBM model. The geometry of the model for woody vegetation consists
of three layers: (1) a ground layer, (2) a trunk layer, and (3) a branch layer, as illustrated
in Figure 1b. Moreover, the geometry of model for grassland vegetation consists of two
layers: (1) a ground layer and (2) a vegetation layer, as depicted in Figure 1c. The model
shows three major categories of scattering contributions: (1) direct ground (G) bistatic
scattering, (2) vegetation volume bistatic scattering, which is from branches (B), and (3)
double-bounce bistatic scattering paths from vegetation, which are branch-ground (BG)
and trunk-ground (TG).

The scattering mechanisms and the method for calculating the total scattered power are
briefly described in the following sub-sections. The derivation of the SSBM was discussed
in [27].
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(a) (b)

(c)
Figure 1. SSBM scattering mechanisms and vegetation geometry. (a) Scattering mechanisms: ground
(G), branch (B), branch-ground (BG), and trunk-ground (TG). (b) Woody vegetation geometry, which
consists of three layers and different scattering components. (c) Grassland vegetation geometry,
which consists of two layers.

2.1. Direct Ground Bistatic Scattering (G)

In the SSBM, the forest floor is considered to be a dielectric random rough surface.
The model by Mironov et al. [30] is used to calculate the dielectric constant of soil from
values of soil moisture. The bistatic scattering contribution from a single rough ground
surface, with the assumption of flat topography (or zero mean surface), is estimated by the
combination of the small perturbation method (SPM) and Kirchhoff approximation (KA).
The SPM is used up to second order for estimating the scattering matrix of ground contri-
bution and constructing the direct ground bistatic scattering (G) Stokes matrix MG [29,31].
The zeroth-order SPM solution calculates the scattered field from a smooth flat surface
(same as the Fresnel reflection coefficient) and is modified by the KA [29] to include surface
roughness. Consequently, the scattering matrix of ground contribution is converted to the
ground Stokes matrix MG by Equation (1). The Mueller matrix M consists of products of
the elements of the scattering matrix, and is expressed as

M =


|svv|2 |svh|2 Re

(
s∗vhsvv

)
−Im

(
s∗vhsvv

)
|shv|2 |shh|2 Re

(
s∗hhshv

)
−Im

(
s∗hhshv

)
2Re

(
svvs∗hv

)
2Re

(
svhs∗hh

)
Re
(
svvs∗hh + s∗hvsvh

)
−Im

(
svvs∗hh − s∗hvsvh

)
2Im

(
svvs∗hv

)
2Im

(
svhs∗hh

)
Im
(
svvs∗hh + s∗hvsvh

)
Re
(
svvs∗hh − s∗hvsvh

)
 (1)

where spq is the pq component of the 2-by-2 scattering matrix [32]. The subscripts v and h
denote vertical and horizontal polarizations, respectively.

2.2. Vegetation Volume Bistatic Scattering (B)

Bistatic scattering from the vegetation layer on top of the ground surface is estimated
by extending the models proposed by [29,31]. Figure 1 presents the vegetation geometry
and the three distinct layers (branch layer, trunk layer, and ground layer) used in the SSBM.
In this model, trunks are considered finite vertical dielectric cylinders, and the branches
are considered randomly oriented dielectric cylinders. For the vegetation volume and
double-bounce bistatic scattering contributions, the scattering matrix for an arbitrarily
oriented finite dielectric cylinder is first computed and converted to the corresponding
Stokes matrix. Then, the Stokes matrix is multiplied by the probability density function
(pdf) of cylinder orientation and the density of each element (number of cylinders per
squared meter). At last, it averaged over all cylinder orientations. The Stokes matrix of the
vegetation layer (branches) MB, is calculated using [29] (Equation (A18)).
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2.3. Branch-Ground (BG) and Trunk-Ground (TG) Double-Bounce Bistatic Scattering

The branch/trunk-ground double-bounce bistatic scattering contribution consists
of two paths (Figure 1) : (1) transmission through the vegetation layer (branches) and
bistatic scattering from the vegetation layer (trunks or branches) in the specular direc-
tion, and (2) bistatic scattering from the dielectric rough ground surface and transmis-
sion through vegetation layer (branches and trunks) toward the receiver. The ground-
branch/trunk double-bounce bistatic scattering contribution is equivalent to branch/trunk-
ground double-bounce bistatic scattering contribution. According to [33], the scattering
pattern of a vertically oriented finite cylinder resembles a cone. In particular, the scattering
pattern of a finite cylinder presents a strong response in the specular direction. The coherent
component of the physical optics model, which is based on KA, is used for estimating the
bistatic scattering matrix from the ground layer in the double-bounce bistatic scattering
contribution. Ultimately, the bistatic scattering matrixes of double-bounce contribution
(branch-ground and trunk-ground) are converted to Stokes matrixes MBG and MTG, re-
spectively, using Equation (1). The Stokes matrixes, MBG and MTG, are integrated over the
orientation of branches and trunks, respectively, [27,31].

2.4. Total Bistatic Scattering Stokes Matrix

The bistatic scattering Stokes matrixes of the three scattering mechanisms computed
in Section 2.1–2.3 are used to determine the total bistatic scattering Stokes matrix of the
vegetated land cover Mtotal. This is accomplished by adding all scattering contributions
presented in previous sub-sections, and is expressed as

Mtotal(θi, φi, θs, φs) = MB(θi, φi, θs, φs)

+ TB(θi, φi)TT(θi, φi)MBG(θi, φi, θs, φs)TT(θs, φs)TB(θs, φs)

+ TB(θi, φi)TT(θi, φi)MTG(θi, φi, θs, φs)TT(θs, φs)TB(θs, φs)

+ TB(θi, φi)TT(θi, φi)MG(θi, φi, θs, φs)TT(θs, φs)TB(θs, φs)

(2)

where incident and scattering paths are denoted as i and s, respectively, and ground, branch,
and trunk are expressed as G, B, and T, respectively. Moreover, the T matrixes present the
transmission Stokes matrixes related to the transmission of the wave through vegetation
layers (branches and trunks) [33]. Ultimately, for incoherent scattering components, the total
bistatic Stokes matrix Mtotal presented in Equation (2) is converted to co-pol and cross-
pol linearly polarized total NBRCS σ0

total by the method in [32]. Then, the predicted
linearly polarized total NBRCS is converted to circularly polarized NBRCS with the method
described in Section 3.2. For the coherent scattering component, the total bistatic Stokes
matrix Mtotal is converted to the circularly polarized Fresnel power reflectivity with the
method described in Section 3.2.

3. DDM Model

This section discusses the method for calculating the GNSS-R DDM of a flat rough
surface in the presence of vegetation using the bistatic scattering model presented in the
previous section. The model maps the delay Doppler bins in the DDM to point(s) on the
ground surface and calculates the NBRCS of each point. The DDM model can be divided
into three parts: (1) estimating the position of the scattering point(s) for each bin of the
DDM, (2) calculating the NBRCS for the scattering points, and (3) converting the NBRCS
values of the points on the ground surface to a DDM. The details of the first and the last
parts are given in the following sub-sections. The second part of the DDM model was
presented in Section 2.

