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Abstract: This study uses satellite imagery and geospatial data to examine the impact of floods over
the main planting areas for double-cropping rice and grain crops in the middle reaches of the Yangtze
River. During summer 2020, a long-lasting 62-day heavy rainfall caused record-breaking floods over
large areas of China, especially the Yangtze basin. Through close examination of Sentinel-1/2 satellite
imagery and Copernicus Global Land Cover, between July and August 2020, the inundation area
reached 21,941 and 23,063 km2, and the crop-affected area reached 11,649 and 11,346 km2, respectively.
We estimated that approximately 4.66 million metric tons of grain crops were seriously affected in
these two months. While the PRC government denied that food security existed, the number of
Grains and Feeds imported from the U.S. between January to July 2021 increased by 316%. This
study shows that with modern remote sensing techniques, stakeholders can obtain critical estimates
of large-scale disaster events much earlier than other indicators, such as disaster field surveys or
crop price statistics. Potential use could include but is not limited to monitoring floods and land use
coverage changes.

Keywords: Sentinel; synthetic aperture radar; Copernicus Global Land Cover; crop production; food
security; middle reaches of the Yangtze River; flood; classification

1. Introduction

Food security is not only a domestic agriculture issue but also involves international
trade, regional balance, etc., as it is a high-priority topic in modern times. When a significant
climate event occurs, it is crucial for the nations directly impacted and all stakeholders in
the international food trade to pay attention. However, governments of nations directly
involved might not be willing to share all information. When a country faces large-scale
natural disasters and poor agricultural harvests, people might lose confidence in the
government to ensure security. This may even lead to political turmoil. The People’s
Republic of China (PRC) is the most populous nation worldwide, with approximately
1.4 billion people. After the COVID-19 pandemic, natural disasters and regional uncertainty
threatened the PRC’s food system; the PRC sought to manipulate different economic, trade,
and political tools in domestic and international society to satisfy its food needs in the face
of uncertainty. The PRC needs to stabilize food and crop production and expand grain crop
output to ensure domestic society stabilization and economic growth.

Even though there was a stringent lockdown policy over the COVID-19 pandemic in
rural and urban areas in the PRC from spring 2020, rare heavy rainfall and flood events
occurred from June to August along the middle reaches of the Yangtze River. This region
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is also in the center of a double-cropping rice (early rice and late rice) area, and the rice
production in this region accounts for 70% of the total national output [1,2]. However, the
PRC government still claimed that no food security issues existed [3]. According to the
official data released by the PRC National Bureau of Statistics and U.S. Census Bureau
Trade Data, the nationwide Total Sown Areas of Farm Crops, Grain Crops, and Rice in
2020 increased. Furthermore, the Output of Grain Crops, Rice, and Early Rice in 2020 also
increased unexpectedly. Meanwhile, the quantity of Grains and Feeds imported during
the January–July 2021 period to the PRC from the U.S. increased significantly, by 316%.
Under these factors and with doubts about increasing rice and grains output/productivity,
some officials and scholars have offered so-called “reasonable” explanations. Nevertheless,
it is not easy to explain or determine why the PRC imported a lot of corn, wheat, barley
and soybean, rice, etc., from different countries in the first and second quarters of 2021 [4],
especially without a significant growth in population. This event inspired us to determine
a method to evaluate the disaster situation and the potential food security issues, through a
rapid assessment using remote sensing techniques.

This research focuses on applying multiple satellite imagery techniques to study the
impact of a climate disaster on food production, using the case of a record-breaking flood
in China in the summer of 2020. Although the PRC government did not publish direct data,
the results from this research align well with the PRC government’s remedial actions after
the disaster several months later.

With the diversification of satellite imagery sources and the increasing abundance of
resources, the temporal and geospatial scales of the research scope become wider. Current
satellite imagery can quickly provide geospatial information across time to acquire large-
scale agricultural disaster damage data (especially in areas that are not easily accessible by
outsiders) [5–7]. Coupled with the integration of agricultural survey statistics that have
been published over the years, near-real-time analytical information can be obtained, which
is cost-effective for large-scale monitoring and rapid response missions.

However, analyses and calculation of imagery and geospatial data have increased
dramatically. In response to this scientific research development trend and the challenge
of extensive data analysis, Google has developed and made public a cloud computing
platform called “Google Earth Engine (GEE)” to provide global-scale geospatial analysis
services. Google’s substantial online computing power can effectively solve the need for a
large area and long-term monitoring [8–11].

