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Abstract: Today, target detection has an indispensable application in various fields. Infrared small-
target detection, as a branch of target detection, can improve the perception capability of autonomous
systems, and it has good application prospects in infrared alarm, automatic driving and other fields.
There are many well-established algorithms that perform well in infrared small-target detection.
Nevertheless, the current algorithms cannot achieve the expected detection effect in complex environ-
ments, such as background clutter, noise inundation or very small targets. We have designed an image
enhancement-based detection algorithm to solve both problems through detail enhancement and
target expansion. This method first enhances the mutation information, detail and edge information
of the image and then improves the contrast between the target edge and the adjacent pixels to make
the target more prominent. The enhancement improves the robustness of detection with background
clutter or noise-flooded scenes. Moreover, bicubic interpolation is used on the input image, and the
target pixels are expanded with upsampling, which enhances the detection effectiveness for tiny
targets. From the results of qualitative and quantitative experiments, the algorithm proposed in this
paper outperforms the existing work on various evaluation indicators.

Keywords: small target detection; infrared small target; autonomous systems; perception capabilities;
image enhancement; upsampling

1. Introduction

Autonomous systems refer to systems that can deal with non-programmed or non-
preset situations and has certain self-management and self-guidance ability. Compared
with automation equipment and systems, autonomous systems can cope with more environ-
ments, can complete a wider range of operations and control and have broader application
potential. In the future, there are good reasons to believe that autonomy is the ultimate
destination of the control field. With recent developments, autonomous systems have
successfully achieved ideal results in various key fields such as autopilot and aircraft
anti-collision systems.

An infrared small target is a target with low contrast and a signal-to-noise ratio that
occupies only a few dozen pixels on the imaging plane when the infrared imaging distance is
far. Compared with target detection under visible light, infrared small-target detection has
stronger anti-interference ability, stronger night detection ability and more accuracy. This
makes the infrared small-target detection technology play an indispensable role in the fields
of infrared remote warning, infrared imaging guidance and infrared search and tracking.
Therefore, the research on infrared small-target detection technology is of great significance.

One of the key research fields of autonomous system perception is infrared small-
target detection. This is because an infrared image has four advantages: (1) It has excellent
working ability in weak light and harsh environments. (2) The target can be detected even
in the presence of non-biological obstacles, with strong anti-interference ability. (3) The in-
frared wavelength is short, and the target image with high resolution can be obtained. (4) It
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has strong camouflage target recognition ability. Consequently, enhancing the detection
effect of infrared small targets in complex backgrounds can improve the perception ability
of autonomous systems, so as to promote their safe operation. Consequently, enhancing
the detection ability of infrared small targets has become an important research direction of
autonomous system.

Hyperspectral images contain rich information, but too much information will also
have a great impact on the target [1]. The imaging conditions of spectral images are rough
and contain a large number of mixed pixels [2]. In contrast, infrared images have the ad-
vantages of fast imaging speed, clear imaging and more prominent target heat information.
This makes infrared target detection faster and more accurate, so the application scenarios
are more extensive.

Infrared targets imaging depends on the temperature difference and emissivity differ-
ence between the target itself and its surrounding environment, so the target appears in the
form of highlight in the background. In infrared small-target detection, researchers have
done a great deal of research, and there are many mature algorithms. However, there are
three reasons for detection failure:

(1) The imaging distance of small infrared target usually makes the pixel ratio of small
target to the whole image very small.

(2) The target radiance decreases with the increase of the action distance, which makes
the target weak and the distance from the environment is low. The target is easy to be
submerged by the complex background, resulting in the failure of detection.

(3) Among other factors, the existence of interference objects similar to the target in
complex imaging environment and complex background will result in a high rate of
false alarms.

Therefore, infrared small-target detection still has high research value.
Nowadays, the idea of deep learning has been to detect small infrared targets and

has made important contributions. The general idea of deep learning algorithm is to learn
target features in a data-driven way. However, it still has the following disadvantages:

(1) Background clutter and noise obscure small targets, resulting in their failure to be detected;
(2) The target is very small, resulting in detection failure.

As shown in Figure 1, in these two difficult situations, the effect of the traditional
algorithm is not ideal. Especially in the second difficult case, the target occupies only a
few pixels. The existing algorithms have difficulty to solve this kind of problem effectively.
Therefore, improving the detection ability of the algorithm in difficult situations is the key
problem to be solved.

