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Abstract: The phenology-based approach has proven effective for paddy rice mapping due to the 
unique flooding and transplanting features of rice during the early growing season. However, the 
method may be greatly affected if no valid observations are available during the flooding and rice 
transplanting phase. Here, we compare the effects of data availability of different sensors in the 
critical phenology phase, thereby supporting paddy rice mapping based on phenology-based ap-
proaches. Importantly, our study further analyzed the effects of the spatial pattern of the valid ob-
servations related to certain factors (i.e., sideslips, clouds, and temporal window lengths of flooding 
and rice transplanting), which supply the applicable area of the phenology-based approach indica-
tions. We first determined the flooding and rice transplanting phase using in situ observational data 
from agrometeorological stations and remote sensing data, then evaluated the effects of data avail-
ability in this phase of 2020 in China using all Landsat-7 and 8 and Sentinel-2 data. The results show 
that on the country level, the number of average valid observations during the flooding and rice 
transplanting phase was more than ten for the integration of Landsat and Sentinel images. On the 
sub-country level, the number of average valid observations was high in the cold temperate zone 
(17.4 observations), while it was relatively lower in southern China (6.4 observations), especially in 
Yunnan–Guizhou Plateau, which only had three valid observations on average. Based on the mul-
ticollinearity test, the three factors are significantly correlated with the absence of valid observa-
tions: (R2 = 0.481) and Std.Coef. (Std. Err.) are 0.306 (0.094), −0.453 (0.003) and −0.547 (0.019), respec-
tively. Overall, these results highlight the substantial spatial heterogeneity of valid observations in 
China, confirming the reliability of the integration of Landsat-7 and 8 and Sentinel-2 imagery for 
paddy rice mapping based on phenology-based approaches. This can pave the way for a national-
scale effort of rice mapping in China while further indicating potential omission errors in certain 
cloud-prone regions without sufficient optical observation data, i.e., the Sichuan Basin. 
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1. Introduction 
As a major staple grain for more than a half of the global population, rice agriculture 

is critical for food security [1,2], water resource security [1,3,4], greenhouse gas (methane) 
emissions [2,5–7], and zoonotic infectious disease transmission [8,9]. In China, the role of 
rice is even more important, as the country is home to the largest rice planting area (29.9 
million hectares, about 18% of the global rice planting area in 2019) and production in the 
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world [10]. Rice consumption in China is the highest globally, and over 65% people eat 
rice as their staple food [11,12]. Thus, accurate information on the area and distribution of 
paddy rice in China is of significance for understanding food security and other environ-
mental issues related to rice. 

Great efforts have been made on paddy rice mapping in different regions [13–19]. 
The existing mapping strategies can generally be divided into two categories, first, ma-
chine learning approaches which using features from multiple aspects including spectral, 
spatial, texture, and temporal perspectives; and second, phenology-based approaches 
which use the unique phenological characteristics of the specific cultivation phases of rice. 
An increasing number of recent studies have tended to use phenology-based approaches 
for large scale paddy rice mapping, as it depends less on ground truth data [20]. Phenol-
ogy-based rice mapping algorithms focus on a unique paddy rice phenological feature, 
namely, that rice fields are usually flooded prior to transplanting rice seedlings from a 
nursery into the fields [21–23]. The plant–water interaction of electromagnetic waves in 
visible light as well as in the microwave spectrum is affected, producing a unique signal 
of rice paddies when observed with optical remote sensing or weather-immune radar sen-
sors [24,25]. Specifically, Land Surface Water Index (LSWI) values are temporarily greater 
than Normalized Difference Vegetation Index (NDVI) or Enhanced Vegetation Index 
(EVI) values during the flooding and rice transplanting phase up until the closed canopy 
phase [21]. However, there are uncertainties in this algorithm that prevent the acquisition 
of accurate transplanting signals, such as the setting of α (LSWI + α>EVI or NDVI), alt-
hough finer-resolution images and the predefined temporal window have reduced these 
uncertainties in application studies [26,27]. 

Moderate Resolution Imaging Spectroradiometer (MODIS) data is an important 
source for rice mapping thanks to its hyper-temporal resolution (twice daily). Based on 
this approach using eight-day time series MODIS data, continental scale paddy rice area 
distribution has been depicted in China, South Asia, and Southeast Asia [28–34]. How-
ever, these MODIS-based paddy rice maps are affected by mixed pixel issues, especially 
in Asia, where smallholder-based fragmented fields dominate the agricultural landscape 
[35]. The freely available Landsat and Sentinel archives offer unprecedented opportunities 
to map these fragmented rice fields [36–39]. Profiting from these characteristics, new ef-
forts have attempted retrospective continuous change detection and classification of 
paddy rice [27,40,41]. However, the existing efforts using 30-m medium resolution obser-
vations have mainly been conducted at local or regional scales. High frequency and cloud-
free observations are important for monitoring crops [42,43]. However, the effects of sat-
ellite observations on national-scale rice mapping studies have not yet been investigated. 