This research uses this internet resource to analyze Sentinel-1 SAR imagery and
Sentinel-2 optical imagery. We composited time-series satellite imagery to produce maxi-
mum flooding maps (from Sentinel-1) and the best scenes with the lowest cloud coverage
(from Sentinel-2). With this supervised classification and related processing procedures,
this study aims to produce monthly flood coverage maps and land use/land cover (LULC)
change maps to verify the feasibility of applying them to the rapid food security assessment
in post-disaster regions.

Utilizing different RS techniques to extract cropland, paddy rice fields, and water
bodies with multi-source imagery is very popular and advanced in the PRC [12–15]. Nev-
ertheless, because food security issues are sensitive topics, it is difficult to find similar
research to integrate these fields as we did in our study. That is also why we thought to
fill the knowledge gap between remote sensing techniques, multi-source data, the GEE
cloud computing platform, and rapid food security assessment for this case. The core
and essential remote sensing (RS) technique we used in our research is to quantify LULC
change with multiple data sources. A similar technique is beneficial in different application
fields, such as environmental vulnerability [16,17], impact assessment [18,19], and natural
disasters and hazards monitoring [20,21].

Based on our research results, between July and August 2020, the inundation area
in our study region reached 21,941 and 23,063 km2, respectively, and the crop-affected
area reached 11,649 and 11,346 km2, respectively (as shown in Table 2). Taking the PRC
official data for reference, it is estimated that at least 4.66 million metric tons of grain crops
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were seriously affected in these two months; further, it is highly possible that there was no
harvest in these areas.

2. Materials and Methods
2.1. Study Area

The PRC is the world’s largest rice producer, and its planting area accounts for ap-
proximately 18.5% of the world’s rice area, second only to India. The PRC’s total rice
output ranks first globally, accounting for approximately 27.7%. The PRC’s rice output also
ranks first on the national food list, and 65% of the PRC’s population feeds on rice as the
main food. PRC rice can be divided into double-cropping rice (early rice and late rice) and
single-cropping rice. Double-cropping rice is planted in a wide area, mainly distributed
in Southeast Mainland China. Our research focuses on the middle reaches of the Yangtze
River, located in the east part of mainland China and mainly downstream below the Three
Gorges Dam with a total area of 618,177 km2. This area is also the main planting area for
double-cropping rice and grain crops in the Hubei, Hunan, Jiangxi, and Anhui provinces,
as shown in Figure 1. Most plains along the river are of low and flat terrain. The altitude is
mostly below 50 m. Since old times, it has been known as the “Hometown of Fish and Rice”.
It is also essential for rice and grain crops producing areas in the PRC. The rice planting
area and total rice production have always been at the forefront of the country. The rice
and grain crops-related industry is the critical foundation for the economic development of
these four provinces. We chose this region as our study area to estimate how to build up
the relationship between dynamic crop production situations and food security issues.
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Figure 1. Study area—locations of 4 provinces and 6 hydrological stations represented by stars.

From early June to late August 2020, heavy rainfall of a long duration and broad
impact caused by the regional rainy season led to floods severely affecting large middle
and southern areas in China, including the whole Yangtze basin. The PRC government
issued five rare flood warning alerts in a short period from 2 July to 17 August. According
to the press conference hosted by the PRC’s Ministry of Emergency Management on
13 August 2020, rainfall during the year’s rainy season (62 consecutive days) in the middle
reaches of the Yangtze River reached 759.2 mm, which is the highest level since 1961. The
water level in both Dongting Lake and Poyang Lake exceeded the guaranteed water level,
and the water level in the Chao Lake was the highest in history. The disaster affected
6.03 million hectares of crops, of which 1.14 million hectares had no harvest, mainly in the
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middle and lower reaches of the Yangtze River and surrounding area. In our study area,
early rice is sown in late March and early April and harvested in mid- to late July; late rice
is sown in mid- to late June and harvested in early and mid-October. According to the
data announced by the PRC government from early June to late August, with daily rainfall
conditions and reservoir regulation, the water level along the Yangtze River increased
significantly, as shown in Table 1 [22] and Figure 2. In fact, some cropland in our study area
experienced rain and flood for almost 2–3 months in 2020.

Table 1. Water level for middle reaches of the Yangtze River (unit: meter).

