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Abstract: The DMSP/OLS Nighttime light (NTL) data directly reflect the spatial distribution and
light intensity of artificial lighting from the Earth’s surface at night, and has become an emerging
instrument for urbanization research, including in the monitoring of urban expansion, assessment
of socio-economic vitality, and estimation of energy consumption and population. However, due
to the imperfect sensor design of DMSP/OLS, the dynamic range of the digital number (DN) of
NTL is limited (0, 63), leading to a significant saturation problem when describing the actual light
intensity, especially in dense urban areas with high light intensity. This saturation problem masks
spatial differences in light intensity and weakens the reliability of DMSP/OLS NTL data. Therefore,
this study proposes a novel desaturation indicator that combines NDBI and POI, the Building
and POI Density-Adjusted Nighttime Light Index (BPANTLI), to regulate the DMSP/OLS NTL
saturation problem based on the spatial characteristics of urban structures and human activity
intensity. The proposed method is applied to three urban agglomerations with the most severe
light saturation issues in China. The geographical detector model is firstly utilized to quantify the
effectiveness of NDBI and POI in reflecting the difference in light intensity distribution from the NTL
potential saturation region (NTL DN value (53, 63)) and NTL unsaturation region (NTL DN value
(0, 52)), so as to clarify the feasibility of developing the BPANTLI. The applicability of BPANTLI is
validated through three aspects—comparison of the desaturation capacity and the performance of
delineating light intensity; verification of the consistency of BPANTLI with radiometric calibration
nighttime light product (RCNTL) and NPP/VIIRS data; and assessing the accuracy of the BPANTLI
in estimating socio-economic parameters (GDP, electricity consumption, population density). The
results indicate that the BPANTLI possesses superior capability in regulating the NTL saturation
problem, achieving good performance in distinguishing inner-urban structures. The regulated results
reveal a remarkably improved correspondence with the RCNTL and NPP/VIIRS data, providing a
more realistic picture of the light intensity distribution. It is worth noting that, given the advantages of
NDBI and POI vector data in spatial resolution, the BPANTLI established in this study can overcome
the limitation of the spatial resolution of DMSP/OLS nighttime lighting data and achieve dynamic
transformation of the spatial resolution. The higher spatial resolution desaturation results allow
for a better characterization of the light intensity distribution. Moreover, the BPANTLI-regulated
light intensity significantly improves the accuracy of estimating electricity consumption, GDP, and
population density, which provides a valuable reference for urban socio-economic activity assessment.
Thus, the BPANTLI proposed in this study can be considered as a reasonable desaturation method
with a high application value.

Keywords: Defense Meteorological Satellite Program/Operational Line-Scan System (DMSP/OLS);
nighttime light data (NTL); saturation problem; NDBI; POI
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1. Introduction

In recent decades, the rapid expansion of urban agglomerations has become a per-
vasive spatial phenomenon in global urbanization. The Defense Meteorological Satellite
Program/Operational Linescan System (DMSP/OLS) can detect visible light at night, which
can intuitively reflect the structural details and spatial distribution of metropolitan areas, ur-
ban traffic corridors, and even intensity of human activity [1–5]. This Nighttime light (NTL)
data records the spatial distribution and light intensity of artificial lighting from the Earth’s
surface at night, and has been widely and effectively used in urbanization research, includ-
ing urbanization level assessment [6,7], monitoring of urban expansion [8,9], and estimating
energy consumption [10–12], gross domestic product [13–15], and population [16,17].

Although the new generation of NPP/VIIRS DNB data has better performance in
spatial resolution and radiation calibration of the NTL [18–21], the DMSP/OLS NTL dataset
has become the most widely used and irreplaceable NTL product due to its long-term
historical monitoring. However, due to the imperfect sensor design of DMSP/OLS, the
dynamic range of the NTL digital number (DN) is limited to 0–63. This low dynamic
range leads to the saturation problem of NTL data when describing the actual surface
light intensity, especially in dense urban areas with strong light intensity. That is, the DN
value increases to a certain extent and no longer continues to increase with the increase
of light intensity, which limits the range of brightness measurement. This means that the
light intensity expressed by the DN value is much lower than the actual value, especially
in urban areas where the light intensity is relatively high [22–24]. Such saturation prob-
lems not only lead to the underestimation of the actual light intensity, but also limit the
description of inner-urban variations in light intensity. This defect undoubtedly reduces
the application accuracy of NTL data. Therefore, effectively overcoming the saturation
problem of DMSP/OLS NTL data has become one of the current research foci.