The current phenology-based paddy rice mapping approaches are mainly affected 
by data availability in the important phenology phases, e.g., flooding and rice transplant-
ing. Only 10–15 valid global Landsat scenes are obtained on average per year, and the 
availability is worse in pluvial regions [44–46]. If good-quality observations are not avail-
able for identification of flooding and rice transplanting signals due to cloud, shadow, or 
other reasons [33,40], the resulting paddy rice maps may have a higher omission error. 
Moreover, the different overpass times of satellites and spatio-temporal differences in 
cloud coverage affect both the seasonal and inter-regional variability of optical data, lead-
ing to further varied performance on specific rice types (early, middle, or late rice). There-
fore, revisitation cycles and cloud cover are the main limitations on the effective use of 
satellite data in agriculture [47]. While many studies have discussed cloud contamination 
in satellite imagery as the main barrier to phenology-based paddy rice mapping in cloud-
prone regions, few of these studies have provided quantitative results on factors related 
to cloud cover and other issues with satellite image availability. Therefore, there is a need 
to assess the quality of satellite observations (e.g., Landsat, Sentinel) during the flooding 
and rice transplanting phase in different regions and its influence on phenology-based 
paddy rice mapping over large areas. 
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Here, we conducted a quantitative analysis of all available Landsat-7 and 8 and Sen-
tinel-2 observations during the flooding and rice transplanting phase in China in 2020 in 
order to better understand the potential and applicability of phenology-based approaches. 
This study aims to answer three questions. (1) Can sufficient observations be captured in 
the flooding and rice transplanting phase by integrating Landsat-7 and 8 and Sentinel-2 
imagery over the whole China? (2) Are there spatial variations between valid observations 
in different regions of the country, and which areas can obtain good performance relying 
on such phenology-based approaches? Finally, (3) what are the major factors limiting data 
availability for rice mapping? 

2. Materials and Methods 
2.1. Study Area 

China is the country with the largest rice production and consumption in the world. 
The paddy rice fields are mainly distributed in the alluvial plains and river basins along 
the major rivers and coastal areas in eastern China, where the climate and topography are 
suitable for paddy rice growth. In China, the continental monsoon climate can be classi-
fied as subtropical in the south and temperate in the north [33]. The south of China mainly 
has a mixture of single- and double-rice cropping systems, while the north is dominated 
by a single rice crop per year due to the lower temperature. 

However, the rice planting pattern in China has experienced obvious changes in re-
cent decades due to many factors. For example, the rice cropping intensity in southern 
China has shown a downward trend and even abandonment due to urbanization, land 
marginalization, agricultural policy adjustments, and an increase in the opportunity cost 
of farming [48–51]. Another change of concern is the northward shift of the rice produc-
tion center due to the warming climate [26,52,53]. Therefore, it is essential to determine 
whether this change pattern can be captured through sufficient remote sensing observa-
tions. 

2.2. Data 
2.2.1. Landsat and Sentinel Data 

All available Landsat ETM+ and OLI Collection 1 Tier 1 surface reflectance (SR) data 
and Sentinel-2 Level-2A SR data from the Google Earth Engine (GEE) platform covering 
China in 2020 (a total of 190,291 scenes) were used to investigate the availability of me-
dium-resolution optical data for phenology-based paddy rice mapping approaches. Land-
sat-7 and 8 and Sentinel-2 SR data were atmospherically corrected in GEE [54,55]. The 
Landsat SR data include a Quality Assessment (QA)(pixel_qa) generated by CFmask [56–
58] that can mask invalid observations, including clouds, cloud shadows, snow etc., while 
Sentinel-2 data have a quality layer (QA60) which supports cloud-masking preprocessing. 

The Sentinel-1 C-band Synthetic Aperture Radar (SAR) data archived in the GEE 
platform were used in this study in order to analyze whether they can potentially fill the 
gaps in cloud-prone regions with limited optical observations. The Sentinel data, are ob-
tained by two satellites have a resolution of 10 m and a six-day temporal resolution. The 
Sentinel-1 SAR Ground Range Detected (GRD) dataset is a calibrated and ortho-corrected 
product and has both one- and two-polarization bands (VH, VV), which have been widely 
used for rice classification [59]. 

2.2.2. MODIS Data 
MODIS data was used in this study to analyze the phenology of paddy rice and scale 

up the in situ observed phenology data to the whole study area. The Terra MOD09A1 
Version 6 dataset is an eight-day composite surface spectral reflectance product at a spa-
tial resolution of 500 m. The MCD43A4 Version 6 Nadir Bidirectional Reflectance Distri-
bution Function (BRDF)-Adjusted Reflectance (NBAR) dataset is a daily product at a 500-
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m spatial resolution that combines Terra and Aqua satellite data [60], both of which were 
used to determine the start and end of the flooding and rice transplanting phase. 