Therefore, to solve these challenges, an image enhancement algorithm combining
sharpening the spatial filter and upsampling is proposed in this paper. First, the image
is sharpened by spatial filter to enhance the grey mutation and the details of the image,
improve the separation degree between the small target and the background and enhance
the characteristics of the small target. Thus, the detection failure caused by background
clutter and noise inundation is avoided. Then, the image is upsampled, and double–triple
interpolation is used to increase the target pixels, so as to enlarge the image to four times its
original size in equal proportion; the purpose of this is to enlarge the target. By enhancing
the information on the small targets and increasing the number of pixels of the small targets,
our algorithm can provide better detection in complex backgrounds. As a summary, this
paper has the following contributions.

(1) Sharpening spatial filters is proposed to enhance small targets. By increasing the
contrast between the edges of the object and the surrounding image elements, the
small target is emphasised at a nuanced level, and the separation of the small target
from the background is increased. Compared with existing algorithms, our algorithm
makes small targets clearer and easier to detect, thus solving the problem of the
inaccurate detection of small targets due to background clutter and noise drowning.
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(2) Upsampling is designed to expand the target pixels, i.e., the image is scaled equally
using bi–triple interpolation, allowing the enhanced small targets to be scaled up as
well. Very small targets that are difficult to detect are enlarged to targets that are
relatively easy to detect. In practice, the algorithm enhances the recognition of small
targets and solves the problem of detection failure due to a small target.

(3) By comparing the experiments with other algorithms on the NUAA–SIRST dataset,
it is demonstrated that the algorithm proposed in this paper has better performance
relative to existing algorithms in the three evaluation metrics of Pd, Fa and IoU, and it
has better applications in the field of perception of autonomous systems.

(4) Throughout the paper, we review relevant works in Section 2, introduce our proposed
method in Section 3. In Section 4, the proposed detection architecture is analysed
quantitatively and qualitatively, and the conclusion is given in Section 5.
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2. Related Works
2.1. Infrared Small-Target Detection in Autonomous Systems

For detecting small infrared targets, a number of excellent conventional algorithms
have been developed. Among them are methods based on filters [3], local contrast [4–6]
and low-rank [7–9]. However, the shortcoming of these methods is that they rely too
much on handcrafted features, which makes detection with handcrafted features and fixed
hyperparameters difficult to work in scenarios where object size, object shape, SCR and
clutter background vary significantly.

With the research on deep learning, infrared small-target detection has also started to
use deep learning methods. Liu et al. [10] were the first to apply deep learning methods to
the detection of small targets in infrared. They added randomly generated target points to a
signal-to-noise controlled background to generate target samples for training prediction. Then,
McIntosh et al. [11] improved several deep learning networks, such as Faster–RCNN [12] and
Yolo–v3 [13], to improve their suitability for detecting infrared small targets.

In recent years, Park et al. have proposed a pixel-level classifier based on a convo-
lutional neural network (CNN) for human detection in infrared closed-circuit television
at night and achieved better results than traditional algorithms [14]. Hou et al. proposed
a robust infrared small-target detection network (RISTDnet) based on deep learning that
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constructed a feature-extraction framework combining a manual feature method and a
convolutional neural network [15]. In order to focus on the basic characteristics of infrared
small targets, bin Zhao et al. proposed a new detection mode based on the generation of
a countermeasures network [16]. Zhang proposed a self-regularized weighted sparsity
(SRWS) model to transform detection problems into optimization problems [17].

In 2021, Dai et al. designed an asymmetric contextual module (ACM) [18] optimising
the downsampling scheme, attention module and feature-fusion methods. They then
proposed a new network on top of their ACM. They combined discriminative networks with
traditional model-driven methods to propose a model-driven deep network (ALCNet) [19],
with good results.

Image super-resolution technology is also applied to image segmentation [20,21], but
different from super resolution, the algorithm proposed in this paper emphasizes small
targets from the subtle level, focusing on strengthening the edge of small targets, improving
the separation between small targets and the background and expanding the number of
target pixels that meet the DNANet prediction conditions on this basis, so as to improve
the detection effect.

At this stage, deep learning was used to create a dense nested attention network
(DNANet) by Li et al. [22] that was specially designed to detect small infrared targets and
retained the characteristics of small targets in the deep network. Compared with the above
algorithms based on deep learning, this network has achieved the most satisfactory results
at this stage. These methods are all improvements on how to retain the characteristics
of small targets in the deep network. However, in the case of minimal target and noise
inundation, the existing algorithms cannot achieve satisfactory recognition results. In
contrast, in our method in that we enhance the small target by image enhancement, so we
obtain more satisfactory results in both cases.

