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Abstract: The accurate separation between leaf and woody components from terrestrial laser scanning
(TLS) data is vital for the estimation of leaf area index (LAI) and wood area index (WAI). Here,
we present the application of deep learning time series separation of leaves and wood from TLS
point clouds collected from broad-leaved trees. First, we use a multiple radius nearest neighbor
approach to obtain a time series of the geometric features. Second, we compare the performance of
Fully Convolutional Neural Network (FCN), Long Short-Term Memory Fully Convolutional Neural
Network (LSTM-FCN), and Residual Network (ResNet) on leaf and wood classification. We also
compare the effect of univariable (UTS) and multivariable (MTS) time series on classification accuracy.
Finally, we explore the utilization of a class activation map (CAM) to reduce the black-box effect
of deep learning. The average overall accuracy of the MTS method across the training data is 0.96,
which is higher than the UTS methods (0.67 to 0.88). Meanwhile, ResNet spent much more time than
FCN and LSTM-FCN in model development. When testing our method on an independent dataset,
the MTS models based on FCN, LSTM-FCN, and ResNet all demonstrate similar performance. Our
method indicates that the CAM can explain the black-box effect of deep learning and suggests that
deep learning algorithms coupled with geometric feature time series can accurately separate leaf and
woody components from point clouds. This provides a good starting point for future research into
estimation of forest structure parameters.

Keywords: classification; time series; point clouds; geometric feature; deep learning

1. Introduction

Forest canopy structure affects the interactions between terrestrial ecosystems and
the atmosphere [1]. Green leaves in the canopy control vital ecological processes such as
photosynthesis, gas exchange, and light interception, while the woody part contributes to
tree biomass [2,3]. Accurate separation of leaf and woody components from the canopy has
the potential to improve our understanding and management of forests from a structural
point of view [4].

The development of remote sensing techniques during the last multiple decades,
particularly terrestrial laser scanning (TLS), has been increasingly applied to forestry and
ecology due to its ability to capture detailed 3D information about forest structure [5,6].
TLS is an active remote sensing instrument that emits laser pulses, and then reads their
return signal to generate 3D point clouds, allowing for the distance to surrounding objects
to be calculated based on the pulse return time [7].

Many studies have investigated the potential of TLS point clouds to separate leaf and
woody components from individual trees or plots using unsupervised and supervised
machine learning algorithms. These separation methods can be subdivided into three
groups: (1) by geometric features [8–10], (2) by radiometric features [11], and (3) by a
mixture of both [4,12]. The radiometric method depends on the type of LiDAR system
(e.g., wavelength) which makes it sensor-specific [9]. Conversely, the geometric method
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only needs the xyz coordinates of the points, which is the fundamental information pro-
vided by all sensors [8]. Moreover, the geometric method consistently outperforms the
radiometric techniques when comparing results across the literature [3]. The mixed ap-
proach has been used to classify leaf and wood [4] and has consistently had the highest
performance of all of the classification methods; however, the mixture method still relies on
the type of LiDAR system due to the inclusion of radiometric features [10].

Geometric features describe the local geometry of a point and are often estimated
from a local neighborhood of points [13]. Radially bounded nearest neighbor and k-nearest
neighbor approaches typically define the local neighborhood of a point [8,10,14]. When
comparing those two approaches, the radius-bounded nearest neighbor seems to be more
advanced, while the density of the point clouds influences the latter. For example, the
density of point cloud in the upper part of the tree is often lower than the points in the lower
part, due to occlusion effects and physical distance between the target and scanner [2]. Thus,
the geometric features obtained by the same k-nearest neighbors approach in the canopy are
different from those in the understory [8]. By contrast, the features defined by the radius-
bounded nearest neighbor approach can allow more consistent geometric meaning [14].

Current separation geometric feature separation methodologies that use the radius-
bounded nearest neighbor approach have relied on a fixed size or have defined an optimal
size using the criterion such as Shannon entropy [4,9]. In contrast, using a multiple radius
method eliminates the need to select a single size to obtain features [8]. Belton et al. [13]
also presented a leaf and wood classification method based on a multiple radius search
approach, which demonstrated superiority to the single radius search approach; however,
there are some problems with a multiple radius search approach when classifying leaf and
wood components [8,12,13]. First, searching several sizes randomly may not completely
capture the geometric information of each point at different scales. Second, the distribution
of classes in the training and testing data affects the performance of machine learning
models [15], since testing data may not have the same proportion of training data compared
to the real world [16].

Recent advances in deep learning are providing an excellent opportunity to quantify
forest structure and classify leaf and wood components [5]. Deep learning is believed to
be the best solution for discovering complex architecture in high-dimensional data [17].
Compared with machine learning algorithms (random forest (RF) boosting), deep learning
neural network (NN)-based algorithms are more complex and require high-performance
hardware [18,19]. Additionally, deep learning algorithms are composed of black-box
networks, which makes them difficult to interpret [20].

A time series is defined as a series of data points ordered based on a uniform inter-
val [21]. Multiple radius nearest neighbors often search a set of radii from small (0.1 m) to
large values (1 m) [8,13], and thus can be cast as time series data for classification. Generally,
time series data can be grouped into univariable time series (UTC) and multivariable time
series (MTC). MTC is the finite sequence of UTC, providing more patterns to understand
the data [21,22].