2.2.3. In Situ Phenology Observation Data of Paddy Rice 
The in situ crop phenological data used in this study were derived from the China 

Meteorological Data Service Center (https://data.cma.cn/) (accessed on 1 July 2021). We 
selected stations with recordings about rice over ten years and collected observational 
data from 130 stations for single rice, 61 stations for early rice, and 41 stations for late rice 
for the 2011–2013 period. The transplanting dates and tillering dates for single, early, and 
late rice in these three years were collected from total of 766 and 712 records, respectively. 
Single rice is usually transplanted around May and matures around September all across 
China, including middle rice in southern China [61–63], while early rice and late rice gen-
erally grow from April to July and from July to October, respectively. The variation of the 
temporal window for the three kinds of rice among the studied years was less than that 
of the temporal window in space (Figure S3) [61,62,64]. Therefore, we used the available 
phenological observational data from 2011 to 2013 to determine the flooding and rice 
transplanting window for data availability analyses in 2020, which is reasonable consid-
ering the stable crop calendar. 

2.3. Methods 
2.3.1. Determination of Temporal Window of Flooding and Rice Transplanting 

Obtaining the appropriate temporal window of flooding and rice transplanting is 
critical for paddy rice mapping based on phenology-based algorithms. With the help of 
both in situ phenological observation data and remote sensing data, we analyzed the re-
lationship between phenology-based in situ observation of paddy rice and the remote 
sensing-based flooding and rice transplanting period in order to determine the appropri-
ate temporal window. According to the eight-day time series MOD09A1 data analyses 
(LSWI + 0.05 ≥ EVI) [26] shown in Figure 1, the remote sensing-based flooding and rice 
transplanting period lasted from DOY 137 to DOY 185. The reliability of this temporal 
window was further confirmed using the daily BRDF-adjusted MODIS data (i.e., 
MCD43A4) (DOY 134–190) (Figure S1). Compared to the in situ phenological observation 
data, the remote sensing-based flooding and rice transplanting period covers two phenol-
ogy phases: (1) the initial field flooding phase before the transplanting date, and (2) the 
second phase, when there is a mixture of water and rice plants from transplanting to can-
opy closure [21,25,40]. That is, the flooding and rice transplanting period identified by 
remote sensing generally corresponded to the transplanting (DOY 144–159) plus return-
ing green stages (DOY 159–179) recorded by in situ observations, with a buffer of roughly 
10 days (Figure 1). The same matching relationships were found for all three sites in north-
eastern China (Figure S2) as well as for early and late rice in southern China (Figure S2). 
Therefore, we defined the start and end of flooding and of the rice transplanting period 
(SOF and EOF for short) using the following equation (Equation (1)): ൜SOF = the start of transplanting − 10dEOF = the start of tillering + 10d  (1) 
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Figure 1. The relationship between site observation-based critical phenological stages of paddy rice 
and remote sensed flooding signals of rice paddies. The left figure shows the seasonal dynamics of 
the Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI) of rice paddies 
(132.234°E, 46.192°N) near one agricultural meteorological site (Baoqing site) in Sanjiang Plain, 
northeastern China, which were obtained from MOD09A1. In the left figure, the brown arrows mean 
the difference between the site-observed transplanting and tillering periods and the start and end 
of the flooding signal retrieved from the MOD09A1 data: (1) flooding phase; (2) flooded/open-can-
opy phase; (3) closed canopy phase; and (4) post-harvest phase. The right image shows a corre-
sponding landscape for a rice paddy point from Google Earth in 2011. 

The rice systems in northern and southern China differ due to many environmental 
factors, notably thermal conditions. Thus, it was necessary to determine the temporal win-
dows of flooding and rice transplanting for different rice systems (single rice, early rice, 
and late rice). According to the distribution of rice phenology records (Figure 2a) and the 
regionalization of rice cropping in China [65], the single rice cropping area was divided 
into the northern and southern parts of China at 35°N. In order to remove abnormal in 
situ phenological data, the 25% percentiles of transplanting dates and the 75% percentiles 
of tillering dates were taken as the start and end of the flooding and rice transplanting 
phase. We obtained temporal windows of DOY 130–190 (mid-May to early July) in north-
ern China and DOY 120–190 (from early May to early July) in southern China (Figure 2d). 

For double rice in southern China, the rice cropping systems are more complicated 
than those in northern China [66–69]. Calendars of early and late rice vary in different 
regions; the flooding and transplanting windows can be divided using the 24°N latitude 
line according to in situ phenology data (Figure 2b,c). The flooding period of early rice in 
southern China is DOY 100–150 (north to 24° N, mid-April to late May) and DOY 80–130 
(south to 24°N, late March to early May) (Figure 2e), while the flooding and rice trans-
planting period of late rice in southern China is DOY 190–235 (from early July to late Au-
gust, north to 24°N) and DOY 205–250 (from late July to early September, south to 24°N) 
(Figure 2f). 
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Figure 2. Distribution of in situ observed transplanting and tillering dates of (a) single rice, (b) early 
rice, and (c) late rice. The areas with single rice, early rice, and late rice are divided into two regions 
by the 35°N, 24°N, and 24°N latitude lines respectively. The flooding and rice transplanting win-
dows of single rice (d), early rice (e), and late rice (f) were identified according to observations (a–
c). The numbers near the black dashed boxes show the start and end dates of the flooding and rice 
transplanting windows according to in situ observed phenology data for 2011–2013. 