2.2. Sharpening Spatial Filters

In the area of image sharpening, there has been much research. Asokan et al. have opti-
mally tuned a bilateral filter [23] that reduces noise in the image and improves image quality
and is good for edge preservation. Gupta et al. have designed a fractional-order digital FIR
filter (ABC-FODF) [24] that is suitable for processing the signal and for various filtering
operations. Peng et al. proposed a denoising sparse self-encoder-based fault-detection
method for understanding input–output mapping and correlation in denoising sparse
self-encoders by combining smoothed integral gradients [25]. Li et al. used a bi-directional
filter to persist the edges of the fused image, a fractional difference technique for reducing
noise in the fused image and low-frequency detail in smoothed areas to enhance texture
detail [26]. Ghani et al. proposed a technique combining background enhancement filters
and wavelet fusion for improving the contrast and visibility of underwater images [27].
The advantage is that it reduces blur and improves contrast and visibility. An image fusion
method based on DWT’s fusion and Roberts’s operator was proposed by Paramanandham
and Rajendiran. The method uses wavelet transform to obtain the initial fused image and
uses Roberts’s operator to extract edge information from the input image and replace the
edge information in the original image with this information for the purpose of enhancing
the fused image [28].

The main purpose of sharpening is to highlight the transition part of the gray scale. It
compensates the contour, enhances the edge and gray jump part of the image and makes
the image clear. Its main point is to enhance the part of the image that changes violently
and suppress the part that changes slowly, so as to enhance the information of the image.

2.3. Upsampling

There has been considerable research on upsampling. Qi et al. proposed a method
to super-resolve a single frame image. The method first constructs the optimal fractional
order gradient based on image similarity and then reconstructs it using a method based
on the minimum energy function to obtain a high-resolution image [29]. Malayil et al.
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propose a reversible watermarking scheme based on image scaling. This method duplicates
neighbouring pixels and uses them as the intensity values of the missing pixels in the newly
scaled image to insert the CAPTCHA and EPR data [30]. Xue et al. introduced image-
interpolation techniques for the purpose of improving the efficiency and robustness of
target-detection techniques [31]. Kok et al. pointed out that among the existing algorithms,
the most commonly used interpolation techniques are bilinear interpolation and bicubic
interpolation [32] for the downsampling and upsampling of images, respectively. Jiang et al.
achieved the desired results by extracting a series of foreground sub-images with different
resolutions for the detector to reduce the computational effort and BER [33]. Davide Mazzini
proposes a guided upsampling module for the efficient exploitation of high-resolution cues
during upsampling [34]. Zhang et al. use grouped upsampling for extracting contextual
information [35].

When the image information is added by enlarging the image, samples of the image
are required. The enlarged image can be displayed on a higher-resolution device. The
existing upsampling algorithms basically use interpolation. After the original image is
enlarged, the value of additional pixels needs to be added in an appropriate way to expand
the target pixels. This process is called interpolation.

3. Proposed Method
3.1. Revisiting DNANet Detector

The DNANet algorithm first pre-processes the input image and feeds it into a densely
nested interaction module backbone to extract multilayer features. The fusion of multilayer
features is then repeated at the intermediate convolutional nodes of the hopping connection,
and the fused features are then output to the decoder subnet. The multilayer features are
then adaptively enhanced using the channel space attention module to achieve better
feature fusion. The feature pyramid fusion module connects shallow features with different
types of information to deeper features, resulting in richer, more informative features and
ultimately a robust feature map as shown in Equation (1), where Li,J

en_up ∈ RCi×H0×W0

i ∈ {0, 1, . . . , I} is the obtained features at all levels and G is the final obtained feature
map. Finally, the feature map is fed into the eight-connected neighbourhood-clustering
module, and if any two pixel points g(m0, n0), g(m1, n1) have intersecting regions in their
eight neighbourhoods (as in Equation (2)) and have the same value (0 or 1) (as in Equation
(3)), then the spatial location of the target centre of mass is calculated and the target is
predicted. The specific parameters of DNANet are shown in Table 1.

G =
{

L0,J
enup , L1,J

enup , . . . , LI,J
enup

}
(1)

N8(m0, n0) ∩N8(m1, n1) 6= ∅ (2)

g(m0, n0) = g(m1, n1), ∀g(m0, n0), g(m1, n1) ∈ G (3)

Table 1. The specific parameters of DNAnet.