3.1. Estimating the Positions of Scattering Points of a DDM

The model assumes that the ground has a zero mean surface with a small RMS surface
roughness and no topography. Furthermore, it assumes the receiver altitude is much
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lower than the transmitter altitude. This assumption is valid for CYGNSS satellites as their
altitude is about 500 km, while the altitude of the GPS satellites is about 20,200 km. The first
assumption simplifies the geometry of the problem. Thus, there exist ellipses on the ground
that have constant delays, and parabolas that have constant Doppler frequencies [34,35].
The ellipse of the specular point (SP) delay has both semi-major and semi-minor axes equal
to zero, making it a point. Each delay Doppler bin of the DDM corresponds to at most two
points on the ground. The geometry of the problem is shown in Figure 2, where the SP
position R̄SP is the origin, R̄t is the transmitter position, R̄r is the receiver position, V̄t is the
velocity of the transmitter, the GPS satellite, V̄r is the velocity of the receiver, the CYGNSS
satellite, and θSP

i is the incidence angle of the SP. Both R̄t and R̄r are parallel to the y-axis.

X

Y

Z

R̄t

R̄r

R̄SP

V̄t

V̄r

θSP
i θSP

i

Figure 2. SP geometry, R̄t is the transmitter position, R̄r is the receiver position and RSP is the
SP position.

The derivation of the method of estimating the ground positions of each DDM bin and
their incidence and scattering angles are presented in Appendix A. These incidence and
scattering angles are inputs to the SSBM, which was previously discussed in Section 2.

3.2. Calculating BRCS DDM

The conversion from NBRCS to DDM is performed by first calculating the circularly
polarized NBRCS from the linearly polarized NBRCS, given in Section 2. Then using
the GPS coarse acquisition (C/A) Woodward ambiguity function (WAF), the left-handed
circularly polarized (LHCP) NBRCS is converted to BRCS DDM. The coherent and the
incoherent components of the BRCS are calculated individually. The total BRCS DDM is
the summation of the two components.

Each CYGNSS delay Doppler mapping instrument (DDMI) contains one right-handed
circularly polarized (RHCP) zenith facing navigation antenna and two LHCP nadir looking
receiving antennas. The RHCP zenith facing antenna receives GPS signals in the direct path
between GPS and CYGNSS satellites, and is used for locating the SP on land and ocean
surfaces. Moreover, two LHCP nadir facing antennas are used for GNSS-R. Therefore,
in order to use the CYGNSS DDMs for soil moisture retrieval over various land covers,
the co-pol (hh and vv) and cross-pol (hv and vh) linearly polarized NBRCS predicted by the
forward model, SSBM in Section 2, are converted to LHCP NBRCS σ0

lr. According to [34],
the LHCP NBRCS is expressed as

σ0
lr =

π

A

〈(
|svv + shh|2 + 2 Im

[
(svh − shv)

∗(svv + shh)
]
+ |svh − shv|2

)〉
(3)

where A is the area, shh and svv are the co-pol scattering elements of the total scatter-
ing matrix, and svh and shv are the cross-pol scattering elements of the total scattering
matrix, which are derived from Equations (2) and (1). As the difference between the cross-
pol components is much smaller than the co-pol components [31], Equation (3) can be
approximated as

σ0
lr ≈

1
4

(
σ0

vv + σ0
hh + 2 Re(ρ)

√
σ0

vv σ0
hh

)
(4)
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where ρ is defined as

ρ =

〈
svvs∗hh

〉√〈
|shh|2

〉〈
|svv|2

〉 . (5)

The numerator and the denominator of Equation (5) are defined as

〈svvs∗hh〉 =
〈M33〉+ 〈M44〉

2
(6)

√〈
|shh|2

〉〈
|svv|2

〉
=
√
〈M22〉〈M11〉 (7)

where M11, M22, M33 and M44 are the elements of Stokes matrix expressed in Equation(1).
In Equation (4), σ0

hh and σ0
vv are the co-pol NBRCS estimated by the SSBM. Equation (4) is

valid for the incoherent component. For the coherent component, we used the Fresnel power
reflectivity Γlr, as there is no area associated with the coherent component. Equation (4),
Equation (1) and the definition of σ0 [32] (Equations (5.31) and (5.33a)) were used to derive
the Fresnel power reflectivity for the coherent component, which is expressed as

Γcoh,lr =
1

4(RSP
rs )

2

[
〈M11〉+ 〈M22〉+ 2 Re(ρ)

√
〈M22〉〈M11〉

]
. (8)

The subscript lr of σ0
lr and Γcoh, lr is dropped in the rest of this section, as the conversion

from NBRCS or Fresnel power reflectivity to BRCS DDM is general for any polarization.
According to [35], the GPS C/A WAF, with a good approximation, is expressed as〈

|χ(δτ, δ f )|2
〉
= Λ(δτ)2 S(δ f )2 (9)

where Λ(δτ) and S(δ f ) are

Λ(δτ) = max (0, 1− |δτ|/τc) (10)

S(δ f ) = sinc (Ti δ f ). (11)

In Equations (10) and (11), τc is the chip length, and Ti is the coherent integration period [35].
The approximation of the GPS C/A WAF is good for a relative accuracy of 10−4 [35], which
is sufficient for this application. The coherent component of the BRCS DDM σcoh [34] is
given as

σcoh[i, j] = 4π

(
RSP

rs
)2(RSP

st
)2(

RSP
rs + RSP

st
)2 Γcoh

〈∣∣χ(τi, f j
)∣∣2〉 (12)

where i and j are the indices of the delay and Doppler bins, respectively, τi is the relative
delay of bin i to the delay of the SP, and f j is the relative Doppler frequency of bin j to
the Doppler frequency of the SP. The SP bin is located at i = 0 and j = 0 of the DDM.
The incoherent components of the BRCS DDM σinc [34] are given as

σinc[i, j] =
∫

σ0
inc

〈∣∣χ(τi − τ, f j − fD
)∣∣2〉d~r (13)

where
∫

d~r is an integral over the ground surface. τ and fD are the delay and the Doppler,
respectively, of the surface relative to the SP. Equation (13) can be simplified using the
method given in [34] to

σinc[i, j] = σbin
inc [i, j]Aeff[i, j] (14)
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where Aeff[i, j] is the effective area of σbin
inc [i, j] and σbin

inc is defined as

σbin
inc [i, j] =

1
2 ∑

n=1,2
σ0

inc[θi(i, j, n), θs(i, j, n), φi(i, j, n), φs(i, j, n)]. (15)

The quantity n in Equation (15) is the index of the ground scattering point for each delay
Doppler bin. There is a maximum of two points of the ground for each bin. Thus, σbin

inc
is the averaged incoherent NBRCS. Furthermore, in Equation (15), θi, φi, θs, and φs are
estimated using Equations (A14), (A16), (A15), and (A17), respectively. The effective area
of the CYGNSS DDM is provided in the CYGNSS Level 1B (L1B) data, which was used in
this implementation. For the SP, the incoherent NBRCS was assumed to be zero as it is
negligible compared to the coherent component, as the model assumes the ground surface
is flat with small roughness.

The total BRCS DDM can be calculated by adding Equation (14) and Equation (12),
which is mathematically expressed as

σtot[i, j] = σinc[i, j] + σcoh[i, j]. (16)

The SSBM BRCS DDM is used by the inversion algorithm in the next section to retrieve soil
moisture from DDM.