2.3.2. Statistics of Valid Landsat-7 and 8 and Sentinel-2 Observations 
The valid satellite observations were acquired by removing bad quality pixels af-

fected by clouds, circus, terrain shadows, and sensor issues (i.e., Landsat ETM+ scan line 
corrector (SLC)-off). Cloud-affected observations in Landsat data can be identified by a 
data quality assessment (QA) layer [56–58]. The Landsat ETM+ scan line corrector (SLC)-
off gaps, accounting for 22% of the pixels within an image [70], can be identified from its 
metadata. Terrain shadows were identified using the solar azimuth and zenith angles and 
the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) [71]. For 
Sentinel-2, the clouds and circus can be identified according to the Level-1C cloud mask 
product [72]. 

We counted the total valid observations of Landsat and Sentinel-2 during the flood-
ing windows of single rice, early rice, and late rice in China in 2020. In order to compare 
the differences among various regions, we calculated the average valid observations by 
region using the following equation: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒௥௘௚௜௢௡௥௜௖௘,௦௘௡௦௢௥ =  ∑ 𝑛௦௘௡௦௢௥௥௜௖௘ேೝ೐೒೔೚೙௣௜௫௘௟ 𝑁௥௘௚௜௢௡൘  (2)

where 𝐴𝑣𝑒𝑟𝑎𝑔𝑒௥௘௚௜௢௡௥௜௖௘,௦௘௡௦௢௥ is the regional average number of valid observations from dif-
ferent sensors or their combinations during the rice flooding season, 𝑛௦௘௡௦௢௥௥௜௖௘  is the num-
ber of valid observations from one or the combination of two or three sensors in one pixel 
during the single, early, and late rice flooding seasons, and 𝑁௥௘௚௜௢௡ is the total number of 
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Landsat or Sentinel-2 pixels in a certain region (the whole country or the six sub-regions 
in China). The valid observation statistics were compiled separately for the six sub-regions 
with different rice cropping intensity and phenology patterns. 

In addition, we calculated the percentage of valid pixels with more than one obser-
vation for rice mapping in the whole China and six main rice cropping regions: 𝑃𝑒𝑟𝑐𝑒𝑛𝑡௥௜௖௘,௦௘௡௦௢௥,௥௘௚௜௢௡ = 𝑁௥௜௖௘,௦௘௡௦௢௥ 𝑁௥௘௚௜௢௡൘  (3)

where 𝑃𝑒𝑟𝑐𝑒𝑛𝑡௥௜௖௘,௦௘௡௦௢௥,௥௘௚௜௢௡ is the percentage of a pixel that can be used for rice identi-
fication in a certain region with a certain satellite observation, 𝑁௥௜௖௘,௦௘௡௦௢௥ is the total num-
ber of Landsat or Sentinel-2 pixels with at least one valid observation, and 𝑁௥௘௚௜௢௡ is the 
total number of Landsat or Sentinel-2 pixels in a certain region. 

Sentinel-1 acquires imagery regardless of the weather by operating day and night, 
performing C-band synthetic aperture radar imaging [73]. Therefore, we used all available 
Sentinel-1 images as good-quality observations. 

Here, we defined the effective identification of paddy rice as instances in which re-
mote sensing was able to capture the flooding and rice transplanting signal of the rice 
paddy. We defined one valid observation in the flooding and rice transplanting phase as 
the minimum requirement for effective identification of paddy rice. We defined valid ob-
servation in a specific region as the achievement of effective identification of paddy rice, 
meaning that the number of the valid observations of all pixels in the region was more 
than one, that is, the percentage of identifiable pixels in the region was almost 100%. 

2.3.3. Effects of Sidelaps, Growing Season Length, and Clouds on Data Availability  
Valid observations from Landsat-7 and 8 and Sentinel-2 images during the flooding 

and rice transplanting period can be affected by many factors, including cloud frequency, 
sidelaps, and transplanting season length. 

The cloud contamination and frequency were obtained from the QA-based cloud 
mask of the MOD09GA data. The systematic sidelaps of scene paths of the satellites were 
obtained by overlaying all of the Landsat-7 and 8 and Sentinel-2 scene boundaries in 
shapefile format. The degree of sidelaps increases from the equator to the poles, caused 
by fixed satellite orbits and the shape of the earth [74–76]. Transplanting season length 
data were obtained as described in Section 2.3.1. The explanatory variables utilized in the 
model included two continuous variables, one representing the average amount of cloud 
and the other the overlap of each grid. Correlation analyses between valid observations 
and the two factors (cloud frequency and sidelaps) were performed. A dummy variable 
indicating the transplanting seasons of different rice in different regions was assigned as 
a continuous variable from 1 to 6 (e.g., the transplanting season of single rice in northern 
China had a value 1). 