Stage Conv Max Pool Up-Conv Backbone Leraning
Rate

3 × 3 2 × 2 2 × 2 resnet_18 0.005

However, the algorithm has certain drawbacks in some cases. When an extremely
small and faint target is recognised, this makes the target pixel value g(m1, n1) = 1 and
its neighbouring pixel values g(m0, n0) = 0. This makes N8(m0, n0) ∩N8(m1, n1) not be
empty, but g(m0, n0) 6= g(m1, n1), i.e., the prediction condition is not satisfied, resulting in
the inability to compute the spatial location of the target’s centre of mass and thus predict
such targets. The robustness of the algorithm in the face of such cases needs to be improved,
and the following improvements are made in two aspects of this paper.
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3.2. Target Feature Enhancement Based on Sharpening Spatial Filters

In Section 2, we introduced a sharpening spatial filters. We found that the idea of
using sharpening spatial filters based on second-order differential-Laplace operators can
solve such problems.

When DNANet predicts the input image, it needs to meet the conditions of
Equations (2) and (3) to predict the target, but some targets do not meet the condi-
tions. In order to solve this problem, the sharpening spatial filter is used to convert
the values of adjacent pixels into the same values as the target pixels, making them meet
Equations (2) and (3). Since in a binary map, the target pixel value g(m1, n1) = 1, we also
need an algorithmic calculation of the neighbouring pixel values such that the processed
g(m0, n0) = 1 to satisfy the prediction conditions so that such targets can be predicted.

In DNANet, the algorithm ultimately predicts the binary image. Therefore, to achieve
the above purpose, it is necessary to increase the pixel value of the target edge so that there
are more pixels with a pixel value of 1 around the target after conversion to a binary image.
When the value of a pixel point is greater than ε, it is set to 1, and when it is less than ε, it is
set to 0. Because the pixel values of the target edges fall in a gradient, there is a grey scale
step. This results in some pixels at the edge of the target having a value less than but very
close to ε, f(m0, n0) < ε. This makes it impossible for the points adjacent to the target pixel
to satisfy the constraint. Since property two of second-order differentiation is known, the
differentiation is not zero at the start of the grey scale step or slope, i.e., ∇2f(m0, n0) > 0
using the second-order differential-Laplace operator, which is calculated as Equation (4):

F(x, y) = f(x, y) + c
[
∇2f(x, y)

]
(4)

where f(x, y) and F(x, y) are the input image and the sharpened image, respectively. For
the purpose of making the enhanced image retain the background characteristics as well as
the sharpening effect, the central factor c = 1 is taken in this paper.

Taking the point (m0, n0) into Equation (4) gives F(m0, n0) = f(m0, n0)+
[
∇2f(m0, n0)

]
> ε. At this point, N8(m0, n0) ∩N8(m1, n1) is not empty, and after transforming into a
binary image, g(m0, n0) = g(m1, n1) = 1, which satisfies the constraint, thus solving the
above problem and achieving the recognition of such targets.

The effect of the edges of the small target after sharpening and filtering enhancement
is shown in Figure 2.
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Using Figure 2 as an example, the signal-to-noise ratio (SCR) of this small target is
calculated. A small target whose SCR is high is easier to detect. As can be seen from Table 2,
after the enhancement of our algorithm m, the SCR of the small target is enhanced from
0.074 to 0.134, an improvement of 0.06.

Table 2. Signal-to-noise ratios (SCRs) before and after small-target enhancement.

Pre-Enhancement After Enhancement

SCR 0.074 0.134

3.3. Target Pixel Point Expansion Based on Upsampling

Only the image has been sharpened and filtered. Although it has brought some
improvements in detection, there is still some room for improvement. Therefore, we need
to add pixels in the image on the basis of image enhancement. The purpose of this step is to
make more pixels meet the constraint condition of g(m0, n0) = g(m1, n1) = 1 on the basis
of N8(m0, n0) ∩N8(m1, n1) 6= ∅, so as to further optimize the detection effect. Therefore,
we use upsampling to achieve this purpose.

For the purpose of making the expanded pixel points closer to the original image, i.e.,
to better preserve the small targets after enhancement, the algorithm in this paper uses
bicubic interpolation to increase the number of pixels in the image. This approach results
in an enlargement closer to the high-resolution image, which is calculated as follows.

First construct the bicubic function:

W(x) =


|x|3 − 2|x|2 + 1 |x| ≤ 1

−|x|3 + 5|x|2 + 4 1 < |x| < 2
0 otherwise

(5)

As shown in Figure 3, x is the distance from each pixel point to point p. The weights
W(x) corresponding to the 16 pixels around point p are obtained by finding the parameter x.
When the weights of the 16 pixel points around the target pixel point p are obtained, the
value of the enlarged image (x, y) is equal to the weighted superposition of the 16 pixel
points, which is calculated as follows:

B(X, Y) = ∑3
i=0 ∑3

j=0 aij ×W(i)×W(j). (6)

where aij is the location of 16 pixel points. By expanding the target pixel points, because the
pixel values obtained from the bi–triple interpolation calculation are closest to the pixel values
of the original image, more pixel points meet the constraints, thus circumventing the problem
of not detecting the target due to its being too small and improving the detection effect.
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As shown in Figure 4, after the upsampling process, the number of small target pixels
is increased, and more pixel points satisfy the constraints.
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3.4. Overall Process

We propose in this paper an image enhancement-based algorithm to detect infrared
small targets. This is because some small targets themselves do not have a prominent
grey-scale jump in the area connected to the background, or the number of pixels in the
small target is very small compared with the number of pixels in the whole image. In both
cases, the number of pixels that satisfy the prediction criteria for the small target itself is
insufficient. Existing algorithms are not effective in detecting these two cases. Therefore,
this paper starts with improving the detection head of the algorithm by enhancing the
small targets to improve the detection effect. The first step is to use the idea of sharpening
spatial filtering to improve the pixel value of the target. On this basis, the enhanced image
is upsampled to increase the number of target pixels. This avoids the problem of detection
failure due to background clutter, noise drowning and small targets. The overall flow chart
of the method is shown in Figure 5.
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4. Results of the Numerical Experiments
4.1. Introduction to the Dataset

In this section, we use the NUAA–SIRST dataset [18] as a benchmark to compare
the results of our proposed algorithm with those of existing algorithms. In total, there
are 427 infrared images in the dataset, of which there are 480 instances, and the dataset
is divided into three parts: a training set, a validation set and a test set in the ratio 5:2:3.
Figure 6 shows a preview of the dataset in which the target has low contrast with the
background and is easily swamped by a complex background with heavy clutter. Here,
even with the naked eye, such targets are hard to discern from the background. Most
images in the dataset contain only one target, and only a few images contain multiple
targets. The dataset is classified according to the target number, and Figure 7 is obtained.
Approximately 64% of these targets are only 0.05% around of the whole image. The vast
majority of the targets are less than 0.1% and are classified by the percentage of targets
to obtain Figure 8. Only 35% of the targets are the brightest in the image, so most of the
targets in this dataset are very small and faint.
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4.2. Assessment Indicators

CNN-based algorithms [18,19,36] mainly use pixel-level evaluation metrics such as
IoU and accuracy. These metrics are mainly focused on target shape evaluation. Algorithms
based on local contrast metrics mainly use Pd and Fa as the evaluation metrics to assess
the detection results. In the DNANet [22] algorithm, the three metrics IoU, Pd and Fa
are combined as evaluation metrics. This is because Pd and Fa can evaluate the detection
results more intuitively, and IoU is more indicative of the difference between the size and
coordinates of the detected target and the ground truth. Therefore, IoU, Pd, and Fa are
used as evaluation indicators in this paper.

(1) IoU (Intersection of Union) is a standard to measure the detection accuracy, which
can evaluate the shape detection ability of the algorithm. The result can be obtained
by calculating the overlap between the predicted target and the ground truth value
divided by the union of the two regions, where Area of Overlap represents the overlap
and Area of Union represents the union part:

IoU =
Area of Overlap

Area of union
(7)

(2) Detection rate Pd:Pd measures the accuracy of target detection by comparing the
detected results with ground truth to Pd, where the number of targets detected is Np
and the number of ground truths is Nr:

Pd =
Np
Nr

(8)
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(3) False alarm rate Fa:FA is used to evaluate the degree of misjudgement. The result
is obtained by calculating the ratio of mispredicted pixels to all pixels of the image,
where PF is the misjudged pixels and PA is all pixels in the image:

Fa =
Pf
Pa

(9)

(4) Mean Intersection over Union:mIoU is an index used to measure the accuracy of
image segmentation. The higher the mIoU, the better the performance. Intersection is
the number of pixels in the intersection area, and combine is the number of pixels in
the union area.

mIoU =
1
K

K

∑
i=1

Intersection
Combine

(10)

4.3. Quantitative Analysis

We compared the algorithms presented in this paper with the current state-of-the-art
algorithms, including TLLCM, tri-layer local contrast measure [5]; WSLCM, weighted strength-
ened local contrast measure [6]; RIPT, teweighted infrared patch-tensor model [7]; NRAM,
non-convex rank approximation minimization joint [8]; PSTNN, partial sum of the tensor
nuclear norm [9]; ALCNet, attentional local contrast networks [19]; DNANet, dense nested
attention network [22]; MDvsFAcGAN, missed detection vs. false alarm; conditional genera-
tive adversarial network [36]; MSLSTIPT, multiple subspace learning and spatial-temporal
patch-tensor model [37]; and MPANet, multi-patch attention network [38]. These algorithms
and our algorithm were tested on the NUAA–SIRST dataset, and the obtained quantitative
and qualitative results are compared and analysed. The quantitative analysis focuses on the
changes in the three metrics of IoU, Pd and Fa between the algorithms proposed in this paper
and those mentioned above, so as to see more intuitively how much the detection effectiveness
of the algorithms has improved, as shown in Table 3 and Figure 9.