4. Soil Moisture Retrieval Method

CYGNSS L1B science data version 3.1, along with ancillary data, were used to retrieve
soil moisture based on a local/global hybrid method that uses multi-directional search
and simulated annealing discussed in detail in [28]. In the inverse-scattering problem, this
method proved to be substantially faster than the standard simulated annealing method in
converging to the global minimum [28]. The physics-based forward model, SSBM DDM
in Sections 2 and 3, was used with parameters from CYGNSS data and ancillary data
as inputs to the forward model. The parameters from CYGNSS data were the position
and velocity of both the transmitter and the receiver, the position of the SP, the BRCS
DDM, and the values of the delay and Doppler of each DDM bins relative to the SP value.
These CYGNSS data are used to calculate the incidence and scattering angles of each DDM
bin. The ancillary data were divided into vegetation parameters and ground parameters.
The vegetation parameters are the dielectric constants, the lengths, the radii, and densities
of the three vegetation components, namely, large branches, short branches, and trunks.
The ground parameters are soil clay fraction, correlation length of the random rough
surface, and RMS surface roughness σh. The ratio of correlation length to RMS surface
roughness was assumed to be 10 [36].

This method retrieves soil moisture with the native spatial and temporal resolution of
the measurement. In GNSS-R, the spatial resolution depends on the position of both the
transmitter and the receiver relative to the ground surface. Furthermore, both the spatial
and the temporal resolutions depend on the incoherent averaging of the DDM. For CYGNSS,
the incoherent averaging time for normal operation was one second, but it was switched to
half a second in late 2019. Additionally, the topography of the ground affects the spatial
resolution. Smoother surfaces tend to give finer resolution. The approximate upper and
lower limits of the spatial resolution of the DDMs used in this study are discussed in
Section 6.2.

Two schemes were used in retrieving soil moisture from CYGNSS DDMs. The first
scheme assumes that the RMS surface roughness is known and only retrieves soil moisture.
Figure 3a shows the flowchart of the first retrieval scheme. The second scheme retrieves soil
moisture and RMS surface roughness simultaneously. Surface roughness measurements
are generally scarce. Even when surface roughness data are collected during field cam-
paigns, their spatial coverage is limited and may not represent the equivalent RMS surface
roughness of the area covered by a given DDM, which is typically several km2. Therefore,
if successful, the second scheme is advantageous because it treats surface roughness as
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an unknown and retrieves it along with the soil moisture. The flowchart of the second
retrieval scheme is presented in Figure 3b. Both schemes can use either a single DDM or
multiple DDMs.

Static Parameters
Vegetation   parameters 
Soil clay fraction 
Surface roughness

Measurements
CYGNSS DDM(s)
Incidence/scattering   angles

Initial solution

Retrieval algorithm

Cost  function value
Retrieved soil moisture

(a)

Static Parameters
Vegetation parameters 
Soil clay   fraction

Measurements
CYGNSS DDM(s)
Incidence/scattering angles

Initial solution

Retrieval algorithm

Cost function value
Retrieved soil moisture

Retrieved Surface 
roughness

(b)
Figure 3. Soil moisture retrieval algorithm. The red texts highlight the differences between the
two schemes. (a) First retrieval scheme: only retrieve soil moisture. (b) Second retrieval scheme:
retrieve both soil moisture and surface roughness.

At first, a single DDM was used to retrieve soil moisture using both schemes. In ad-
dition, in the case of the second scheme, the use of two DDMs with the same area but
different incidence angles was investigated with simulated DDMs. The two DDMs were
selected such that they had nearly equal soil moisture values. Thus, two independent
measurements were used to retrieve two geophysical parameters.

In the retrieval algorithm, the dynamic range of soil moisture was between 0.01 and
0.6 m3 m−3, and the allowed range of RMS surface roughness was between 0.5 and 2.5 cm.
This choice was based on the expected terrain surface roughness and the SSBM validity
limit. The algorithm does not use the entire CYGNSS DDM; instead, it uses a subset of the
DDM consisting of three delay and five Doppler bins centered at SP. These bins are used to
calculate an averaged NBRCS. The method of calculating the averaged NBRCS is similar to
the method used by the CYGNSS processor [18], which is expressed as

σ0 =
∑2

i=0 ∑2
j=−2 σ(i, j)

∑2
i=0 ∑2

j=−2 A(i, j)
(17)

where σ is the BRCS, and A is the bin area in units of m2. The numbers i and j are the delay
and Doppler bin indices, respectively, relative to the SP. The SP is at i = 0 and j = 0, which
is the reported index in CYGNSS data. The forward model DDM, described in Section 3,
was used to construct the DDM and then estimate the averaged NBRCS σ0.

The relationship between soil moisture and σ0 is not always linear. However, if all
the other parameters are fixed, the relationship is linear, as shown in Figure 4. The level of
sensitivity to soil moisture depends on the other parameters of the forward model.

0.0 0.1 0.2 0.3 0.4
Soil moisture m3/m3

2000

4000

6000

8000

NB
RC

S i = 10o

i = 20o

i = 40o

Figure 4. Relationship between averaged NBRCS and soil moisture, for a fixed geometry, vegetation
parameters, and surface parameters.

The tuning parameters of the multidirectional-search-based simulated annealing al-
gorithm [28] are Nmd, Ns, Nt, N, lstep, and fstop. The parameters Nmd, Ns, and Nt are the
maximum number of iterations of the algorithm inner searches. The number of iterations
is N. The parameter lstep is the step limit in the multidirectional search. The algorithm
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stops if the cost function fcost is less or equal fstop or the number of iterations reached N.
The parameters and the algorithm were discussed in [28].

The cost function is defined as

fcost =

√√√√ n

∑
i=1

(
σ0

measured[i]− σ0
forward[i]

σ0
measured[i]

)2

(18)

where n is the number of DDMs. The subscript ‘measured’ represents the measured σ0

(CYGNSS or simulation) while the subscript ‘forward’ represents the value of σ0 calculated
from SSBM.

5. Simulation Setup and Validation Site

To validate the proposed retrieval algorithm, we used both simulated DDMs and
CYGNSSs DDM to retrieve soil moisture and compare with in situ measurements. For the
simulation experiment, the Monte Carlo technique was used to estimate the performance
of the retrieval algorithm. The simulation setup and the validation site are discussed in
detail in the following sections.

5.1. Simulation Setup

We used the retrieval algorithm discussed in Section 4 to retrieve soil moisture from
simulated DDMs. The simulated DDMs were generated using the SSBM with additive
zero mean white Gaussian noise. The additive noise accounts mainly for the receiver noise.
The random noise samples were added to each DDM bin. The signal-to-noise ratio (SNR)
in this simulation was the ratio of the SP bin power to the noise power. The population size
of the Monte Carlo simulation was 10.

5.2. Validation Site

The SMAP Yanco region was selected for validating the retrieval algorithm. This site
was chosen since it (1) has negligible topography, (2) has active in situ soil moisture sensors,
and (3) is located within the CYGNSS coverage area. The Yanco region is located in the
southeast of Australia. It is a flat area of ∼2500 km2, which includes 13 sites with in situ
soil measurement sensors [37]. Figure 5 shows a photo of the validation site. The sensors
installed at Yanco sites measure surface soil moisture (0–5 cm) and soil temperature at three
depths (1, 2.5 and 5 cm) [37]. Moreover, according to [37], the median root zone 0–90 cm
moisture content of Yanco region sensors (Y1–Y13) from 2004 to 2010 is 0.186–0.33 m3 m−3.
We selected the data from the years 2019 and 2020 for validation, as both CYGNSS and
the in situ sensors have available data in these year. Most of the sensors were operational
in this time period. Figure 6 shows the daily average of the in situ surface soil moisture
values of the sensors for the entire years of 2019 and 2020. The in situ soil moisture values
of all of the sensors were between 0.005 m3 m−3 and 0.522 m3 m−3, for the year 2019. For
2020, the in situ soil moisture values were between 0.002 m3 m−3 and 0.544 m3 m−3, which
is similar to the previous year.