A multivariate linear regression analysis by Ordinary Least Square (OLS) was imple-
mented using Stata13.0 in order to evaluate how the three factors shape the pattern of 
valid observation across China. The OLS model is a type of global regression model that 
is not impacted by spatial autocorrelation or homogeneity in the feature space [77,78]. 
More specifically, the regression model was specified as follows: 𝑌 =  𝛽଴ + 𝛽ଵ𝐶𝑙𝑜𝑢𝑑 + 𝛽ଶ𝑂𝑣𝑒𝑟𝑙𝑎𝑝 + 𝛽ଷ𝑇𝑟𝑎𝑛𝑠 + 𝜀 (4) 

where Y is the number of valid observations, 𝛽଴ is the intercept of the regression model, 𝛽ଵ, 𝛽ଶ, and 𝛽ଷ are the regression coefficients for cloud, overlap, and the transplanting sea-
son length, respectively, and 𝜀 is the regression residual. 

Moreover, the importance of the three factors to valid observations can be acquired 
from the normalization of the three regression coefficients. We assumed that the larger 
absolute value of standardized regression coefficient means more significant impact of the 
corresponding independent variable on the dependent variable [79]. The standardized re-
gression coefficients 𝛽௜ᇱ can be calculated as follows: 
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𝛽௜ᇱ =  𝛽௜(𝑆௜/𝑆௒) (5) 

where 𝛽௜ are the raw regression coefficients and 𝑆௜ and 𝑆௒ are the standard deviation of 
independent variable 𝑋௜ and dependent variable Y, respectively. 

3. Results 
3.1. Pattern of Data Availability during the Flooding and Rice Transplanting Period in China 

Considering all the available Landsat-7 and 8 and Sentinel-2 images in 2020, the re-
gional average number of valid observations during the flooding and rice transplanting 
period of single rice in northern China is 17.4, and the areal percentage with more than 
one valid observation is as high as 99.9%. The average number of valid observations for 
single rice, early rice, and late rice in southern China is 8.95, 7.7, and 6.4, respectively, and 
their respective proportions with more than one valid observation in the region are 99.1%, 
99.2%, and 97.1%. In general, the Landsat-7 and 8 and Sentinel-2 images support the phe-
nology-based rice mapping data at the scale of the whole country. 

Compared with Landsat, Sentinel-2 has a greater contribution to the improvement of 
the valid observation quality. Specifically, the average number of valid Landsat-7 and 8 
observations in northern China during the flooding and rice transplanting period is five, 
which is eleven times lower than Sentinel-2. Compared to the Landsat observations, com-
bining Landsat and Sentinel-2 observations increases the regional average valid observa-
tions of single rice, early rice, and late rice in southern China from 3.02, 2.99, and 1.81 to 
8.95, 7.69, and 6.44, respectively. The spatial pattern of the valid observations and the per-
centage of identifiable pixels showed that Landsat-7 and 8 can satisfy the effective identi-
fication of single rice in northern China, while the integration of Landsat and Sentinel-2 is 
needed for the identification of rice in southern China. Furthermore, the involvement of 
the radar data (e.g., Sentinel-1) is necessary for late rice mapping compared to phenology-
based approach in this region, i.e., the Sichuan Basin (Figure 3c). 



Remote Sens. 2022, 14, 3134 9 of 21 
 

 

 
Figure 3. Spatial distributions of valid Landsat and Sentinel observations during the flooding and 
rice transplanting period of: (a) single rice, (b) early rice, and (c) late rice across China in 2020; (d) 
shows the average number of valid observations (bars) and the percentage of identifiable rice pixels 
(lines with symbols) with various combinations. It should be noted that although northern China is 
not suitable for planting early and late rice due to insufficient accumulated temperature, we show 
the valid observations during the periods with flooding signals of early rice and late rice in this 
region in order to fully demonstrate the distribution of valid observations across China. 

We further conducted an analyses of valid observations in the six main rice cultiva-
tion areas, which contribute about 96% and 94% of the total rice area and production in 
China, respectively [80] (Figure 4). Generally, the six rice cultivation areas shared similar 
patterns of valid observational quality with the entire country (Figure 3). This means that 
the combination of Landsat-7 and 8 and Sentinel-2 is necessary except for the 
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identification of single rice in northeastern China (Ⅰ), where Landsat itself is sufficient for 
capturing the flooding signals during the flooding and rice transplanting periods. As Fig-
ure 4 shows, the average number of valid observations in the main rice cultivation areas 
exceeded five when combining Landsat-7 and 8 and Sentinel-2 observations, and the pix-
els with more than one valid observation almost cover the entire area. Moreover, the iden-
tification of late rice in the Yunnan–Guizhou Plateau (Ⅱ1) and Sichuan Basin (Ⅲ) regions 
requires supplementation with radar data. The number of valid observations during the 
late rice flooding and transplanting phase in these regions is less than five without the 
Sentinel-2 data; the percentage of identifiable pixels increases from 71%, 80%, and 49%, 
respectively, when relying only on Landsat fusion data to more than 90%, with an espe-
cially large improvement in Ⅲ. The valid satellite observations collected for late rice map-
ping are significantly worse than those for single and early rice mapping. 