Table 3. IoU, Pd and Fa obtained by the different algorithms on the NUAA–SIRST dataset.

Metric WSLCM TLLCM NRAM RIPT PSTNN MSLSTIPT MDvsFA-cGAN ALCNet DNANet Proposed

IoU (×10−2) 1.158 1.029 12.16 11.05 22.40 10.30 60.30 73.33 75.46 75.55
Pd (×10−2) 77.95 79.09 74.52 79.08 77.95 82.13 89.35 95.57 96.95 98.48
Fa (×10−6) 5446 5899 13.85 22.01 29.11 1131 56.35 30.47 13.23 10.09

Higher IoU and Pd indicate higher performance. Smaller Fa indicates higher performance. The best values are
marked in red, the second-best values in blue and the third-best values in yellow.
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Table 3 shows an improvement in the overall rate. Compared with current advanced
methods, the algorithm proposed in this paper makes a certain improvement in IoU over
the algorithm DNANet, indicating that our algorithm has a strong ability to describe the
target contour on the basis of the detected target. The stronger the ability to describe the
target contour, the easier it is to determine the type of small targets. Thus, it improves the
perception ability of the autonomous system and provides more judgment basis for the
decision-making of the autonomous system.

The 1.14% improvement in detection rate for Pd over DNANet proves that the improve-
ments made by our algorithm over the original algorithm are effective. The improvement
in the most important metric, Pd, demonstrates that we improved the detection capability
of the algorithm by augmenting it with tiny and faint targets while not misclassifying small
target analogues and leading to higher false alarm rates. The improvement in the detection
rate Pd greatly ensures the safe operation of the autonomous system.

The false alarm rate Fa is reduced by 2.4 × 10−6 compared with DNANet, and the
input image is processed by our algorithm, and for some small target analogues that are
easily misjudged, the characteristics similar to those of the small target are weakened,
thereby reducing the misjudgement of the small target.

Combining these three indicators, it is verified that our algorithm can not only improve
detection while ensuring a low false alarm rate after enhancing the input image, it also
has a strong ability to describe the target contour. The application of our algorithm to an
autonomous system can effectively improve the perception capability of the self-help system.

4.4. Quantitative Analysis

Qualitative analysis mainly analyses whether the image enhancement module pro-
posed in this paper solves the problems of DNANet and verifies our theory in Section 3. We
more intuitively show whether our algorithm will detect small targets that are difficult to
detect and whether the recognition effect in difficult situations will be better than DNANet.

4.4.1. Enhanced Target Characteristics

A solution to the problem of resolving detection failure caused by small targets
submerged by background noise or noise is proposed in Section 1. We first perform
sharpening filtering on the input image to enhance the edge information of the image. As
shown in Figure 10, the feature maps before and after enhancement show that the peaks are
improved after enhancement and the surrounding background information is suppressed,
proving that the features of the small target itself are enhanced and thus easier to detect.
The output also shows that the brightness of the target has improved and the edges are
clearer than in the original image. Figure 11 also shows that after sharpening, the brightness
of the small target is increased and the edge information is enhanced, making it easier
to detect than the original image. This confirms the validity of the method mentioned in
Section 3 and thus solves the above problem.

4.4.2. Expanded Target Pixels

The problem with the target proposed in the first section is that it has a very small
proportion compared with the background, which leads to the failure of detection. As
shown in Figure 12, we perform pixel expansion on the small target by upsampling based
on the enhancement of the small target, and the target becomes rich in content. As can
be seen in Figure 13, the recognition of the expanded target pixels gives a result that is
closer to the true value of the silhouette and improves the accuracy of the recognition
compared with the original image. This shows that our proposed method can solve this
kind of problem ideally.



Remote Sens. 2022, 14, 3232 13 of 19
Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 10. Enhancing small targets. 

 
Figure 11. Detection results before and after sharpening. 

4.4.2. Expanded Target Pixels 
The problem with the target proposed in the first section is that it has a very small 

proportion compared with the background, which leads to the failure of detection. As 
shown in Figure 12, we perform pixel expansion on the small target by upsampling based 
on the enhancement of the small target, and the target becomes rich in content. As can be 
seen in Figure 13, the recognition of the expanded target pixels gives a result that is closer 
to the true value of the silhouette and improves the accuracy of the recognition compared 
with the original image. This shows that our proposed method can solve this kind of 
problem ideally. 