Figure 5. Photo of the Y8 sensor, SMAP Yanco validation site.
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Figure 6. Daily average of in situ soil moisture measurements of SMAP Yanco validation site at 5 cm
depth. (a) Year 2019. (b) Year 2020.

According to [37], the Yanco region is covered by mostly improved pasture with
minimal woody vegetation, which falls under the grassland International Geosphere-
Biosphere Programme (IGBP) land cover type. The region is used mainly for grazing and
crops. The soil clay content is between 11 % and 25 % in the region.

The majority of the sensors have similar measured soil moisture readings over the
year of 2019, as illustrated in Figure 6. The measurements of the Y8 sensor were used
for the validation, as they represent the soil moisture values at the site. The sensor is
located at S 34.846 97° E 146.413 98°, with ground elevation of 149 m. The soil clay content is
11.7% for the nearest soil texture measurement to the sensor [38]. The in situ soil moisture
measurements of the Y8 sensor were between 0.016% and 0.351 m3 m−3, as shown in
Figure 6.

6. Results

In this section, the results of both the simulation and the validation experiments are
presented. We used the retrieval algorithm of Section 4 and the SSBM DDM of Section 3 to
retrieve soil moisture from DDMs. Two types of vegetation were used in the simulation:
grassland and mixed forest, which are classes 5 and 10, respectively, of the IGBP land cover
classification system. For validation, CYGNSS L1B data, which include BRCS DDMs, were
used to retrieve soil moisture. The retrieved soil moisture values were compared to the in
situ soil moisture at the Yanco validation site. The same tuning parameters of the retrieval
algorithm were used in simulations and validations. The metrics for the soil moisture
retrievals are RMS error (RMSE), unbiased RMSE (ubRMSE), and the correlation coefficient
r. These were calculated according to Entekhabi et al. [39].

6.1. Simulation Results

The simulated DDMs were generated by varying several parameters, which include
the incidence angle of the SP, soil moisture, surface roughness, SNR, and vegetation.
The soil moisture values were 0.02, 0.05, 0.1, 0.2 and 0.3 m3 m−3. These values cover the
dry to the half saturation range of soil moisture. Two values of RMS surface roughness σh
were used in the simulation, those being 0.5 and 2.0 cm. The 2 cm RMS surface roughness
value is above the validity limit of SPM. However, this does not have a significant impact
on the DDM, as the contribution of the noncoherent scattering components (SPM) is small
compared to the contribution of the coherent scattering components (KA). The SNR values
were 10, 20 and 30 dB. The lower bound of SNR values was selected to be the same
as the lower SNR values for the selected CYGNSS DDMs of the Yanco validation site.
The surface correlation length was set to be 10 times the RMS surface roughness value.
The clay percentage was set to 11.7 %, which is the same value used in the validation
experiments. For the single DDM retrievals, the SP incidence angles were 10°, 20° and
40°. The selected incidence angles cover the range of values observed in the CYGNSS
DDMs over the Yanco validation site. Furthermore, the incidence angle of SMAP is about
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40° [1]. For the two-DDM retrieval, 10° and 40° SP incidence angles were used. The tuning
parameters of the retrieval algorithm Nmd, Ns, Nt, N, presented in Section 3, were 10, 5, 5
and 30, respectively. The step limit lstep was 10−4, and fstop was 10−2. The values of the
tuning parameters were selected based on empirical trials. The vegetation parameters of
the two vegetation types are shown in Table 1. The vegetation water content (VWC) is not
an input to the model. However, it was presented to help understand the above ground
biomass. The mixed forest vegetation parameters were from the Canadian Experiment
for Soil Moisture in 2010 (CanEx-SM10) [40] while the parameters of grassland were from
AirMOSS field campaign [41]. These parameters were used in soil moisture retrieval from
active radars [4,40]. We did not simulate all of the combinations of geophysical parameters
as the numerical simulations are computationally expensive.

Table 1. Vegetation parameters chosen for grassland (IGBP: 5) and mixed forest (IGBP: 10) land
covers [40,41]. These parameters are inputs to the SSBM except VWC.

Parameter Grassland Mixed Forest

Large branch dielectric constant 15+i3 32+i4
Large branch length 0.491 m 1.2 m
Large branch radius 0.4 cm 0.66 cm
Large branch density 7.339 m−2 0.54 m−2

Short branch dielectric constant 15+j3 32+i4
Short branch length 0.246 m 0.8 m
Short branch radius 0.1 cm 0.46 cm
Short branch density 29.35 m−2 0.54 m−2

Trunk dielectric constant 15+i3 36+i4
Trunk/stalk length 0.05 m 2.0 m
Trunk/stalk radius 0.4 cm 6.82 cm
Trunk/stalk density 0.432 m−2 0.12 m−2

VWC 0.19 kg m−2 4.89 kg m−2

6.1.1. Retrievals from a Single DDM

Using the first retrieval scheme, we observed that the retrieval algorithm has a neg-
ligible estimation bias. Moreover, the RMSE was proportional to the SNR, as expected.
Specifically, for the first scheme with grassland vegetation cover, the RMSEs were 0.031,
0.003 and 0.0003 m3 m−3 for SNR of 10, 20 and 30 dB, respectively. Furthermore, the corre-
lation coefficient r was over 0.95, and it was proportional to the SNR. Figure 7 shows the
performance of the first retrieval scheme with the simulated DDMs of grassland land cover,
with different values of SNR, SP incidence angle, and RMS surface roughness. The error
bars in Figure 7 represent one standard deviation from the mean. Figure 7a,b show the
performance with various SNR values; Figure 7a is for RMS surface roughness of 0.5 cm
and SP incidence angle of 10°, while Figure 7b is for RMS surface roughness of 2 cm and
SP incidence angle of 20°. Furthermore, Figure 7c,d show the performance for 10 dB SNR,
with different values of SP incidence angles and RMS surface roughness, respectively.

The performance of the first retrieval scheme of mixed forest land cover was very
similar to the retrieval of grassland land cover, as shown in Figure 8a,b. The mixed forest
land cover had a positive estimation bias, while the grassland had a negative estimation
bias; both of them were insignificant compared to the true soil moisture value. The bias
was proportional to the soil moisture value, as shown in Figure 8a,b.
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Figure 7. Soil moisture retrievals from simulated DDM, for grassland land cover using the first
scheme. The error bars represent one standard deviation from the mean, and the gray lines represent
perfect retrievals. (a) σh = 0.5 cm, θSP

i = 10°. (b) σh = 2 cm, θSP
i = 20°. (c) σh = 2 cm, SNR = 10 dB.