Station Name 6/2 6/12 6/28 7/3 7/5 7/12 7/18 7/24 7/27 7/29 8/5 8/15 8/18 8/27

Zhicheng, Hubei 39.70 39.65 43.26 46.30 45.76 43.00 46.23 48.19 46.95 47.19 45.93 46.98 47.42 46.42
Shishou, Hubei 30.36 31.36 35.45 37.44 37.52 37.54 38.27 39.45 39.12 39.17 38.18 38.05 38.25 38.45
Jianli, Hubei 28.38 29.84 33.42 35.11 35.38 36.15 36.32 37.22 37.08 37.12 36.17 35.66 35.79 36.29
Jiujing, Jingxi 12.27 16.05 17.77 18.87 19.68 22.74 22.18 21.92 21.77 21.73 21.18 20.01 19.73 19.68
Anqing, Anhui 8.77 12.39 13.93 14.95 15.54 18.21 18.02 17.82 17.6 17.64 17.07 15.98 15.71 15.53
Datong, Anhui 7.25 10.67 12.17 13.14 13.61 16.03 15.98 15.77 15.57 15.61 15.02 13.97 13.74 13.53

Data time: Daily 08:00 am; early June–late August 2020
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Figure 2. Water level, five flood alerts and rice sowing schedule for middle reaches of the
Yangtze River.

2.2. Data Sets
2.2.1. Sentinel-1A/B Data

In order to obtain a timely and accurate estimation of the paddy rice planting area
and damaged cropland area, we choose to implement mapping methods based on the
integration of optical and microwave remote sensing from Sentinel-1/2 data [23–25]. The
Sentinel-1 mission comprises a constellation of two polar-orbiting satellites, launched in
2014 and 2016, operating day and night, performing C-band synthetic aperture radar
imaging (SAR) at 5.405 GHz (C band), enabling them to acquire imagery regardless of
the weather. The collection we analyzed in our research through GEE includes the S1
Ground Range Detected (GRD) scenes, processed using the Sentinel-1 Toolbox to generate
a calibrated, ortho-corrected product. Each scene has one of 3 resolutions (10, 25, or 40 m),
four band combinations (corresponding to scene polarization), and three instrument modes.
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Data products are available in single-polarization (VV or HH) for the Wave mode and
dual-polarization (VV + VH or HH + HV) or single polarization (HH or VV) for other
different modes [26,27]. In our research, 95 and 103 Sentinel-1 SAR GRD images were
acquired between July and August 2020, as shown in Figure 3. The image resolution we
choose is 10 m; it is good enough to detect the rice field and flooding area by different
polarization products, with VH polarization for rice field detection and VH + VV dual-band
cross-polarization for flooding area detection.
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2.2.2. Sentinel-2 Data

The Sentinel-2 mission comprises a constellation of two polar-orbiting satellites placed
in the same sun-synchronous orbit. They are phased at 180◦ to each other. Sentinel-2 is also
a wide-swath, high-resolution, multispectral imaging mission supporting Copernicus Land
Monitoring studies, including monitoring vegetation, soil, and water cover and observation
of inland waterways and coastal areas. Sentinel-2’s wide swath width (290 km) and high
revisit time (10 days at the equator with one satellite and five days with two satellites under
cloud-free conditions, which results in 2–3-day resolution at mid-latitudes) make it easier
to monitor variability in land surface conditions and support monitoring of Earth’s surface
changes. Sentinel-2 carries an optical instrument payload that samples 13 spectral bands:
four bands at 10 m, six bands at 20 m, and three bands at 60 m spatial resolution. The
twins of Sentinel-2 provide continuity of SPOT and LANDSAT-type image data, contribute
to ongoing multispectral observations and benefit Copernicus services and applications,
such as land management, agriculture and forestry, disaster control, humanitarian relief
operations, risk mapping, and security concerns [28–30]. There are 92 scenes covering our
study area, as shown in Figure 4.

2.2.3. Copernicus Global Land Cover

In order to generate the LULC map before the flood in the study area, we took the
Copernicus Global Land Cover map as reference data sets, as shown in Figure 5, rather than
LULC data generated from different machine-learning algorithms [31–34]. The Dynamic
Land Cover map at 100 m resolution is a new product in the Copernicus Global Land
Service (CGLS). The map aims to deliver a yearly based global land cover map at 100 m
spatial resolution. Land cover plays a significant role in the climate and biogeochemistry of
the Earth system. The CGLS Land Cover product provides a primary land cover scheme,
covering the 2015–2019 period at three classification levels with class definitions from
the Land Cover Classification System (LCCS) scheme. Next to these discrete classes, the
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product also includes continuous field layers or “fraction maps” for all basic land cover
classes that provide proportional estimates for vegetation/ground cover for the land cover
types. This continuous classification scheme may depict heterogeneous land cover ar-
eas better than the standard classification scheme and can be tailored for application use
(e.g., forest monitoring, rangeland management, crop monitoring, biodiversity and con-
servation, monitoring environment and security, and climate modeling) Even though this
product is advantageous for monitoring forests, cropland, and environmental changes,
there were limitations. Areas with fragmented cropland (tiny size, less < 0.5 ha or sparse
cropland, and land cover areas) are challenging to map and display at a resolution of 100 m.
This misclassification could possibly lead to an underestimation of croplands [35–37].
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2.3. Methodology