Figure 10. Enhancing small targets.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 10. Enhancing small targets. 

 
Figure 11. Detection results before and after sharpening. 

4.4.2. Expanded Target Pixels 
The problem with the target proposed in the first section is that it has a very small 

proportion compared with the background, which leads to the failure of detection. As 
shown in Figure 12, we perform pixel expansion on the small target by upsampling based 
on the enhancement of the small target, and the target becomes rich in content. As can be 
seen in Figure 13, the recognition of the expanded target pixels gives a result that is closer 
to the true value of the silhouette and improves the accuracy of the recognition compared 
with the original image. This shows that our proposed method can solve this kind of 
problem ideally. 

Figure 11. Detection results before and after sharpening.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 20 
 

 

 
Figure 12. Experiment with expanded target pixels. 

 
Figure 13. Detection results before and after upsampling. 

4.4.3. Comparison of Test Results 
As shown in Figure 14, we compare the detection results after target feature en-

hancement and pixel expansion with those for the DNANet algorithm. It can be seen that 
there is an overall improvement in detection after the processing of our algorithm. 

The results show that in row (a), DNANet has a problem of inadequate recognition 
of this target, recognizing only part of the target due to the fact that some pixel values at 
the edges of the target are slightly below the banalization threshold ε. The number of 
pixels that meet the constraints is small. After processing by our algorithm, the pixel 
values of the target edges were increased and the pixel points were expanded, resulting 
in some improvement in the detection results. 

Figure 12. Experiment with expanded target pixels.



Remote Sens. 2022, 14, 3232 14 of 19

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 20 
 

 

 
Figure 12. Experiment with expanded target pixels. 

 
Figure 13. Detection results before and after upsampling. 

4.4.3. Comparison of Test Results 
As shown in Figure 14, we compare the detection results after target feature en-

hancement and pixel expansion with those for the DNANet algorithm. It can be seen that 
there is an overall improvement in detection after the processing of our algorithm. 

The results show that in row (a), DNANet has a problem of inadequate recognition 
of this target, recognizing only part of the target due to the fact that some pixel values at 
the edges of the target are slightly below the banalization threshold ε. The number of 
pixels that meet the constraints is small. After processing by our algorithm, the pixel 
values of the target edges were increased and the pixel points were expanded, resulting 
in some improvement in the detection results. 

Figure 13. Detection results before and after upsampling.

4.4.3. Comparison of Test Results

As shown in Figure 14, we compare the detection results after target feature enhance-
ment and pixel expansion with those for the DNANet algorithm. It can be seen that there is
an overall improvement in detection after the processing of our algorithm.
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The results show that in row (a), DNANet has a problem of inadequate recognition of
this target, recognizing only part of the target due to the fact that some pixel values at the
edges of the target are slightly below the banalization threshold ε. The number of pixels
that meet the constraints is small. After processing by our algorithm, the pixel values of
the target edges were increased and the pixel points were expanded, resulting in some
improvement in the detection results.

In row (b), (e), (f), which is a typical example of a very small and dim target, the
human eye also has difficulty finding this target from the background, and DNANet
does not recognize such targets well enough to miss them, resulting in a decrease in the
detection rate Pd. However, after processing by our algorithm, it is possible to enhance
such very small targets, i.e., point targets, which are difficult to detect. The pixel values
of the target edges are first increased so that the small targets stand out more compared
with the background, and then the pixels of the small targets are expanded so that they
are easier to detect, enabling the recognition of such targets and resulting in an increased
detection rate.

From line (c), it can be seen that there are two small targets in the original image, one
of which is larger and brighter, and the other is very small and faint. It is clear that DNANet
can achieve accurate recognition for the larger and brighter target, but it has difficulty
detecting the other target. In (c), a comparison shows that DNANet does have this problem
and that our algorithm can solve it effectively.

In row (d), (g), it is the other small target analogues in the graph that DNANet misidenti-
fies, resulting in a higher false alarm rate. This is because the analogue has similar features
to the small target in the original image, but after our algorithm has increased its edge pixel
value and expanded the pixels, it weakens its similar features to the small target, allowing the
algorithm to detect it without false positives, thus reducing the false alarm rate.

To sum up, our proposed algorithm can effectively solve the two problems of
(1) background clutter and noise swamping small targets, leading to detection failure
and (2) targets accounting for too little compared with the background, leading to detection
failure, thus improving the reliability and robustness of the algorithm in complex environ-
ments and making an important contribution to the improvement of the sensing capability
of autonomous systems.