(d) θSP
i = 20°, SNR = 10 dB.
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Figure 8. Soil moisture retrievals from simulated DDM; σh = 2 cm and θSP

i = 20°, for the two land
cover types. The error bars represent one standard deviation from the mean, and the gray lines
represent perfect retrievals. (a) First retrieval scheme, SNR = 10 dB. (b) First retrieval scheme,
SNR = 20 dB. (c) Second retrieval scheme, SNR = 10 dB. (d) Second retrieval scheme, SNR = 20 dB.
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Soil moisture retrieval using the second scheme had a weaker performance compared
to the first scheme. For SP incidence angle of 20° and surface roughness of 2 cm, the retrieval
from grassland had an ubRMSE of 0.259 and 0.253 m3 m−3 for SNR of 10 and 20 dB, respec-
tively. For mixed forest land cover, with the same values of other parameters, the ubRMSE
was 0.135 and 0.128 m3 m−3 for SNR of 10 and 20 dB, respectively. Figures 8c,d and 9a,b
show these results. The retrieval from grassland DDMs had a higher bias, compared to
those from mixed forest DDMs, which had a low bias. Specifically, the biases of the re-
trievals from mixed forest DDMs were 0.008, 0.011, 0.026, 0.058 and 0.117 m3 m−3 for soil
moisture of 0.02, 0.05, 0.1, 0.2 and 0.3 m3 m−3. The retrievals from mixed forest DDMs had
an overall correlation coefficient r of 0.74. However, the retrievals from grassland DDMs
had a correlation coefficient r close to 0.4. The case of mixed forest with surface roughness of
2 cm and incidence angle of 10° had high RMSE and estimation bias, as shown in Figure 9b.
The rest of the mixed forest land cover simulations had a negligible estimation bias, an
ubRMSE of less than 0.04 m3 m−3, and a correlation factor r of over 0.95. Figure 9c,d show
both the retrieved soil moisture and surface roughness values using the second retrieval
scheme with different SP incidence angles. The retrieval algorithm underestimated the
surface roughness of the mixed forest land cover, while the estimation was close to the true
value for the grassland land cover. However, it had a large variance, as shown in Figure 9c.
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Figure 9. Soil moisture retrievals from simulated DDM; σh = 2 cm and SNR = 20 dB, using the first
scheme. The error bars represent one standard deviation from the mean, and the gray lines represent
perfect retrievals. (a) Grassland land cover. (b) Mixed forest land cover. (c) Grassland land cover.
(d) Mixed forest land cover.

6.1.2. Retrievals from Two DDMs

Solving the inverse problem of two unknowns from a single measurement is ill posed.
To address this issue in the second retrieval scheme, the next step is to use two DDMs in
the retrieval.

To understand the retrieval algorithm behavior with different values of soil moisture
and surface roughness, the cost function needs to be analyzed. Figure 10 shows the cost
functions for DDMs of 10° and 40° SP incidence angles with different values of soil moisture,
surface roughness, and land cover types. Figure 10a,d show the cost function of grassland
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land cover type, while Figure 10e,h show the cost function of mixed forest land cover
type. The minimum value of the cost function is zero, and it is when both soil moisture
and surface roughness are recovered exactly; the location is shown by the purple dot
in Figure 10. The gray dot in Figure 10 shows the minimum value in the plot. Ideally,
the purple and the gray dots should be coincident. However, depending on the shape of
some cost functions, the dots could be far from each other. Figure 10a is an example of this
effect. The cost function is very sensitive to surface roughness, as shown in Figure 10a,b,e,f.
The cost function of grassland land cover type is generally flatter than the cost function of
mixed forest land cover type. Retrievals from forest land cover are therefore expected to
reach a convergent solution faster and more accurately, as the gradient of the cost function
is better defined. Furthermore, in some cases, there exists a trench of low cost function
values that passes through the true parameters, resulting in ambiguous solutions. This
effect can be clearly observed in Figure 10c.
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Figure 10. Cost function of two DDMs with SP incidence angles 10° and 20°. The purple dot where
the true value of soil moisture and surface roughness. The gray dot is where the minimum value
of the plot lies. (a) Grassland land cover, soil moisture = 0.02 m3 m−3, σh = 0.5 cm. (b) Grassland
land cover, 0.02 m3 m−3 soil moisture, and 2 cm RMS surface roughness. (c) Grassland land cover,
soil moisture = 0.2 m3 m−3, σh = 0.5 cm. (d) Grassland land cover, soil moisture = 0.3 m3 m−3,
σh = 2 cm. (e) Mixed forest land cover, soil moisture = 0.02 m3 m−3, σh = 0.5 cm. (f) Mixed forest
land cover, soil moisture = 0.02 m3 m−3, σh = 2 cm. (g) Mixed forest land cover, soil moisture =

0.2 m3 m−3, σh = 0.5 cm. (h) Mixed forest land cover, soil moisture = 0.3 m3 m−3, σh = 2 cm.

We performed a Monte Carlo simulation for DDMs with incidence angles 10° and
40° only. The SNR values were 10 dB and 20 dB. The other parameters were the same as
in Section 6.1.1. The Monte Carlo simulation results of retrieving both soil moisture and
surface roughness from two DDMs are shown in Figure 11. As expected from cost function
graphs, the retrievals from the mixed forest land cover DDMs outperformed the retrievals
from grassland land cover DDMs, as illustrated in Figure 11a,d. More explanation will be
provided later in Section 7. For grassland land cover type, the retrievals of 2 cm surface
roughness had better accuracy for low soil moisture values compared to the retrievals of
0.5 cm surface roughness. However, for high soil moisture values, the retrievals of 0.5 cm
surface roughness outperformed the retrievals of 2 cm surface roughness, as shown in
Figure 11a,b. The soil moisture retrieval performance from grassland land cover DDMs
was significantly impacted by noise, as shown in Figure 11e,f. The retrievals, of grassland
land cover, for the case of 10 dB SNR had an ubRMSE of 0.15 m3 m−3, while the retrievals
of 20 dB SNR had an ubRMSE of 0.08 m3 m−3. The correlation factor was 0.67 for 10 dB
SNR and 0.76 for 20 dB SNR. The bias was 0.08 m3 m−3 for 10 dB SNR and 0.02 m3 m−3 for
20 dB SNR. The retrievals in the case of mixed forest land cover had superior performance.
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The ubRMSE for SNR of 10 dB and 20 dB was 0.02 m3 m−3 and 0.002 m3 m−3, respectively.
The correlation factor was greater than 0.98, and the bias was less than 0.01 m3 m−3.
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Figure 11. Soil moisture retrievals using two simulated DDMs. The incidence angles of the DDMs
were 10° and 40°. The SNR was 20 dB. The error bars represent one standard deviation from the
mean, and the gray lines represent perfect retrievals. (a) σh = 0.5 cm, SNR = 20 dB. (b) σh = 2 cm,
SNR = 20 dB. (c) σh = 0.5 cm, SNR = 20 dB. (d) σh = 2 cm, SNR = 20 dB. (e) Grassland land cover,
σh = 0.5 cm. (f) Grassland land cover, σh = 2 cm.

6.2. Validation Results

The inversion algorithm presented in Section 4 and the SSBM DDM of Section 3
were used to retrieve soil moisture from CYGNSS L1B version 3.1 data for 2019 over the
validation site. More details of the validation site were given in Section 5.2. Both of the
single-DDM retrieval schemes were used to retrieve soil moisture from 96 CYGNSS DDMs.
The SP locations of the DDMs are within 5 km of the sensor location and have reported
SNR values of over 10 dB. Moreover, in selecting the DDMs, we discarded any data with
quality flags that indicate issues in the CYGNSS measurements. Specifically, data with
attitude errors, abnormality in the hardware, or a reported negative antenna gain at the
SP location were discarded. The criteria of selecting CYGNSS data were similar to the
criteria reported in other soil moisture retrieval methods using CYGNSS data [20,21]. We
used the grassland vegetation parameters presented in Table 1 in the inversion algorithm.
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Furthermore, the soil clay percentage is 11.7 %, which is the reported clay percentage of the
nearest location to the in situ sensors [38]. The tuning parameters of the retrieval algorithm
were the same as the values used in the simulations.