Time series classification (TSC) is regarded as one of the main challenges in data mining
over the last several years [23]. Also, time series data have found many applications in
image classification [24], healthcare [25], human recognition [26], and the steel industry [27].
This is because any classification problem using data that is arranged according to some
notion of order can be taken as a TSC problem [20]. With the increment of temporal
data availability, many algorithms have been presented to tackle the TSC problem [20].
At the early stage of TSC, distance-based methods use pre-defined similarity measures
like Eulidean distance or dynamic time warping (DTW) to perform a classification on
original time series directly [28,29]. DTW coupled with k-nearest neighbors have become
popularized recently and are largely considered the gold standard in this field [30]. Feature-
based methods extract a number of features, which represent the local/global time series
patterns, and then perform a classification [31]; however, those methods require more
individualized data preprocessing and feature engineering [32]. Deep learning models, by
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contrast, apply an end-to-end approach that incorporates the feature engineering internally
while the model makes decisions on its own process [26]. As a result, deep learning
models have the ability to extract information from the time series in a more efficient and
complete manner [18].

There are many methods presented primarily to handle satellite image time series
classification problems [33–35]. For example, Xu et al. [34] proposed a recurrent neural
network (RNN) coupled with random forest for scene classification using time series im-
ages, demonstrating higher performance than support vector machine (SVM). Meanwhile,
Dou et al. [35] used deep learning networks based on convolutional neural network (CNN)
on mapping land use and land cover change, producing an overall accuracy of 0.83. Though
those deep learning methods demonstrate promising performance on time series image
classification, their applications on TSC of point clouds are not well studied.

In the context of previous studies, this paper seeks to investigate the potential of deep
learning algorithms to separate leaf and woody components using TLS data. Specifically,
Section 2 introduces data source and deep learning methods, and Section 3 illustrates the
performance of our methods on point clouds. Sections 4 and 5 present discussion and
conclusions. Moreover, our study focuses on the following questions: (1) Can the multiple
radius search method be used to create time series data? (2) Does MTC have significant
advantages over UTC for leaf and wood classifications using TLS data? (3) How well do
different deep learning methods perform the classification of leaf and woody components
using point clouds? (4) Can the black-box effect of deep learning become interpretable?
We explore the above questions using seven broad-leaved trees scanned by TLS during the
leaf-on and leaf-off conditions.

2. Materials and Methods
2.1. Study Area and Data

To evaluate deep learning algorithms on leaf and wood classification, we collected
TLS point clouds from seven broad-leaved trees (Ulmus americana) at the North Campus,
University of Alberta (53◦31′42.4′′ N, 113◦31′26.5′′ W). This site is located in Edmonton,
Alberta, Canada which experiences a humid continental climate (mean annual precipitation
−480 mm) with warmer summers (mean temperature up to 23.1 ◦C) and cold winters
(mean temperature bottom to −14.8 ◦C) [36]. The seven trees were scanned during the
leaf-on and leaf-off conditions in October 2017 and January 2019, respectively.

We used a Rigel VZ-400i (Horn, Austria), to scan all trees. This TLS uses a 1550 nm
shortwave infrared laser light, with a maximum vertical field of view (FOV) of 120◦

and a horizontal FOV of 360◦. The beam divergence of this TLS is 0.35 mrad, with a
range accuracy of 0.005 m at 100 m range [7]. The scanning strategy took the form of a
30 m × 50 m plot. Six-cylinder reflectors installed on 2 m poles outsides of the bound of the
plot as control points were used for registration. To minimize the occlusion effect, 12 scan
positions were used to cover each tree. The registration was performed using RiSCAN
PRO software (RIEGL Laser Measurement Systems GmbH, Horn, Austria). All points
that did not belong to target trees from the registered point clouds were removed. The
description of the point cloud of all trees registered under the leaf-on and leaf-off conditions
is illustarated in Figure 1.
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Figure 1. Trees obtained after registering the point clouds under the two phenological conditions.
Color points: leaf. Gray points: wood.

2.2. Data Processing
2.2.1. Predictor Variables

Local dimensional features express how neighborhood points are distributed in space.
They use geometric attributes derived from point clouds data to support classification
problems [9,37]. To obtain the local dimensional features, a covariance matrix is calculated
based on several neighboring points within a specified radius. The spatial distribution of
the point can then be represented by three positive eigenvalues (λ1, λ2, λ3).

We used the geometric features in Table 1 as predictor variables to classify leaf and
woody components, which is consistent with other literature [10,38]. Cloud Compare
(version 2.11, Cloud Compare, GPL software) was used to obtain those features directly [9].

Table 1. Three geometric features extracted from the point clouds, λ represents eigenvalues.

Feature Name Equation

1 Planarity (λ2 − λ3)/λ1
2 Linearity (λ1 − λ2)/λ1
3 Eigentropy −∑3

n=1λn ∗ log(λn)

2.2.2. Data Labeling

To train a deep learning model, we used the registration by distance function in Cloud
Compare to identify clusters of points as training data. The distance obtained indicated the
local changes due to loss of leaves and branches between the two phenological conditions.
A large distance between the two phenological conditions often means leaves, while a small
distance represents wood components (Figure 1). Here, we labeled the points from the
clouds of seven trees into two classes by hand, where class 1 and class 0 represented wood
and leaf, respectively.