 
Figure 4. Observation availability of the six main rice cultivation areas in China. (a) The main rice 
cultivation areas with in situ phenology observation sites: Ⅰ, single rice in northeast China; Ⅱ1, single 
rice in the Sichuan Basin; Ⅱ2, single rice in the mid-lower Yangtze River Valley; Ⅲ, single rice in the 
Yunnan–Guizhou Plateau; Ⅳ, double rice in the mid-Yangtze River Valley; Ⅴ, double rice in south-
ern China. (b) The percentages of identifiable rice paddy pixels with different sensors and combi-
nations in each main rice cultivation area in China. A, B, C, and D at the x axis represent Landsat-7, 
Landsat-8, Landsat-7 and 8, and Landsat-7 and 8 with Sentinel-2, respectively. (c) The average num-
ber of total and valid observations during the flooding and rice transplanting period of single rice 
(the first bar), early rice (the second bar), and late rice (the third bar) for various sensors. The plus 
sign represents the median of valid observations of all pixels under the combination of all three 
sensors in each region. 

3.2. Impacts of Clouds, Sidelaps, and Transplanting Season Length on Data Availability for Rice 
Mapping 

Clouds, sidelaps, and transplanting season length are three factors influencing data 
availability for rice mapping. All the three factors showed a divergent pattern in northern 
and southern China (Figure 5). First, the cloud cover during the flooding and rice trans-
planting phase in southern China is generally higher than that in the north, due to less 
precipitation in northern China [81]. Second, there is a higher frequency of sidelaps in 
northeastern China compared with southern China, which is consistent with the pattern 
of valid observations. Third, the flooding and rice transplanting phase of single rice lasts 
about 60 days, from May to July, which is longer than early rice (~50 days, from April to 
May) and late rice (~45 days, from July to August). This longer transplanting duration 
tends to lead to more observations. 
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Figure 5. The spatial distributions and the average number of valid Landsat-8 observations (a,d), 
cloud (b,e), and overlap (c,f) during the period with flooding signals of single rice, early rice, and 
late rice at 1° × 1° grids; (g) shows the start, end, and length of the time window with flooding signals 
of rice paddies as determined in Section 3.1. The insets in (a–c) are the corresponding frequency 
diagrams. 

We further quantified the contributions of different factors to data availability. Figure 
6 shows that both the cloud cover and the transplanting length have a significantly nega-
tive effect on valid observations, while sidelaps are positively correlated with valid obser-
vations. It can be seen from Table 1 that the multivariate OLS model had a higher adjusted 
R2 value (0.481). Additionally, the model passed the F test and multicollinearity test (Mean 
VIF < 10), and had no autocorrelation (DW = 1.23), that is, there was no correlation 
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between the sample data and the model was appropriate. As expected, clouds, sidelaps, 
and transplanting season length were all found to be important predictors of valid obser-
vations. In terms of the overall magnitude of effects, we found that transplanting length 
and cloud cover explained a greater proportion of the variance in valid observations than 
sidelaps, with standardized coefficients of −0.547, −0.453, and 0.306, respectively. These 
attribution analyses explain the spatial pattern addressed above. 

 
Figure 6. Relationships between spatial valid observations and (a) cloud and (b) overlap. Data are 
based on the statistic of three variables of these three rice types at 1° × 1° grid. 

Table 1. Relationships between valid observations and clouds, sidelaps, and transplanting length 
in China based on Ordinary Least Squares (OLS) regression models. 

Explanatory Variables Coef. (Std. Err.) Std. Coef. 
Clouds −0.048 ***(0.003) −0.453 

Sidelaps 1.216 ***(0.094) 0.306 
Transplanting length −0.398 ***(0.019) −0.547 

Constant 4.232 *** (0.160) 
Pseudo R2 0.481 
Mean VIF 1.27 

Observations 1035 
*** indicates statistical significance at the 1% levels. aMean VIF tests the degree of multicollinearity 
among the independent variables. 

4. Discussion 
4.1. Data Availability in the Transplanting Phase for Phenology-Based Rice Mapping 

Phenology-based rice mapping is dependent on the extraction of flooding signals, 
which mainly relies on the quantity and quality of observations captured during the trans-
planting season. Therefore, we conducted statistical analyses to identify the number of 
Landsat-7, Landsat-8, and Sentinel-2 valid observations in the flooding and rice trans-
planting phase rather than the entire growing season of rice [25,43] across China. 

In this study, we examined the spatial pattern of the Landsat and Sentinel-2 valid 
observations during the flooding and transplanting phases of three major rice plantings 
(single rice, early rice, and late rice) in China in 2020 by using the Google Earth Engine 
platform to target the best satellite or virtual constellation selection for using phenology-
based rice mapping efforts across China. The advantages of this study have two aspects: 
(1) determination of rice transplanting phase by integrating in situ observations and re-
mote sensing; and (2) attribution analyses of data availability for rice mapping. 