Figure 12 shows one example of BRCS DDM observed by CYGNSS and the corre-
sponding simulated DDM using SSBM. The CYGNSS DDM was collected on 2019-10-09
20:40:00 UTC by spacecraft number one and channel two. The SP incidence angle was 22°,
and the reported SP location was −34.8054° latitude and 146.3956° longitude. The forward
model was generated with an RMS surface roughness of 2 cm and a soil moisture value of
0.025 m3 m−3, derived from Yanco in situ soil moisture measurements. For the retrievals,
a subset of the DDM is used, as discussed in Section 4. In Figure 12, the full DDM is shown
with 17 delay bins and 11 Doppler bins.
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Figure 12. Comparison between DDM generated by the forward model and CYGNSS. The DDM is
over Yanco, Australia. (a) SSBM DDM. (b) CYGNSS DDM.

The ground positions of each delay Doppler bin, within the 3 × 5 box, are shown in
Figure 13 along with the in situ sensors location. The positions of the delay Doppler bins
were calculated using the method presented in Section 3.1. The map shows that there are
two locations for each bin except the SP bin. The approximate resolution of this DDM is
between 17 km and 32 km. The lower limit is the first Fresnel zone, and the upper limit
is the maximum distance between two points in the area of the selected 3 × 5 box of the
DDM.

Figure 13. Land cover map shows the ground locations of the CYGNSS DDM bins of Figure 12.
The symbols i and j denote the delay and Doppler bin indices, respectively. Land cover map source
is [42].
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The in situ soil moisture and the NBRCS of the selected DDMs in this study are shown
in Figure 14. The plotted NBRCS values of SSBM were calculated using the in situ soil
moisture values. The figure shows that the averaged in situ soil moisture value of the
selected points in the year 2020 is higher than the value of 2019.
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Figure 14. Averaged NBRCS values of CYGNSS and SSBM, for all DDMs used in this study. (a) Year
2019. (b) Year 2020.

About 250 CYGNSS DDMs in 2019 and 2020 were used in the retrieval. Their approxi-
mate native spatial resolution is between 10 km and 50 km. The lower limit was calculated
using the maximum distance between two points in the first Fresnel zone, while the upper
limit was calculated using the maximum distance between two points within the area
covered by the 3 × 5 subset of the DDM. The results of the soil moisture retrievals using
the two schemes are given in the following sub-sections.

6.2.1. Results of First Retrieval Scheme: Soil Moisture Is the Only Unknown

The first retrieval scheme, as discussed in Section 4, considers the RMS surface rough-
ness as a known parameter and the soil moisture as an unknown. The RMS surface
roughness was set to 2 cm, and accordingly, the surface correlation length was set to 20 cm.
The value was selected empirically, as we do not have local RMS surface roughness mea-
surements. The results of the second retrieval scheme were used in aiding the selection of
the value. We discarded the retrievals that were nonphysical or had soil moisture value
above the saturation level. A retrieval is discarded if the retrieved soil moisture value is
greater than 0.5 m3 m−3 or less than 0.0025 m3 m−3. The upper limit value for the retrieved
soil moisture was set to 0.5 m3 m−3 as this can be considered saturated soil and we do not
expect the soil moisture to reach this value in this region. For the first retrieval scheme,
37 out of the 250 retrievals were discarded. Figure 15a shows the in situ soil moisture of
station Y8 versus the retrieved soil moisture values. For 2019, the retrieved values had an
RMSE of 0.074 m3 m−3, an ubRMSE of 0.069 m3 m−3, and a correlation coefficient r of 0.28.
Retrievals from DDMs of 2019 has higher performance than retrievals form DDMs of 2020.
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(b)
Figure 15. Soil moisture retrieval using the first scheme from DDMs close to Y8, Yanco site, compared
to in situ measurements of Y8 station only. (a) Year 2019. (b) Year 2020.
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(b)
Figure 16. Soil moisture retrieval using the first scheme from DDMs close to Y8 compared to the
averaged in situ soil moisture of Y5, Y7, and Y8 stations. (a) Year 2019. (b) Year 2020.

The retrieved soil moisture values were compared to the averaged soil moisture values
of Three in situ soil moisture stations, as shown in Figure 16. The first station was Y8.
The rest were Y5 and Y7, which are the closest stations to the Y8 station. The averaging
of the in situ soil moisture values was to reduce the sensors noise, and reduce the effect
of outliers. The retrieval performance was higher than using only the in situ data of only
the Y8 station as the true soil moisture. Using the averaged in situ soil moisture values
had an RMSE of 0.068 m3 m−3, an ubRMSE of 0.060 m3 m−3, and a correlation coefficient r
of 0.26, for the retrievals from 2019 DDMs. For 2020 DDMs, the RMSE was 0.098 m3 m−3,
the ubRMSE was 0.091 m3 m−3, and the correlation coefficient r was 0.21.

6.2.2. Results of Second Retrieval Scheme: Both Soil Moisture and Surface Roughness
Are Unknowns

The second retrieval scheme, discussed in Section 4, considers both the RMS surface
roughness and the soil moisture as unknowns. Similar to the first scheme, presented
in Section 6.2.1, the vegetation parameters presented in Table 1 and the same soil clay
percentage were used in the retrieval algorithm. The surface correlation length was set to 10
times the RMS surface roughness. Furthermore, similar to the first scheme, the nonphysical
or had soil moisture value above the saturation level retrieved soil moisture values were
discarded, using the same criteria. 35 out of 250 retrievals were discarded.

Figure 17 shows the in situ soil moisture values of station Y8 versus the retrieved
soil moisture values. For 2019 DDMs, the retrieved soil moisture values had an RMSE
of 0.096 m3 m−3, ubRMSE of 0.091 m3 m−3, and a correlation coefficient r of 0.15. For
the retrievals from the DDMs of 2020, the RMSE was 0.116 m3 m−3, the ubRMSE was
0.116 m3 m−3, and the correlation factor r was 0.21.

Similar to the first scheme results, the retrieved soil moisture values were compared to
the averaged soil moisture values of Y5, Y7, and Y8 stations, as shown in Figure 18. Unlike
the findings of the first scheme, using the averaged in situ soil moisture did not enhance
the retrievals for all the years. For 2019 retrievals, the performance metrics were enhanced.
However, the opposite was for the retrievals from 2020 DDMs; the performance metrics
using the averaged in situ soil moisture value were declined. For the retrievals from the 2019
DDMs, the RMSE was 0.088 m3 m−3, the ubRMSE was 0.085 m3 m−3, and the correlation
factor r was 0.15. The retrievals from the 2020 DDMs had an RMSE of 0.12 m3 m−3, an
ubRMSE of 0.118 m3 m−3, and a correlation factor r of 0.21.

The performance metrics of both retrieval schemes for both 2019 and 2020 DDMs are
summarized in Table 2. The in situ sensors column has the name of the sensors that their
measurements used in calculating the performance metrics.
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Figure 17. Soil moisture retrieval using the second scheme from DDMs close to Y8, Yanco site,
compared to in situ measurements of Y8 station only. SM denotes soil moisture. (a) Year 2019.
(b) Year 2020.
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Figure 18. Soil moisture retrieval using the second scheme from DDMs close to Y8 compared to the
averaged in situ soil moisture of Y5, Y7, and Y8 stations. SM denotes soil moisture. (a) Year 2019.
(b) Year 2020.

Table 2. Performance of soil moisture retrievals from CYGNSS DDMs. In-situ sensors are the sensors
that their measurements used in calculating the performance metrics. All soil moisture values are in
unit of m3/m3.