The classes are often unbalanced in leaf and wood classification, where the wood class
is smaller than the leaf class [8]. According to [16], using balanced training data does lead
to the highest overall accuracy, regardless of the percentage of the two classes in the testing
data. Therefore, we randomly sampled about ten percent of the total points of each tree
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(about five percent per class) as our training data (see Table A1), indicating the broader
applicability of our method. We used this sample size to balance the computational power
and the number of points.

2.2.3. Time-Series Data

Two types of time series, UTS and MTS, were used for the leaf and wood classification
in this study. One of the challenges of applying deep learning to TSC is preparing the input
time series [39]. Here, the input data X should be a three-dimensional array (number of
samples, number of timesteps, number of variables), while the output Y label is a two-
dimensional array (number of samples, number of labels). Traditionally, a time series
Xi is defined as a set of ordered real values of length T, with a corresponding class Yi. The
training data is composed of a number of n pairs (Xi, Yi) [20]. Therefore, the shape of UTS
is (n, T), while MTS has the shape of (3n, T) in this case. As a result of this difference,
we convert the two-dimensional shape of UTS and MTS mentioned above into the three-
dimensional time series (UTS: (n, T, 1); MTS: (n, T, 3)) using the python package tsai [40].

Before applying multiple radius nearest neighbors to define the number of timesteps,
we used a voxel grid filter of size 0.01 m to down-sample the point clouds [36]. Down-
sampling ensures a uniform distribution of points in space, improving computation effi-
ciency [41]. The geometric features were computed from an increasing radius ranging from
0.05 m to 1 m, stepped by 0.05 m. As a result, the shapes of UTS and MTS are (n, 20, 1) and
(n, 20, 3), respectively. Since we have a binary classification, the shape of the label is (n, 1).
The only preprocess step for the time series is standardizing the input data. The values of
time series in similar ranges can speed up the computation of neural networks [30,42].

2.2.4. End-to-End Deep Learning Model

There are two groups of models, in terms of the deep learning architecture, that can
solve TSC: (1) deep learning algorithms with manually made features, and (2) end-to-end
deep learning algorithms. This study only considers end-to-end deep learning models that
incorporate feature engineering while optimizing the classifier. The main objective of deep
learning models is to eliminate the bias of hand-engineered features, thus enabling the
network to independently learn and make intelligent decisions [43].

Convolutional neural networks (CNNs) have seen many successful applications for
time series analysis [44,45], with some models obtaining accuracies of 99% [45]. CNNs often
demonstrate higher performance in time series classification, because applying multiple
convolutional filters on an input time series results in multiple other time series, which
mean multiple discriminate features can then be acquired for the classification task [20].

A. Fully Convolutional Neural Networks Fully convolutional neural networks (FCNs)
were originally proposed by Wang et al. [32]. This architecture outperformed other
approaches (i.e., multilayer perceptrons, residual networks) for classifying UTS and
MTS data according to the University of California Riverside/University of East
Anglia (UCR/UEA) archive [32]. There are three convolutional blocks in this network,
where each block also has three operations:

y = w⊗ x + b,
z = BN (y),

h = ReLU (z)
(1)

where: x = input data; w = weight matrix; b = bias; y = output neuron; z = batch nor-
malization on output neuron; h = activation of the output neuron, ⊗ = convolutional
operator, and BN = batch normalization (BN). BN can help speed up convergence
and improve generalization. Those three blocks are performed as feature extractors,
and are fed into a global average pooling (GAP) layer instead of the traditional fully
connected layer, thus reducing the number of parameters [46]. Finally, a sigmoid
function connects the GAP layer’s output to produce the final label (Figure 2a).
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Figure 2. The network structure of FCN (a), LSTM-FCN (b), and ResNet (c); feature extractor: block
with a convolutional layer plus a batch normalization (BN) layer and a ReLU activation function;
output layer: global average pooling with a sigmoid activation function.

B. Long Short-Term Memory-Fully Convolutional Neural Networks Long short-term
memory (LSTM) is one of advanced RNN architecture, which handles vanishing
gradient problems [47]. Karim et al. [48] proposed combined utilization of LSTM
and FCN on time series classification, and the obtained LSTM-FCN method further
increased the performance of FCN on the UCR archive. With the same network of
FCN, LSTM-FCN incorporated a sub-module which contained two layers (Figure 2b).
The original time series will be input into the first layer, also called the dimensional
shuffle. This layer transforms a univariable time series with N timesteps into a
multivariable time series (N variables with one timestep). The transformed time
series is then passed into a LSTM layer followed by a dropout, with the dropout
layer helping to prevent overfitting. The outputs of the LSTM and GAP layers are
concatenated and then input into a final sigmoid layer.