Figure 6 presents a workflow chart of the methodology utilized in this study. Each
step is described in the following sections.
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2.3.1. LULC Map Extracted from Multi-Source Data

The application of machine-learning algorithms on RS imagery for LULC mapping has
attracted considerable attention [38]. The algorithms have been divided into supervised
and unsupervised techniques [39]. In our research, accurately quantifying surface water
bodies in flooding events is critical to understanding their role in LULC and related imagery
processing steps. Sentinel-1 data with high spatial resolution and cloud penetration are very
attractive and helpful to water body monitoring and change extraction, especially during
the rainy season and bad weather conditions [40]. We took the 92 scenes of Sentinel-2
imagery acquired in 2019 with the lowest cloud coverage and Copernicus Global Land
Cover rice field detected from VH polarization of Sentinel-1 imagery (acquired in July
and August 2020) as a reference to identify the water body and cropland before the flood
in 2020. By choosing 172 red sample points for the water body and 172 green sample
points for cropland evenly (as shown in Figure 7), it is easy to extract the extent of the
permanent water body and flooding area from Sentinel-1 imagery through GEE (as shown
in Figure 8) [41,42]. With this result, the training accuracy is 0.979, the training kappa is
0.959, the testing accuracy is 0.932, and the testing kappa is 0.865. In the same phase, we
can also extract the cropland as a reference map for other following steps. The results show
that using the GEE can not only perform fast and effective imagery processing procedures,
but also produce large-area and reliable imagery classification maps. We also utilize remote
sensing techniques to estimate the disaster losses in the rice field and yield in the study area
by using a developed Rice field Identification and riCe yield Estimate (RICE) algorithm for
analyzing the satellite images for comparison and data correction [43].
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2.3.2. Monthly Composite Flooding Map

Because the study area is enormous and Sentinel-1imagery cannot cover such a large
area every day, we try to generate the Monthly composite flooding map with the online
Google Earth Engine to represent the actual flooding situation in this event [44]. As shown
in Figure 9, VH and VV are single-polarization data of Sentinel-1. We compiled monthly
composite flooding data from Sentinel-1, and there were 95 and 103 Sentinel-1 SAR GRD
imagery acquired in July and August 2020. Even the Sentinel-1 SAR GRD imagery were
not affected by rain and cloud, the data still had a high noise-to-signal ratio. That is
why we took the Mean value of VH/VV polarization imagery to reduce the noise and
stack them to generate the monthly composite flooding map. With the permanent water
body extracted in Section 2.3.1, we can exclude the permanent water body and have a
refined monthly flooding map. Based on this product, it is easier to identify which area is
covered underwater during July and August 2020 (as shown in Figure 10). Finally, we can
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overlap and intersect the cropland and refined monthly flooding map layers to generate the
“damaged cropland area map” in July and August 2020 (as shown in Figure 11). Therefore,
we can assess and quantify the impacts of the 2020 flood on crop production in our study
area listed in Section 2.1.

Monthly composite flooding map = max {mean (VH) + mean (VV)}
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3. Results
3.1. Spatial and Temporal Variability of Flood Impact Area

Analyzing and quantifying the impacts of the 2020 flood on crop production encom-
pass a scientific approach which can be used to set up situation awareness to determine
the relationships between spatial and temporal variability of flood impact areas as early as
possible. Following the whole procedure listed in Section 2.3, we can obtain the results of
inundation areas and crop-affected areas in our study area (as shown in Table 2).

Table 2. Inundation area and crop-affected area (1 km2 = 100 hectare).

Inundation Area (km2) Crop-Affected Area (km2)

Province July August July August

Anhui 3699 4168 2039 2347
Hubei 7797 7105 4146 3533
Hunan 3410 4287 1588 1965
Jiangxi 7035 7503 3876 3501

Total 21,941 23,063 11,649 11,346

According to the official data released by the PRC National Bureau of Statistics [45], we
extract the “output of grain crops harvested in summer per hectare” and average numbers
based on previous output for these four provinces in our study area (as shown in Table 3).