Year Scheme In-Situ Sensors Num. of Retrievals Discarded Retrievals RMSE ubRMSE Bias r

2019
First

Y8

102
15

0.074 0.069 0.028 0.28

Y5, Y7, Y8 0.068 0.060 0.032 0.26

Second
Y8

13
0.096 0.091 0.028 0.15

Y5, Y7, Y8 0.088 0.085 0.025 0.13

2020
First

Y8

148
22

0.104 0.090 0.052 0.28

Y5, Y7, Y8 0.098 0.091 0.036 0.30

Second
Y8

22
0.116 0.116 0.005 0.21

Y5, Y7, Y8 0.120 0.118 0.020 0.21

7. Discussion

The BRCS DDM predicted by the SSBM and the BRCS DDM provided by the L1B
CYGNSS data for SMAP Yanco sites were presented in Section 6. Figure 12 illustrated the
SSBM DDM constructed with the method expressed in Section 3. Furthermore, Figure 12
showed that the structure and shape of the DDM predicted by the forward model were
in good agreement with the CYGNSS DDM, with some differences: (1) the data seem to
be a blurred version of the model in the near specular bins, suggesting that SSBM lacks
near-specular resolution, which makes sense because we effectively modeled the NBRCS as
a sum of a Dirac delta function (coherent Kirchhoff) and a relatively smooth function (SPM),
whereas we know that NBRCS actually behaves more like a Gaussian function, which has
a blurring effect, (2) the model overestimates the more diffuse scattering at larger delays,
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and (3) the SSBM DDM is symmetric around the zero Doppler line, whereas the CYGNSS
DDM is not symmetric. The last two points are mainly because the model assumes no
topography. However, these differences have minimal impact on the retrievals, as we used
the averaged NBRCS, Equation (17), which uses a 3 × 5 portion of the full DDM.

The BRCS value of the SP and the averaged NBRCS of some of the CYGNSS DDMs
had some differences with the ones generated by the SSBM. Some of these discrepancies
are related to either error in the validity of the assumptions in the model (such as having a
perfectly flat surface) or its input parameters. However, there were some calibration errors
related to CYGNSS DDMs over land. Most of these errors were resolved in the data version
used in this study. Modeling the DDM can point out these calibration/signal processing
related issues in CYGNSS data and assist in resolving them.

The inversion algorithm includes the SSBM, discussed in Section 2, and the hybrid
local/global optimization method [28]. In Section 6, two soil moisture retrieval schemes
using a single DDM were used to retrieve soil moisture from both simulated and CYGNSS
DDMs. Furthermore, soil moisture and surface roughness values were retrieved using
two simulated DDMs with different incidence angles. In the first scheme, presented in
Section 6.2.1, the surface roughness was known, and the soil moisture (at 0–5 cm) was un-
known. The second scheme of soil moisture retrieval, presented in Section 6.2.2, considered
both surface roughness and soil moisture as unknowns. The two-DDM scheme is similar to
the second scheme in that it retrieves both surface roughness and soil moisture, but it uses
two DDMs to retrieve these two unknowns.

For retrievals from simulated DDMs, the first retrieval scheme had better performance
compared to the second retrieval scheme. This was expected as the first scheme retrieved a
single geophysical parameter, soil moisture, while the second scheme retrieved two geo-
physical parameters, soil moisture and surface roughness, from a single DDM. The second
retrieval scheme is therefore inherently ill posed. We observed that the simulated DDMs
of grassland land cover are more sensitive to the error in surface roughness estimation
compared to the mixed forest land cover, as illustrated in Figure 9c,d. The case of the second
retrieval method with mixed forest land cover, 2 cm surface roughness, and 10° incidence
angle was an outlier compared to the other results with the same land cover type. This was
expected from the cost function shape for this specific case. The retrieval performance of
the second scheme for the simulated mixed forest case is very close to the performance of
the retrievals using the first scheme, with the exception of the outlier case. The soil moisture
retrievals from the simulated DDMs using the first retrieval scheme of both grassland and
mixed forest land covers had an ubRMSE below 0.04 m3 m−3 with a correlation coefficient
r over 0.95. The ubRMSE was proportional to the true soil moisture and it was lower than
0.04 m3 m−3. The results of the simulations, except for the case of grassland land cover
using the second retrievals scheme, are encouraging for considering DDMs with SNR lower
than 10 dB. Decreasing the SNR requirements will increase the ubRMSE.

The two-DDM cost function analysis showed the difficulty of the retrieval from an
optimization point of view, especially for the case of grassland land cover. The areas with
small gradient values neighboring the global minimum in the cost function pose a challenge
to the retrieval algorithm, as this may require a large number of iterations to reach the
global minimum. The Monte Carlo simulation of retrieving soil moisture from two DDMs
showed that this approach increased the accuracy of the retrieval.

In the retrievals from CYGNSS DDMsin 2019, the ubRMSE was about 0.09 m3 m−3

for the second retrieval scheme and less than 0.06 m3 m−3 for the first retrieval scheme.
The retrieval performance was lower for the DDMs of 2020; the ubRMSE increased by
about 0.03 m3 m−3. This is expected as the in situ soil moisture values were higher in 2020
compared to the values of 2019, as shown in Figure 4. The bias of all retrievals was small,
below 0.04 m3 m−3. The error variance was proportional to the in situ soil moisture values,
as illustrated in Figures 16a and 18a. This is consistent with the simulation findings. Both
retrievals had a low correlation coefficient r. The first scheme performed better than the
second scheme in all merits, which is similar to the simulation results.
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The spatial averaging of soil moisture values of multiple in situ sensors reduced the
measurement noise and made the value more robust to outliers. This was the expected
reason for getting better performance metrics, for most of the retrievals, compared to
the soil moisture values of only the Y8 sensor, as shown in Table 2. As mentioned in
the previous section, the performance metrics of all the retrievals improved with the use
of spatially averaged in situ soil moisture values, except the retrievals from 2020 DDMs
using the second scheme. The performance of these retrievals slightly decreased. The bias
increased by 0.015 m3 m−3, and the rest of the metrics had insignificant changes.

The surface roughness parameter in the forward model can be used in addition to
its original purpose as a tuning parameter to account for the discrepancies between the
forward model DDM and the CYGNSS DDM. Thus, the retrieval algorithm can mitigate
some CYGNSS DDM calibration issues.

As noted earlier in this section, the second scheme suffers from being ill posed, as the
algorithm retrieves two parameters from a single DDM. Thus, the inverse problem is
underdetermined. Generally, the first scheme performance depends heavily on the selected
values of RMS surface roughness, which is often times not available.

Previous soil moisture products from CYGNSS have reported ubRMSE metrics around
0.05 m3 m−3. Specifically, Chew et al. [20] reported a median ubRMSE of 0.049 m3 m−3,
Senyurek et al. [21] reported a minimum ubRMSE of 0.052 m3 m−3 using all data for train-
ing and 0.049 m3 m−3 using site-specific training. Al-Khaldi et al. reported RMSE of
0.045 m3 m−3 over variant terrains compared to SMAP soil moisture product. For com-
parison with in situ soil moisture, the RMSE value was 0.071 m3 m−3, and the ubRMSE
value was 0.067 m3 m−3 for the Yanco site, the same site used for validation of the method
presented in this paper. The ubRMSE of the retrievals from 2019 DDMs using the first
scheme in paper was close to the values reported in the literature [23]. However, retrievals
from 2020 DDMs had a higher ubRMSE value compared to the retrievals in the literature.

The factors that contribute to the errors in our physics-based model predictions are
listed as follows:

1. The footprint of CYGNSS DDM is large, but the in situ soil moisture sensors cover a
small region of the foot-print. Thus, the average soil moisture value, which is observed
by the CYGNSS DDM, could be different from the in situ soil moisture values.

2. Any possible variations in vegetation land cover over the course of the year resulting
in variations in the vegetation input parameters, which potentially lead to errors in
the SSBM predictions.