C. Residual Networks ResNet is also a high-performance deep neural network in time
series classification tasks [49]. Xi et al. [12] compared the performance of 15 machine
learning and deep learning methods on leaf and wood classification and determined
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that ResNet is one of the most competitive classifiers among them. Figure 2c presents
the network structure of ResNet used in this study. The ResNet network includes
three residual blocks and connects with the GAP layer and a sigmoid function. We
used the convolutional blocks in Equation (1) to develop each residual block. Here, the
Blockn indicates the residual block with n filters, which have the following operations:
x, input data; sn, output of each convolutional block; y, output neuron after adding
shortcut connection; s, output of the residual block.

s1 = Blockn1(x),
s2 = Blockn2(s1),
s3 = Blockn3(s2),

y = s3 + x,
s = ReLU (y)

(2)

Deep learning is often criticized for being a black-box network, meaning their network
is harder to understand [18]. One of the benefits of the methodology employed here is that
the GAP layer in the above network enables the utilization of class activation map (CAM)
to reduce the black-box effect [50]. CAM highlights the contributing region in the raw data
to the resulting classification. Therefore, CAM provides a possible explanation of how the
convolution layers work for TSC [32].

When it comes to the hyperparameter of FCN, LSTM-FCN, and ResNet, the stride of
all convolutions is equal to 1 with the same padding. This padding means that the length of
the time series remains unchanged after the convolutions. The kernel size {3, 5, 8} and filter
sizes {64, 128, 256} are determined by a random search method to find the best performing
combinations. To make our method broadly applicable, we also add a regularization term
to avoid overfitting in each convolution [51].

In this study, we used five trees for training and validation, while the remaining
two trees served as testing data. The performance of our method, including parameter
optimization, was evaluated via a k-fold cross-validation strategy [52]. Then, we applied
Adam optimization to each method, and used binary cross-entropy as a loss function.
Adam optimization is a commonly used gradient descent algorithm for training deep
learning models [53]. We set up the learning rate as 0.001, the number of epochs as 100, and
the batch size as 256, based on previous studies [20,54]. Moreover, we used EarlyStopping
to avoid overfitting [55]. This approach keeps recording the loss on the validation data
and stops training the classifier when there is no improvement in the performance of
validation data. Finally, we applied the CAM method to identify the contribution region
of an input time series for the predicted labels. More details about the hyperparameter of
FCN, LSTM-FCN, and ResNet are given in Appendix B.

2.2.5. Evaluation

In addition to evaluating the performance of three deep learning networks on Trees
1 and 5, we tested our methods on six trees from [10] to indicate model generation on
other tree species. Three of the trees came from Alice Holt, UK, named as alice_1, alice_2,
and alice_3. The remaining three trees, called caxiuanaA_117, nouraguesH20_108, and
pan_33 are from Caxiuana, Brazil, Nouragues, French Guiana and London, UK, respectively.
More details about those trees can be obtained from Vicari et al. [10]. We randomly selected
10,000 points per class for each tree to evaluate our model generation.

To compare the performance of our method against other leaf and wood classification
schemes in literature [4,8,10], we used Precision, Recall, F1 score, Accuracy, and a receiver op-
erating characteristic (ROC) curve to evaluate our model’s performance. Precision measures
the proportion of the true positive (TP) out of all predicted positive points (TP and FP).

Precison =
TP

TP + FP
(3)

Recall is the proportion of the predicted true positive (TP) against all true positive
points (TP and FN).
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Recall =
TP

TP + FN
(4)

F1 score is the trade-off between Precision and Recall, ranging from 0 to 1.0. A perfect
classifier would give a 1.0 of F1 score.

F1 score = 2∗ Precison ∗ Recall
Precison + Recall

(5)

Accuracy is the proportion of all corrected classified points (TP and TN) against
all points.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

We used a receiver operating characteristic (ROC) curve to understand the discrim-
ination power of three networks. The curve is generated by True Positive Rate (Recall) vs.
False Positive Rate at different thresholds. The area under the ROC curve is between 0 and 1.
A high area indicates the high prediction score of the classifier.

False Positive Rate =
FP

FP + TN
(7)

3. Results
3.1. UTS vs. MTS

Figure 3 gives the time series of three features using the multiple radius search method,
revealing the different changing patterns between a leaf and wood point. Concerning
the leaf point, the eigentropy tended to have a lower standardized value (<−0.6) in the
intermediate radius timesteps (6 to 16), while the radius value of the wood point (>0)
was larger. No clear difference between the leaf and wood points linearity or planarity
were found.

Figure 3. Time series of a leaf (a) and wood (b) point from a cloud using multiple radius nearest
neighbors; eet: eigentropy; pln: planarity; lnr: linearity; the Y-axis is the standardized value of each
feature; the X-axis is the timesteps of radius; here we have 20 radius or timesteps, then the value of X
ranges from 1 to 21.

To assess the effects of UTS and MTS on the model performance, a five-fold cross-
validation strategy was applied to the training data. Table 2 demonstrates all the classifica-
tion result metrics for both the UTS and MTS of three deep learning networks. As indicated
in the table, our method based on MTS clearly outperformed the method based on UTS.
When used with MTS, LSTM-FCN and ResNet demonstrated the same overall accuracy
of 0.96, with the same F1 score of 0.96 for leaves and wood. FCN had the lowest accuracy
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of 0.92 among the three networks. Concerning UTS, the eigentropy had a better F1 score
for leaf and wood and accuracy than planarity and linearity for all three networks. For
example, ResNet produced an overall accuracy of 0.88 on eigentropy, higher than planarity
(0.80) and linearity (0.79). Moreover, the planarity and linearity demonstrated similar
performances across all metrics for all three networks.