First, a suitable temporal window to detect the flooding signal of paddy rice fields is 
key to the phenology-based approach. Other land types (e.g., water and wetlands) have 
flooding signals for a longer period, such as snowmelt in temperate and mountainous 
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regions and summer flooding [33], which interferes with rice flooding signal extraction 
and causes misclassification and omission errors. Previous studies have applied different 
approaches to determine the flooding and rice transplanting phase to avoid potential com-
mission errors in phenology-based rice mapping. For example, Zhang determined the 
flooding and rice transplanting phase (from SOF to EOF) in northeastern China as the 
period between the date of LST 5 °C and EVI 0.35 [26], while other studies have defined 
the temporal window for all pixels in certain eight-day composites according to agricul-
tural observations [29,82–84]. In this study, we determined the SOF and EOF of single rice, 
early rice, and late rice in different areas; our results are supported by the previous work 
on the temperate- and pixel-based time windows proposed by Zhang [26]. In addition, 
our methods to define the temporal window based on remote sensing data and agricul-
tural phenology observational data greatly alleviates the inaccuracy of using observa-
tional data alone [29,83]. Furthermore, our results can be applied in the southern China, 
where remote sensing data is severely missing, the accumulated temperature is suitable 
for rice growth in most of the year, and LST does not help to define the flooding and rice 
transplanting phase. 

Second, we conducted a comprehensive analysis on the drivers of data availability 
by considering three major factors, including cloud cover, sidelaps, and transplanting 
length. We found that cloud coverage has a significant negative effect on valid observa-
tions (β1 = −0.453) and is concentrated in the flooding and transplanting phase of rice in 
the southern China because of the heavy monsoon rain season [81,85]. The accuracy of 
large-scale rice mapping varies greatly between regions, and a higher omission error is 
generated in tropical regions due to the lack of cloud-free optical images 
[14,16,18,33,69,86]. The other two factors are significantly positively correlated with valid 
observations (β2 = 0.306, β3 = −0.547 for sidelaps and length of temporal window, respec-
tively). The flooding and rice transplanting phase of single rice is concentrated from May 
to July, and the length is about twenty days longer than that of early rice and late rice, 
from March to May and from July to September, respectively. This difference is closely 
related to rice varieties, rice cropping systems, and field management [23,87–89]. 

The Group on Earth Observations Global Agriculture Monitoring (GEOGLAM) 
[90,91] has developed a table of requirements for satellite-based Earth observation data 
with the purpose of demonstrating the spatial, spectral, “cloud-free” temporal resolution, 
and extant data requirements for a variety of agricultural monitoring applications or “tar-
get products” based on their experience in agricultural monitoring research. As articu-
lated by the table, the use of moderate spatial resolution data collected at a more frequent 
rate is a priority for crop mask spanning full extent e.g., persistently cloudy and rice-
growing areas. Compared to the study of GEOGLAM, our research suggests more advice 
as to specific satellite data requirements (Landsat-7 and 8, Sentinel-1 and 2, or their com-
bination) for single rice, early rice, and late rice mapping by phenology-based approach 
across China (Figures 7 and 8). 
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Figure 7. Spatial patterns of rice types identifiable by different sensors and combinations in China: 
(a–d) represent Landsat-7, Landsat-8, Landsat-7 and 8, and Landsat-7 and 8 with Sentinel-2, respec-
tively. 

 
Figure 8. Spatial patterns of different sensors and their combinations for meeting the requirements 
of remote sensed identification of (a) single rice, (b) early rice, and (c) late rice. 

4.2. Implications and Suggestions for Phenology-Based National-Scale Rice Mapping 
We found that in northern China, mainly in the northeast of China, which is domi-

nated by single rice, Landsat-7 and 8 data fusion could support the whole area covered by 
pixels with more than one valid observation in the temporal window, while in southern 
China the combination of Sentinel-2 and Landsat datasets offered higher spatial and tem-
poral resolution (~30 m, <5 day) [92], which therefore represents the best choice for single 
rice and early rice mapping. However, there are areas in Yunnan, Guizhou, and Sichuan 
Province that have no valid observations for late rice and where the assistance of radar 
data is needed. Sentinel-1 data, as a kind of SAR data, is anticipated to be a promising data 
source that can complement optical data (Sentinel-2 and Landsat) for paddy rice mapping 
in cloud-prone tropical and sub-tropical regions [93–95]. Thus, advanced satellite imagery 
(Sentinel-1/2) and multiple data fusion are necessary for the further extensive application 
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of pixel- and phenology-based rice mapping in the whole China, which will alleviate the 
lack of valid observations within the temporal window (about one month in length) due 
to revisit cycle of singular satellite data (e.g., Landsat) and the vulnerability of optical data 
to cloud. Zhang et al. [17] have harmonized Landsat-8 and Sentinel (1 SAR and 2MSI) 
images to generate a 10 m rice map of three provinces of China by integrating pixel-based 
classification involving random forest (RF) with object-oriented simple linear iterative 
clustering (SLIC). 

Here, we used Hunan Province as an example to showcase the effects of data availa-
bility on phenology-based single rice, early rice, and late rice mapping. As depicted in 
Figure 7, the valid observations from the combination of Landsat 7 and 8 can support early 
rice and late rice mapping in most parts of the Hunan Province, while the Sentinel-2 data 
are necessary for single rice mapping in this area; there are small parts of this area that do 
not satisfy the identifiable condition without the Sentinel-1 data (Figure 9). 