Table 3. Output of grain crops harvested in summer per hectare (kg/hectare).

Province 2019 2018 2017 2016 Mean

Anhui 5842 5589 5825 5663 5730
Hubei 3645 3539 3582 3700 3616
Hunan 4035 4154 3572 3509 3818
Jiangxi 3748 3789 3601 3596 3683

Total 17,270 17,071 16,580 16,468 16,847

As described in “Section 2.1”, rainfall during the year’s rainy season (62 consecutive
days) in this area reached 759.2 mm, which is the highest level since 1961. Some cropland
in our study area experienced rain and flood for almost 2–3 months in 2020, as long as
the historical record. Multiply the “crop-affected area (km2) in August” for each province
from Table 2 and the mean of “output of grain crops harvested in summer per hectare
(kg/hectare)” for the same province from Table 3. The results show that approximately
4.66 million metric tons of grain crops were at least seriously affected in July and August
2020; further, it is highly possible that there was no harvest in these areas.

The satellite images have the advantages of multi-spatial and temporal availability
and a large coverage area for LULC mapping [46]. Compared to field surveys [47], remote
sensing techniques provide the opportunity for rapid acquisition of information on LULC
at a much-reduced price with high efficiency.

3.2. Food Security

Based on the official data released by the PRC National Bureau of Statistics and U.S.
Census Bureau Trade Data, as shown in Tables 4–6, some critical findings are listed below:

(1) Compared to 2019, the total sown areas of farm crops, grain crops, and rice in 2020
increased by 0.94%, 0.61%, and 1.30%, respectively.

(2) Compared to 2019, the output of grain crops, grain crops harvested in summer, grain
crops harvested in autumn, rice, and early rice in 2020 increased by 0.85%, 0.89%,
0.68%, 1.07%, and 3.88%, respectively.

(3) Until early May 2022, the PRC government released no detailed province-level agri-
cultural data for 2020. It is likely that they will announce different rates and methods.
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(4) Compared to the January–July 2020 period, the quantity of Grains and Feeds imported
during the January–July 2021 period to the PRC from the U.S. increased by 316%. The
increases in corn, wheat, barley, and rice increased by 1691%, 153%, 503%, and 166%,
respectively, in the same period.

Table 4. Sown area changes.

(1000 ha) 2017 2018 2019 2020 2020/2019 Change %

Total Sown Areas of Farm Crops 166,331.00 165,902.38 165,931.00 167,487.00 0.94
Sown Area of Grain Crops 117,989.00 117,038.21 116,064.00 116,768.00 0.61
Sown Area of Rice 30,747.00 30,189.45 29,693.52 30,080.00 1.30

Table 5. Grain crops and rice output changes.

(10,000 tons) 2017 2018 2019 2020 2020/2019 Change %

Output of Grain Crops 66,160.73 65,789.22 66,384.00 66,949.20 0.85
Output of Grain Crops
Harvested in Summer 14,174.46 13,881.02 14,160.00 14,286.00 0.89

Output of Grain Crops
Harvested in Autumn 48,999.10 49,049.18 49,597.00 49,934.00 0.68

Output of Cereal 61,520.54 61,003.58 61,370.00 61,674.00 0.50
Output of Rice 21,267.59 21,212.90 20,961.00 21,186.00 1.07
Output of Early Rice 2987.16 2859.02 2627.00 2729.00 3.88

Table 6. U.S. export to the PRC Grains and Feeds.

Unit: MT 2017 2018 2019 2020 January–July 2020 January–July 2021 2021/2020
Change %

Grains and Feeds 9,127,355.90 4,951,992.40 3,005,759.80 16,703,734.40 5,457,918.60 22,702,279.60 316.00
Corn 811,069.00 290,460.00 312,473.00 7,052,133.00 857,222.00 15,351,846.00 1691.00
Grain Sorghum 4,603,556.00 2,660,222.00 1,004,182.00 5,529,616.00 2,910,232.00 4,303,861.00 48.00
Wheat 1,514,399.00 396,987.00 236,062.00 2,252,067.00 691,835.00 1,750,758.00 153.00
Feed, Ingrd and Fod 2,128,023.20 1,530,842.50 1,399,988.60 1,821,838.80 970,588.90 1,271,562.80 31.00
Barley 0.00 0.00 0.00 89.00 39.00 235.00 503.00
Barley Products 12.30 59.60 18.40 59.00 39.90 53.90 35.00
Rice 739.20 122.00 73.70 54.20 19.10 50.60 166.00