Table 2. Comparison of univariable (UTS) and multivariable time series (MTS) model on FCN,
LSTM-FCN, and ResNet using Precision, Recall, F1 score, and Accuracy for training data; Accuracy
means the corrected classified leaf and wood points against the total points (UTS: Planarity; Linearity;
Eigentropy, MTS: Overall).

FCN LSTM-FCN ResNet

Method Accuracy F1 Score
(Leaf)

F1 Score
(Wood) Accuracy F1 Score

(Leaf)
F1 Score
(Wood) Accuracy F1 Score

(Leaf)
F1 Score
(Wood)

Planarity 0.67 ± 0.01 0.67 ± 0.07 0.66 ± 0.04 0.74 ± 0.00 0.74 ± 0.00 0.74 ± 0.01 0.80 ± 0.01 0.80 ± 0.01 0.80 ± 0.01

Linearity 0.69 ± 0.02 0.65 ± 0.07 0.72 ± 0.02 0.76 ± 0.01 0.76 ± 0.01 0.76 ± 0.01 0.79 ± 0.01 0.79 ± 0.01 0.79 ± 0.01

Eigentropy 0.82 ± 0.01 0.81 ± 0.01 0.82 ± 0.02 0.85 ± 0.01 0.85 ± 0.01 0.85 ± 0.01 0.88 ± 0.01 0.87 ± 0.01 0.88 ± 0.01

MTS 0.92 ± 0.01 0.92 ± 0.00 0.92 ± 0.01 0.96 ± 0.01 0.96 ± 0.00 0.96 ± 0.00 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01

Table 3 provides information about the training process of the UTS and MTS methods
of three networks. The average training time of ResNet (487 min) was around 7 and 14 times
higher than FCN (68 min) and LSMT-FCN (35 min), respectively. Also, the average number
of epochs and training time between UTS and MTS model were similar. For instance,
the mean epochs and training time of UTS model based on ResNet were 225 ± 34 and
487 ± 74 min, while that of MTS model were 255 and 553 min.

Table 3. The number of epochs and training time of univariable (UTS) and multivariable time series
(MTS) model for FCN, LSMT-FCN, and ResNet; the number of epochs is the sum of the epochs of the
fivefold cross-validation method; average is the mean of the number of epochs and training time of
the three UTS methods (UTS: Planarity; Linearity; Eigentropy, MTS: Overall).

FCN LSTM-FCN ResNet

Method Epochs Time (Minutes) Epochs Time (Minutes) Epochs Time (Minutes)

Planarity 227 74 222 29 253 548

Linearity 226 75 335 45 187 405

Eigentropy 159 54 234 30 234 508

Average 204 ± 39 68 ± 12 264 ± 62 35 ± 9 225 ± 34 487 ± 74

MTS 185 62 223 54 255 553

3.2. Class Activation Map

Figure 4 demonstrates the result of applying CAM on the validation data using the
UTS and MTS methods on FCN. We observed that the most-contributed regions of the time
series for the predicted class were highlighted in a red color, while the blue regions are
non-discriminatory. With respect to UTS, the CAM of eigentropy was much firmer than
that of planarity and linearity. In other words, the CAM of eigentropy contains darker
red and blue regions, demostrating that the eigentropy can filter out the most contributed
region with higher confidence than planarity and linearity. When comparing the eigentropy
and MTS models, the red subsequence highlighted by the wood class of the MTS model
was mainly located in a larger radius (Figure 4g). Conversely, the discriminatory regions of
eigentropy can be observed in the middle and larger radius in the wood class of Figure 4e,
demonstrating the overlap with the leaf class.
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Figure 4. Class Activation Map (CAM) of univariable (UTS) and multivariable time series (MTS)
using fully convolutional networks (FCN) on the validation data; (a) CAM of Planarity on Wood,
(b) CAM of Planarity on Leaf, (c) CAM of Linearity on Wood, (d) CAM of Linearity on Leaf, (e) CAM
of Eigentropy on Wood, (f) CAM of Eigentropy on Leaf, (g) CAM of Overall on Wood, (h) CAM of
Overall on Leaf.

3.3. Model Generalization

Table 4 compares the performance of the MTS model based on FCN, LSTM-FCN, and
ResNet on the testing data. We did not find a significant difference between the accuracy of
three deep learning networks (FCN vs. LSTM-FCN: t = 0.78, p-value = 0.45; FCN vs. ResNet:
t = 1.01, p-value = 0.33; LSTM-FCN vs. ResNet: t = 0.24, p-value = 0.82). FCN generated the
highest accuracy and F1 score of leaf and wood, whether for Tree 1 or Tree 5. For example,
the overall accuracy of FCN on Tree 5 was 0.78, with F1 score of leaf (0.77) and wood (0.79),
while the overall accuracy and F1 score of leaf and wood of LSTM-FCN (0.75, 0.74, and
0.75) and ResNet (0.73, 0.72, and 0.74) were lower. With respect to testing data from [10], all
three networks demonstrated relatively poor performance on caxiuanA_117 and pan_33,
while they generated the highest accuracy and F1 score on nouragueH20_108.