 
Figure 9. Guide to the best and most suitable satellite selection for (a) single rice, (b) early rice, and 
(c) late rice mapping. We considered the existing common remote sensing data, future conceived 
satellite sensors, and their combinations. L7, Landsat-7; L8, Landsat-8; S1, Sentinel 1; S2, Sentinel 2; 
C1, Landsat-7 and Landsat-8; C2, Sentinel-1 and Sentinel-2; C3, Landsat-7, Landsat-8, and Sentinel-
2; C4, Landsat-7, Landsat-8, Sentinel-1, and Sentinel-2. 

4.3. Uncertainties and Implications for the Future Studies 
This study only considered data availability during the rice transplanting phase for 

phenology-based rice mapping, which indirectly solves the classification between rice and 
other crops because the flooding and transplanting phase is the unique feature of paddy 
rice compared to others. These results were expected to provide valuable information for 
the increasingly widely used phenology-based rice mapping efforts. However, we did not 
consider data availability with respect to distinguishing rice paddies from wetlands, wa-
ter bodies, and other land cover types with the same signal. Additionally, observations in 
other phenological phases, e.g., tillering or harvest, may play a critical role in rice mapping 
efforts [86,96]. These limitations should be further analyzed in future studies. We quanti-
fied three influencing factors (clouds, sidelaps, and transplanting length) for the valid ob-
servations; however, mixed pixel issues caused by field size [67,97,98], cropping pattern 
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[66,96,99], and topography [33,100] might limit the effective use of remote sensing data as 
well, and therefore additional works are needed in order to comprehensively quantify 
these potential influencing factors. 

Edaphoclimatic and crop management practices may be important conditioning fac-
tors for phenology-based crop mapping. For territorial planning purposes, there are vari-
ations in land management practices on a seasonal scale in China. Considering this, crop 
and land management (especially crop calendars) or edaphoclimatic conditions can vary 
significantly among regions. Specifically, southern China is mostly characterized by di-
verse land use, land management, and complex conditions; thus, e spatial clustering of 
the crop phenology in an area must be performed in order to develop strategies for the 
temporal stratification of planting/sowing dates. Many possibilities [66,101–103] have 
been discussed as potential strategies to overcome differences in crop calendars and opti-
mize the search for available remote sensing data. 

Fortunately, advanced satellite data and cloud computing technologies have 
emerged as potential strategies to overcome the present adversities. The harmonized 
Landsat and Sentinel-2 (HLS) dataset [55], a near-daily single-sensor-like surface reflec-
tance time series, may be available in Asia in the near future. Additionally, cloud-based 
geospatial analysis platforms such as GEE and Amazon Web Services (AWS) include very 
large preprocessed databases, robust computing capability, and numerous algorithms 
[104]. Generally, large-scale rice mapping is promising based on the development of suf-
ficient remote sensing data sources, robust mapping algorithm with transferability and 
universal applicability, and high-performance cloud platforms. 

5. Conclusions 
Phenology-based algorithms have been increasingly used for large-scale rice map-

ping, however, they are largely dependent on the availability of valid satellite observa-
tions during the flooding and rice transplanting phase. However, there are spatial and 
temporal differences in the availability of valid images, resulting in differences in rice 
mapping accuracy among different rice types and in different regions, which greatly hin-
ders the high spatial resolution of rice mapping in large areas. Here, we assessed the fea-
sibility of all the available Landsat and Sentinel-2 imagery for national-scale rice mapping 
in China. Specifically, the spatio-temporal pattern of valid observations of these three sen-
sors (Landsat-7, Landsat-8, and Sentinel-2) and their combinations were characterized for 
the flooding and transplanting phase of single rice, early rice, and late rice in China in 
2020. We found that the number of valid observations gradually increased with the com-
bination of optical sensors. In addition, the number of valid observations of all sensors in 
northern China was greater than that in southern China, and the image quality in the 
flooding and transplanting phase of single rice was usually higher than that of early and 
late rice. Our results show that combining Landsat and Sentinel-2 observations provided 
17.4 valid observations in northern China, with 8.95, 7.70, and 6.40 valid observations, 
respectively, for single, early, and late rice mapping in southern China. Moreover, we 
found that cloud cover, sidelaps, and transplanting length are the main factors influencing 
the spatio-temporal pattern of valid observations. The significant negative impacts of 
cloud cover and transplanting length are greater than the positive impacts of sidelaps. The 
Std. Coef. (Std. Err.) of these three factors are −0.453 (0.003), −0.547 (0.019), and 0.306 
(0.094), respectively. These results are helpful in understanding the image quality during 
the flooding and rice transplanting phase, and can provide a guide for sensor selection 
during rice mapping. Most importantly, our study emphasizes the importance of cloud 
interference, which must be dealt with carefully when using images during the flooding 
and rice transplanting phase. 
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