The COVID-19 pandemic started in early 2020, and the PRC government announced
the most strict lockdown policy in the globally from spring onwards. This unprecedented
policy was executed in different cities and regions for a couple of months. Then, rare
heavy rainfall and flood events occurred from June to August along the middle reaches
of the Yangtze River. It is very difficult to believe that these known factors had no impact
on food security issues in the PRC. If there were no such impacts, it is also difficult to
understand why the PRC imported lots of corn, wheat, barley, soybean, rice, etc., from
different countries in the first and second quarters of 2021 [4], even from its competitors
(e.g., the U.S. and India) [48], especially without a significant growth in population.

Food security and related issues are always the PRC’s highest priority and are among
the most sensitive of topics. Recently, several techniques have been developed to map
cropland patterns and dynamics from RS observations, including traditional satellite-based
LULC mapping and UAV imagery applications [49–53]. These studies focus on the damage
assessment of high-value crops in smaller areas. Related technology can more accurately
classify crop damage, but rely on a lot of support from the local government and are not
applicable in the cross-country rapid assessment work model for this study. However, it is
also not so easy to find similar food security research topics with situation awareness and
rapid warning based on wide-area RS resources.
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4. Discussion
4.1. Rapid Damage Assessment

Although the method used in this study is satisfactory, there are still some factors that
we must clarify. First, we assume that the average productivity of the affected cropland is
uniform, so that we can multiply the affected cropland area with the average productivity to
estimate damage losses. Even though this is a simplification procedure, it is still prevalent
in statistics. Using this method, we estimated that approximately 4.66 million metric tons
of grain crops were seriously affected in these two months. The numbers are not high in
accuracy, but scientists and stakeholders are able to assess the extent of the damage from
these results. Before better solutions or more detailed information is released in near real
time, conducting a rapid damage assessment of this type for such disaster events is still
helpful at a practical level.

4.2. Remedial Actions after the Flood

We must clarify one more thing: food security is a sensitive topic and not only a domes-
tic concern, so governments of nations directly involved in large-scale disasters might not
be willing to share all the related information. For objective and realistic cropland damage
assessment, it is almost impossible to find the necessary statistics from government official
information or related channels in real time. Although we did not use PRC government-
published direct data, there was no solid evidence to show the increased import of grain
crops linked to the flood event. As we described, after the record-breaking flood and the
COVID-19 pandemic, the PRC unusually imported huge amounts of grain crops without
any food culture change or significant population growth. This may have been coincidental,
or we can assume that the results from this research align well with the PRC government’s
remedial actions several months after the disaster.

4.3. Apply the Research Results for Other Cases

In recent years, extreme climate events, geopolitical crises, and regional security issues
have increased yearly, resulting in large-scale and regional agricultural and food crises
worldwide. For example, Ukraine’s Minister of Agrarian Policy, Mr. Roman Leshchenko,
claimed: “Ukraine can feed the world” in an ATLANTIC COUNCIL article published on
4 March 2021: the country’s active agricultural area is more extensive than Italy. Meanwhile,
Ukraine is already among the top three grain exporters and a world leader in areas such as
soybeans and sunflower oil [54]. However, this “breadbasket of Europe” is threatened by
Russia’s “Special Military Operation,” which started in February 2022 and is disrupting
the planting schedule of spring crops and the shipping arrangements of existing grain
inventories. It is not just a conflict between two countries, but also impacts many other
countries’ food security. Suppose that we can apply the method mentioned in our study to
integrate multi-source RS data such as Sentinel-1/2 and MODIS, this would allow us to
monitor this large-scale grain crop productivity situation and raise warning concerns as
early as possible after natural or manufactured disasters.

5. Conclusions

This study took the two-month-long torrential rain and flood disaster in the middle
reaches of the Yangtze River in 2020 as a case. We collected and integrated a variety of multi-
source satellite imagery, LULC change maps, official agricultural surveys, agricultural food
import data, etc. In addition to clarifying the application limitations of different satellite
images [55], we also proposed constructing a feasible analysis to predict regional rice and
crop shortage warning signs after disasters [56,57]. The government can use the research
results to judge the potential shortage of rice and crops in neighboring countries after large-
scale disasters. It is also possible to formulate a negotiation strategy for agricultural and
grain import and export in advance and judge the possible impact on domestic political and
social situations—further, the impact on national security or regional balance. Consequently,
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we can explore and expose potential and undercover urgent food security issues as early as
possible through the developed method.
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