Table 4. The performance of multivariable time series (MTS) of FCN, LSTM-FCN, and ResNet on
independent data; accuracy means the corrected classified leaf and wood points against the total
points (Ave, average; Sd, standard derivation).

FCN LSTM-FCN ResNet

Tree Name Accuracy F1 Score
(Leaf)

F1 Score
(Wood) Accuracy F1 Score

(Leaf)
F1 Score
(Wood) Accuracy F1 Score

(Leaf)
F1 Score
(Wood)

Tree 1 0.75 0.76 0.75 0.74 0.72 0.76 0.73 0.71 0.75

Tree 5 0.78 0.77 0.79 0.75 0.74 0.75 0.73 0.72 0.74

alice_1 0.76 0.75 0.83 0.73 0.72 0.69 0.65 0.66 0.64

alice_2 0.81 0.81 0.81 0.74 0.74 0.74 0.77 0.76 0.78

alice_3 0.79 0.78 0.81 0.75 0.74 0.78 0.78 0.77 0.82

caxiuanA_117 0.61 0.52 0.76 0.63 0.59 0.76 0.66 0.60 0.78

nouragu-
resH20_108 0.84 0.84 0.85 0.82 0.81 0.85 0.78 0.79 0.80

Pan_33 0.67 0.64 0.71 0.63 0.59 0.69 0.63 0.58 0.76

Ave ± Sd 0.75 ± 0.08 0.73 ± 0.10 0.79 ± 0.05 0.72 ± 0.06 0.71 ± 0.08 0.75 ± 0.05 0.72 ± 0.06 0.70 ± 0.08 0.76 ± 0.06
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Figure 5 displays the ROC curves of the MTS model of FCN, LSTM-FCN, and ReNet
on Tree 1, Tree 5, and nouraguesH20_108. The area under the ROC curve of the training
data was 0.99, indicating the solid discriminatory power of three networks. Although
the area under ROC curve of three trees was lower than the training data, most of those
areas were higher than 0.80, which still demonstrates the good discriminatory power of
three deep learning networks. It should be note that the areas under ROC curve of Tree 1
(0.82, 0.82 and 0.79) and Tree 5 (0.84, 0.80 and 0.80) were similar for FCN, LSTM-FCN, and
ResNet. When we evaluated nouraguesH20_108, ReNet (0.92) and FCN (0.88) had a higher
area under the ROC curve than LSTM-FCN (0.81).

Figure 5. Receiver operating characteristic (ROC) curve for training data and testing data (Tree 1, Tree 5,
and nouraguesH20_108) using multivariable time series (MTS) method based on FCN, LSTM-FCN,
and ResNet; (a) FCN on Tree 1, (b) LSTM-FCN on Tree 1, (c) ResNet on Tree 1, (d) FCN on Tree 5,
(e) LSTM-FCN on Tree 5, (f) ResNet on Tree 5, (g) FCN on nouraguesH20_108, (h) LSTM-FCN on
nouraguesH20_108, (i) ResNet on nouraguesH20_108.
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The prediction of the MTS model based on FCN for Tree 1, Tree 5, and nouragueHs20_108
can be seen in Figure 6. Our visual inspection indicated that FCN could detect most of
the big wood structures. Though some parts of the main trunk were misclassified as the
leaf in Tree 1, Tree 5, and nouraguesH20_108 (indicated by red square in Figure 6), we can
manually correct those misclassified leaf points in the main trunk as wood points for each
tree (indicated by red square in Figure 7).

Figure 6. The multivariable time series (MTS) model of fully convolutional networks (FCN) prediction
for Tree 1 (a), Tree 5 (b), and nouraguesH20_108 (c); the red square highlights the misclassified areas.
Green: leaf points. Brown: woody points.

Figure 7. The multivariable time series (MTS) model of fully convolutional networks (FCN) prediction
for Tree 1 (a), Tree 5 (b), and nouragueH20_108 (c) after manual intervention; the red square highlights
the area where we make manual intervention.
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4. Discussion

In this paper, we proposed a time series classification method based on three deep
learning networks to separate leaf and woody components of given trees. We also compared
the effects of the UTS and MTS methods on the classification results. As indicated in Table 2,
the MTS method outperformed the UTS method on the training data. Meanwhile, ResNet
spent much more time than FCN and LSTM-FCN in the training model. Moreover, we
found the three networks performed similarly on the testing data. Finally, we understood
the utilization of the class activation map (CAM) can explain the black-box effect of deep
learning networks.

4.1. UTS or MTS

We applied the UTS and MTS methods to separate leaf and woody components of
point clouds. Compared with UTS, MTS always demonstrated higher performance on the
training data. It is not a surprise since MTS is a finite sequence of the UTS, thus providing
more information to help the classification process [21,22]. It also can be observed in
Table 3 that the UTS and MTS methods demonstrate similar training time (e.g., ResNet:
487 ± 74 min vs. 553 min) and numbers of epochs (225 ± 34 vs. 255). Therefore, we
recommend the MTS method for leaf and wood classification. With respect to the UTS
method, the eigentropy (0.82 of FCN, 0.85 of LSTM-FCN, and 0.88 of ResNet) seems to
be the most advanced feature for leaf and wood classification, while the overall accuracy
of planarity and linearity range from 0.67 to 0.80. Therefore, we believe the eigentropy
contributes most to the performance of MTS. The performance of the MTS method may be
further improved if more power features like eigentropy are included.