Table 4 corresponds to the columns in Figure 13. We can see that compared with
DNANet, the proposed algorithm achieves more satisfactory results for mIoU, which
proves that the proposed algorithm has better segmentation performance.

Table 4. Comparison of mIoU for the proposed method with that of DNANet.

(a) (b) (c) (d) (e) (f) (g) (h)

DNANet 0.21 0 0.74 0.28 0 0 0.80 0.65

Proposed 0.43 0.4 0.84 0.88 0.37 0.58 0.90 0.83

4.5. Ablation Experiments

In this paper, the method of sharpening first and then upsampling is adopted. The
purpose is to first use sharpening spatial filtering to improve the pixel value of the target
edge and to then expand the pixel points of the enhanced image, so as to increase the
number of pixels that meet the constraint conditions of g(m_0, n_0) = g(m_1, n_1) = 1 and
achieve the recognition of small and dim targets and improve the detection effect. To test
our idea, we performed the following ablation studies in this section.

We compared the algorithm in this paper with the three methods using only the sharpen-
ing spatial filter, upsampling only and upsampling first and then using the sharpening spatial
filter; we further explain why the sharpening first and then upsampling approach is used:

(1) Use of sharpening spatial filters only: Only the mutation information, details and
edge information of the image are enhanced, without upsampling.
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(2) Upsampling only: cubic interpolation on the matrix of the input image using bicubic
filtering only to increase the target pixel.

(3) Upsampling and then using the sharpening spatial filter: first upsampling the image
to increase the target pixels and then using the sharpening spatial filter.

According to the ablation study in Table 5, the detection rate Pd is reduced by 0.77%,
the IoU by 0.54% and the false alarm rate Fa by 1.07 × 10−6 if only the sharpening is
performed using the sharpening space filter. This is because if the image is only sharpened,
although the pixel value of the edge of the small target will be increased, when the target
proportion is extremely small, the number of pixels that meet the constraints is still not
enough; therefore, this method has certain limitations.

Table 5. Ablation studies.

IoU (×10−2) Pd (×10−2) Fa (×10−6)

Sharpening only 75.01 97.71 11.97
Up-sampling only 75.22 96.95 12.12

Up-sample then sharpen 75.42 96.95 12.19
Proposed 75.55 98.48 10.90

If the image is only upsampled, the detection rate Pd decreases by 1.53%, the IoU
decreases by 0.33%, and the false alarm rate Fa increases by 1.22 × 10−6. This is because
upsampling the image only expands the target pixels compared with the unenhanced target,
but there is no increase in the number of pixels for which the small target satisfies the
constraints, i.e., the small target itself is not enhanced. The detection rate Pd is not improved
in this way, and instead, targets are detected that were not easily misidentified before.

Therefore, we combined the two approaches, upsampling the image first and then sharp-
ening it. From the results, it can be seen that there is no certain improvement in the detection
rate Pd or false alarm rate Fa compared with upsampling only, except for a small improvement
of 0.20% in IoU. However, it can be seen from sharpening only that the use of the sharpening
spatial filter enhances the features of small targets to improve detection, and the reason there
is no improvement here is that when the input image is upsampled and then sharpened, the
original pixel values that do not satisfy the constraints are expanded. By sharpening the image
afterwards, only the pixel values at the edges of the target are enhanced, so the pixels that
satisfy the constraint are not expanded, which makes the result unsatisfactory.

To sum up, we adopt the method of upsampling with sharpening spatial filter first. As can
be seen in Figures 15 and 16, this approach we took achieved optimal results. By sharpening the
input image first, the pixel values of the target edges are increased, thus enhancing the features
of small targets. After that, the upsampling operation will further expand the pixels on the basis
of the enhanced small target, that is, increase the number of pixels meeting the constraints, so as
to fully improve the number of pixels meeting the constraints and improve the detection ability.
These two methods, when combined with the right thinking, achieve the desired results.
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5. Conclusions

In this paper, we propose an algorithm for infrared small-target detection based on
small-target enhancement. Unlike conventional and deep learning-based algorithms, we
improve the algorithm from the perspective of enhancing small targets in the input image.
We achieve this by combining both sharpening spatial filters and upsampling to improve
detection. The sharpening spatial filter enhances small targets at a subtle level, making them
more distinctive. The upsampling process amplifies the enhanced small targets, making
difficult-to-detect point targets relatively easy to detect. The proposed algorithm effectively
solves the problem that small objects are difficult to detect due to their small proportion
or dimness. We compare with existing methods on public datasets and conduct extensive
ablation studies. The results show that our method outperforms existing methods.
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