3. Calibration issues in CYGNSS data.
4. Modeling errors, which include the lack of considering topography and multi ground

layers, potentially lead to less accurate results.

The retrieval algorithm can be used as a basis for more advanced retrieval algorithms.
Improving the accuracy of the forward model improves the retrieval performance. One
way of advancing the forward model is to integrate the SSBM presented in this paper with
the DDM model proposed in [43] to extend the model for heterogeneous surfaces and
topography. Furthermore, we believe the simultaneous retrieval of both soil moisture and
surface roughness from multiple DDMs is the path forward to increase the performance
of physics-based retrieval methods and reduces the dependence on ancillary data layers.
To address the flatness problem of the cost function in some cases, which causes lack of
sensitivity to the unknowns, a study of other options for the cost function is needed.

8. Conclusions

This paper presented a retrieval approach using a physics-based bistatic scattering
forward model, the SSBM, for soil moisture estimation from GNSS-reflected signals over
various vegetated land covers. The majority of the previous soil moisture retrieval meth-
ods from CYGNSS DDMs used empirical or regression-based methods for soil moisture
retrieval. The physics-based method of this paper incorporates physical insight into the
retrieval, which allows for a systematic approach without depending on potentially faulty
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or an incomplete training/fitting data set. Furthermore, the method does not depend on
other soil moisture products, such as SMAP. However, physics-based methods are bounded
by the forward model accuracy and sensitive to calibration errors in the measured data.
The methods of this paper were tested on both simulated DDMs and measured CYGNSS
DDMs (version 3.1). The simulated DDMs were for grassland (VWC of 0.19 kg m−2) and
mixed forest (VWC of 4.89 kg m−2) IGBP land cover types. The CYGNSS DDMs were
observed over the SMAP Yanco site that has the IGBP grassland land cover class. Retrievals
were accomplished using a single DDM and two DDMs. For the single DDM retrieval
two schemes were proposed. In the first scheme, the retrieval was performed with the as-
sumption that RMS surface roughness is a known parameter and soil moisture is unknown.
In the second scheme, both soil moisture and RMS surface roughness were considered
unknowns. The retrieval from two DDMs was implemented similar to the second scheme,
except the use of two DDMs with different incidence angles.

The results of the retrievals from a single simulated DDM using the first retrieval
scheme showed that the algorithm was able to retrieve soil moisture with small estimation
bias and ubRMSE of less than 0.04 m3 m−3. The correlation coefficient r was over 0.95.
The performance of the second retrieval scheme was acceptable for the case of mixed forest
land cover. The two-DDM retrievals from simulated DDMs showed promising results.
The ubRMSE was very low, except for low soil moisture values of grassland land cover
DDM. The analysis of the cost function showed that, for some cases, there were flat areas in
the cost function, resulting in ambiguities.

Soil moisture values were retrieved from 250 CYGNSS DDMs in the years 2019
and 2020, using both retrieval schemes. A single DDM was used in all the retrievals.
The ubRMSE values of the first scheme were 0.06 m3 m−3 and 0.09 m3 m−3 for the years
2019 and 2020, respectively. The ubRMSE values of the retrievals using the second scheme
were higher than the first scheme for both years. The estimation bias was relatively small.
The presented retrieval method and the forward model can be integrated with other
GNSS-R soil moisture retrieval methods, to improve retrieval performance. One potential
synergistic approach is combining the physics-based method with an ML-based method.
Specifically, the forward model can be used in training the ML-based method. This can
give the ML-based method the physics-based insight and fill the gaps in the training data.
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Appendix A. Derivation of The Method of Estimating Incidence and Scattering Angles
of DDM Bins

This derivation assumes (1) transmitter altitude is very large compared to the receiver
altitude and (2) the ground has a zero mean surface with a small RMS surface roughness and
no topography. With the previous assumption, each delay Doppler bin is the intersection
of an ellipse of constant delay and a line of constant Doppler. The derivation of the
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mapping between a delay Doppler bin to the ground points uses the SP as a reference point.
According to [34], the ellipse of constant delay is defined as

x2

b2 +
y2

a2 = 1 (A1)

where a and b are the semi-major axis and the semi-minor axis, respectively. They are
given as

a2 = b2 sec2 θSP
i (A2)

b2 =
2RSP

rs RSP
st c δτ

RSP
rs + RSP

st
. (A3)

In Equation (A3), RSP
st is the distance from the transmitter to the SP, RSP

rs is the distance
from the SP to the receiver, c is the speed of light, and δτ is the delay relative to the SP.
The quantity δτ is always positive as the SP has the minimum delay. The Doppler frequency
of the SP is defined as

fD =
1
λ

(
V̄t · R̂st − V̄r · R̂rs

)
(A4)

where λ is the wavelength, R̂st is a unit vector from the transmitter pointing toward the SP,
and R̂rs is a unit vector from the SP pointing toward the receiver. The Cartesian components
of the velocity vectors V̄t and V̄r are defined as

V̄t = x̂Vt
x + ŷVt

y + ẑVt
z (A5)

V̄r = x̂Vr
x + ŷVr

y + ẑVr
z . (A6)

The unit vectors R̂st and R̂rs are expressed as

R̂st =
R̄SP − R̄t

RSP
st

(A7)

R̂rs =
R̄r − R̄SP

RSP
rs

. (A8)

Using Equations (A4), (A5), (A6), (A7), and (A8), the Doppler shift of the SP can be written
as

fD =
1
λ

[(
Vr

y −Vt
y

)
sin θi −

(
Vr

z + Vt
z
)

cos θi

]
. (A9)

As the transmitter altitude is much higher than the receiver, the Doppler shift relative to
the SP can be approximated [44] as

δ fD =
cos θi

λ(R̄r · ẑ)

[
xVr

x + y cos θi

(
Vr

y cos θi + Vr
z sin θi

)]
(A10)

where x and y are the local coordinates relative to the SP. Using Equations (A10), and (A1)
and solving the quadratic equation in y, the solution is given as

y =
a0b0 ±

√(
b2

0 + d2
0
)
c0 − (d0a0)

2

b2
o + d2

0
(A11)

where a0, b0, c0 and d0 are

a0 = δ fD
λ(R̄r · ẑ)

cos θi
(A12a)

b0 = cos θi

(
Vr

y cos θi + Vr
z sin θi

)
(A12b)
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c0 = (Vr
x)

2 2RSP
rs RSP
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rs + RSP
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(A12c)

d0 = Vr
x cos θi. (A12d)

The value of x can be found from y using

x =
a0 − yb0

Vr
x

. (A13)

The position of the points on the ground for a specific delay and Doppler relative
to the SP can be found in the Cartesian coordinate system. The x and y components
are from Equations (A13) and (A11), respectively. The z component is zero. Only real-
valued solutions to Equation (A11) are kept, as x and y are positions on the ground.
The incidence and scattering angles are calculated using the position(s) of the scatterer(s)
with the transmitter position R̄t and the receiver position R̄r, respectively. The incidence θi
and φi angles are

θi = arctan
(√

(R̄t · x̂− x)2 + (R̄t · ŷ− y)2, R̄t · ẑ
)

(A14)

φi = arctan(R̄t · x̂− x, R̄t · ŷ− y). (A15)

The scattering angles, θs and φs are

θs = arctan
(√

(R̄r · x̂− x)2 + (R̄r · ŷ− y)2, R̄r · ẑ
)

(A16)

φs = arctan(R̄r · x̂− x,−R̄r · ŷ + y). (A17)
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