CAM provides a method to understand what deep learning is doing for the time
series [20,32]. According to Figure 4, the main contributing regions of planarity for the
wood points are located at a small radius, while the linearity for wood points is found in
large values. The distribution of wood points across the different radii have been reported
in Ma et al. [9] and Zhu et al. [4]. For example, in a smaller radius, the wood points in
the main trunk could have a surface distribution, while the point clouds of the trunk are
more likely to be linearly distributed at a large radius [9]. CAM also demonstrates that
the discriminatory regions of planarity and linearity for both classes are less uniformly
distributed than that of the eigentropy and MTS model for two classes. These leaf and
wood points demonstrate similar discriminatory areas for planarity and linearity across
the radius. This unequal distribution could be the reason for worse performance of the
planarity and linearity models. Moorthy et al. [8] applied a geometric approach to classify
leaf and woody components from point clouds and found that the geometric properties
of the leaves demonstrated similarity with the wood points in long branches in the upper
part of a tree. Conversely, the contribution regions’ boundary between leaf and wood in
the MTS method is clear. The MTS method combines all features and extracts the most
discriminatory regions from the time series, and thus has the highest F1 score and overall
accuracy across training data.

4.2. Comparison with Other Leaf-Wood Classification Methods

In this paper, we applied deep learning networks to separate leaf and woody compo-
nents from the point clouds, which demonstrated superiority to the state-of-art methods
for leaf and wood classification in the literature [4,8–10]. Generally, those methods are
mainly based on machine learning algorithms such as Gaussian mixture models (GMMs),
random forest (RF) and boosting. Compared to deep learning algorithms, machine learning
algorithms solve problems by decomposing a larger task into small tasks and combining the
results. The features used in machine learning need to be accurately and precisely identified
by users [18]. For instance, Zhu et al. [4] applied an adaptive radius nearest neighbor search
algorithm to drive the optimal radius for each point, and then used RF algorithms to classify
leaf and wood, with an average overall accuracy of 70.4%. Ma et al. [9] also conducted a
sensitivity analysis to define the optimal radius for each point and then applied GMMs to
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separate leaf and wood, with an overall accuracy of 95.5%. Moreover, Moorthy et al. [8]
investigated the spatial distribution of leaf and wood points using eigenvalues and eigen-
vectors at five radii, with applied RF and boosting algorithms for classification. The
eigenvalues and eigenvectors gave the model an average overall accuracy of 94.2%.

Furthermore, Xi et al. [12] compared the performance of 15 machine learning and deep
learning classifiers (i.e., RF, Ada Boost, PointNet, ResNet) on leaf and wood separation. This
work computed geometric features of three randomly selected radii, and then combined
radiometric features for classification. The results indicated that ResNet was one of the
most competitive classifiers among the 15 approaches, while also providing a higher
efficiency. In this study, we compared the performance of FCN, LSTM-FCN, and ResNet.
As demonstrated in Table 3, ResNet spent much more time than the remaining two networks
in developing the model, which means that FCN and LSTM-FCN were more efficient. When
evaluating three networks on the testing data, we found FCN, LSTM-FCN, and ResNet
performed similarly.

Here, we used the multiple radius search method to obtain the time series of leaf and
wood points and input them into deep learning networks to make independent decisions.
There is no need for prior knowledge, which means no heavy feature engineering is
required to understand the feature distribution for deep learning algorithms. The only
preprocessing step needed is standardizing the data. Deep learning algorithms can create
new features through their own process and then make predictions [20].

4.3. Model Generalization

Developing a generable and transferable model for forests is one of the main challenges
of point cloud classification [8]. Though there are many methods proposed for leaf and
wood classification in previous studies, the generalization of those methods is questionable.
Moorthy et al. [8] used imbalanced training data to classify leaf and wood, with the wood
points accounting for about 15% of all the points. When testing the former method on the
independent data, the average wood F1 score of field data was 0.69 (0.79 of FCN here).
Wei and Dunbrack [18] demonstrated that the training and testing of models on binary
classification problems depends on the fraction of the two classes. In simpler terms, it is
not easy to apply a model to independent data from the real world that is similar to the
training data based on the fraction of the two classes. Using balanced training data can
lead to the highest accuracy, regardless of the fraction of the two classes in the independent
data. Although Zhu et al. [4] applied a balanced method for classifying leaf and wood, only
1000 points per class are manually selected from the point clouds, much less than in the
methodology applied here. We randomly selected 10% of the total points from each tree,
thus creating 320,000 points for training (Table A1). The overall accuracy of Zhu et al.’s
methodology [4] by geometric features on validation data was 70.4%, which is lower than
our method (0.75 of FCN, see Table 4). Therefore, the presented method in this study has
broader applicability than previous methods.

The main advantages of our method are as follows: First, we use a multiple radii
search method to obtain a time series of the geometric features, which eliminates the
work for a specific radius selection [9]. Second, since we use deep learning models for
classification, the model provides an end-to-end network to tackle the problems without
heavy crafting on data preprocessing and feature engineering [32]. Third, we take a
multivariable time-series strategy coupled with deep learning algorithms to classify leaf
and wood, which demonstrates superiority to univariable time series strategy. Fourth, we
add global average pooling (GAP) layer on our networks to classify leaf and wood points,
enabling the utilization of CAM to reduce the black box effects of deep learning algorithms.
Finally, since we use a balanced class for leaf and wood classification, the performance of
our method on the independent data is higher than in previous studies [8], which indicates
the broader applicability of our proposed model.

The balanced class also brings the limitation of our method; the leaf and wood points
are still balanced in the predicted results, which is not the case for the trees in the natural
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environment [8,9]. Therefore, we manually corrected the misclassified leaf points in the
main trunk of the predicted tree, which can be seen in Figures 6 and 7. Postprocessing steps
may be needed to further improve the performance of our method; however, the presented
leaf/wood separation model based on FCN demonstrated overall accuracies of 0.75, 0.78,
and 0.84 on Tree 1, Tree 5, nouraguesH20_108, without any additional postprocessing,
which means our model could provide a good starting point for the scientific community
to using TLS to measure forest structure. It should be also noted that we do not include
needle leaf trees in our study, as broad-leaved and needle leaf trees have different point
arrangements. A more careful scanning protocol is needed since needles are often smaller
than the footprint of the LiDAR instrument [4,10]. We provide the entire leaf and wood
classification procedure as an open-source python package on Github (https://github.com/
than2/leafandwood, accessed on 1 July 2022), expecting more researchers to evaluate our
methods on other forest types (e.g., needle-leaf trees, dry, and rain forests). Future work
could focus on understanding the discriminatory regions of the time series for each class
obtained by the CAM. In other words, the CAM may also provide a solid foundation for
leaf/wood separation based on traditional machine learning algorithms. For example,
machine learning algorithms could use the radius around the discriminatory regions of the
time series for each class obtained by CAM to classify leaf and wood, which may help to
improve their performance.

5. Conclusions

In this paper, we proposed an automatic deep learning time series method for leaf
and wood classification from 3D point clouds. The presented method uses the multiple
radius search method to obtain the time series of the geometric features, with the MTS
method found to be more robust than the UTS method. Our method eliminates the need
for feature engineering, which is a requirement for most literature. Though the multiple
radius search method results in high-dimensional data, this can be adequately handled
by deep learning algorithms. The CAM of our deep learning time series networks can
articulate the contributing region for leaf and wood points, and thus explain how the deep
learning networks function. It is not a surprise that the generalization of our model is
better than previous studies, since our model builds on and extends previous work. The
presented method can help to understand forest structure and provide better estimates of
forest structural parameters from TLS data such as LAI, WAI, or leaf area density.
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The following abbreviations are used in this manuscript:

LiDAR Light detection and ranging
TLS Terrestrial laser scanning
LAI Leaf area index
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AGB Above-ground biomass
FCNs Fully convolutional neural networks
TSC Time series classification
UTS Univariable time series
UTS Univariable time series
MTS Multivariable time series
CAM Class activation map
NN Neural networks
RF Random forest
LSTM Long short-term memory
RNN Recurrent neural network
CNN Convolutional neural network
DTW Dynamic time warping
PR curve Precision-recall curve

Appendix A

Trees 2, 3, 4, 6, and 7 were selected as the training data, while the remaining trees
(1 and 5) were regarded as the independent data to test the model generalization. The final
number of points of the training data is 320,000, and that of the testing data of Tree 1 and
Tree 5 is 32,000 and 80,000, respectively.

Table A1. The sample size of seven trees for model training.

Tree ID Sample Points Total Points

Tree 1 32,000 319,037
Tree 2 70,000 668,950
Tree 3 96,000 947,704
Tree 4 56,000 540,369
Tree 5 80,000 802,740
Tree 6 32,000 302,494
Tree 7 66,000 653,643

Appendix B

There are many hyperparameters when using FCN, LSTM-FCN, and ResNet. The
following values were used for those hyperparameters. The number of epochs is equal to
100, and it represents the number of times that the deep learning networks work through
the entire training data. The batch size is equal to 256, and this hyperparameter determines
the number of samples to work through before updating the parameters of the network. A
large batch size would lead to the significant degradation of the performance of the model,
while a small batch size means more training time. The range of batch sizes used in this
study is 128, 256, 512.

The callbacks in deep learning mean a set of functions that can control the training
procedure. We used ReduceLROnPlateau and EarlyStopping to control the learning rate
and the number of epochs during the training process. ReduceLROnPlateau means that
when the loss of validation stops improving, the learning rate will decrease. We set up the
factor, patience, and min_lr as 0.5, 10, and 0.0001, respectively. This indicated that if the
validation loss did not improve after ten epochs, the learning rate would decrease by 50%
until it reached 0.0001. The patience in EarlyStopping was also equal to 10, which means
that if the validation loss did not improve after ten epochs, the training procedure would
stop. The verbose was equal to 1, demonstrating the output of our neural network when
training the model.
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