At present, the approach to alleviating the DMSP/OLS NTL data saturation prob-
lem can be summarized into three aspects: statistical extrapolation method, radiometric
calibration method, and indicator-based correction method [25–29]. The first method is
mainly based on time series NTL data for cross-calibration or assumes a consistent spatial
trend or histogram distribution of DN value in the saturated and unsaturated regions.
For example, Cao et al. [30] used invariant target regions to perform mutual correction
on DMSP/OLS NTL data. Letu et al. [31] developed a cubic regression method to correct
the saturation problem based on the spatial distribution pattern of stable light. Although
this method is theoretically sound and has high accuracy, the OLS sensor is not equipped
with an onboard calibration system (low gain equipment) for the radiometric calibration
method. Therefore, it is difficult to calibrate the NTL data using the radiation calibration
method. Currently, only the National Geophysical Data Center (NGDC) has released some
time-specific radiometric calibration NTL products (RCNTL). In view of this, Letu et al. [32]
constructed a linear regression between the 1996–1997 radiation calibration NTL products
and the non-saturated part of 1999 NTL data; thus, calculating the light intensity in the
saturation region of the 1999 NTL data. However, this method assumes that the actual
DN value of saturated pixels hardly changed during 1996–1999. This assumption may
be applicable in highly developed countries, but it is difficult to guarantee for regions
with rapid urbanization progress (such as in China). As for the indicator-based correction
method, prior efforts have developed vegetation-based correction indicators (HSI, VANUI,
EANTLI, LERNCI) based on the negative correlation between vegetation abundance and
human activities [33–37]. These methods assume that places with low vegetation coverage,
such as urban centers, typically have stronger socio-economic vitality and therefore have a
greater NTL intensity. Specifically, vegetation indices (NDVI, EVI) are employed to develop
vegetation-based correction indicators and subsequently utilized to establish a relationship
with light intensity, so as to correct the saturation problem. For example, Lu et al. [33] and
Zhang et al. [34] both utilized the NDVI to develop the Human Settlement Index (HSI) and
Vegetation Adjusted NTL Urban Index (VANUI) to regulate the saturation problem, and the
results showed that the light intensity in the saturated area of the city was well corrected.
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Compared with the NDVI, the Enhanced Vegetation Index (EVI) has the advantage of
overcoming the NDVI saturation and attenuating the influence of soil background and
atmosphere on the NDVI. Therefore, Zhuo et al. [35] proposed the Enhanced Vegetation
Index-Adjusted Nighttime Light Index (EANTLI) based on the EVI to alleviate the satura-
tion problem. Their results indicate that the EANTLI is capable of reducing NTL saturation
and significantly increases spatial heterogeneity in saturated areas, effectively alleviating
the NTL saturation problem. In order to break through the insufficiency of a single in-
dex (NDVI, EVI) to construct desaturation indicators, Liu et al. [37] introduce the land
surface temperature (LST) on the basis of the vegetation index to construct the LST- and
EVI-regulated NTL city index (LERNCI), which achieves good performance in reducing
and regulating the NTL saturation phenomenon. In addition to vegetation-based indicators,
Zheng et al. [38] utilized social sensing data to develop the Vector-Data-Adjusted NTL
Index (VDANTLI) to alleviate the saturation phenomenon. Although this method achieves
a satisfactory correction effect, the social sensing data is usually sporadically distributed in
urban suburbs, which poses a challenge to global correction.

In fact, for the indicator-based correction method, the correction effect of the NTL
saturation problem is inextricably linked to the correction indicators. It is well recognized
that light intensity is closely related to urbanization level and socio-economic activity.
For example, light intensity in urban central business districts with high socio-economic
activity intensity is undoubtedly much greater than in suburbs and rural areas. However,
it is found that most of the current correction indicators are developed based on vegeta-
tion indices (NDVI, EVI). Although in most situations, these vegetation-based indicators
alleviate the saturation problem of NTL data, the reasonableness of the assumption of
negative correlation between vegetation coverage and human activities remains somewhat
problematic, especially for cities where urbanization is less consistent with the distribution
of green spaces. Firstly, vegetation abundance is only a tangential reflection of the urban-
ization level, and cannot fully reflect regional social and economic vitality. For example,
the vegetation coverage of water bodies or bare land is relatively low, but this does not
mean that the socio-economic activity or urbanization rate is high in these areas. In fact,
the light intensity of rivers and lakes is much less intense than in urban centers. Therefore,
this may lead to an overestimation of the light intensity in water bodies and bare land.
Moreover, the EVI values for water bodies are close to zero, resulting in abnormally high
EANTLI values, which leads to an inconsistency with reality. Secondly, with the continuous
improvement of the quality of human settlements, the vegetation coverage of urban centers
is gradually increasing. This implies that the urbanization rate may not be consistent with
the vegetation distribution. Therefore, we cannot simply assume that where the vegetation
cover is high, the light intensity is necessarily low. Thirdly, the difference in vegetation
coverage in central urban areas is not obvious, especially for rapidly urbanizing cities.
Although fine-scale urban green space cover products are currently available [39], most of
the previous efforts only utilized NDVI or EVI derived from MOD13A3 products. Using
vegetation coverage with low spatial heterogeneity to regulate the saturation problem may
not have the capability to delineate the spatial distribution of NTL. Additionally, for cities
with rapid urbanization, the difference in vegetation coverage in central urban areas is not
obvious. All these interference factors make it difficult to achieve satisfactory performance
in regulating NTL saturation images.

Considering the above deficiencies, this article aims to develop a more robust and
effective desaturation indicator to adequately address the NTL saturation problem. Given
the NTL is highly consistent with human activity, we attempted to propose a novel cor-
rection indicator to regulate the light saturation problem from the perspectives of urban
built-up areas and intensity of socio-economic activity. Firstly, the Normalized Difference
Built-up Index (NDBI) is a remote sensing index that can quickly and accurately extract
urban built-up areas and has been widely used in urban studies [40–45]. Additionally,
the NDBI value is positively correlated with light intensity, avoiding outliers caused by
low vegetation index value in water bodies and bare land. Secondly, this study further
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adopts the point of interest (POI), a new location-based service data type, to characterize the
intensity of socio-economic activity. POI refers to point data that record the spatial location
and attribute information of geographical entities, such as shopping malls, restaurants,
shops, supermarkets, schools, hospitals, parks, and government agencies [46–48]. The
spatial distribution pattern and density of POI can intuitively reflect the distribution of
various urban facilities and the characteristics of social behavior. Theoretically, regions
with more active socio-economic intensity also have higher POI density. For example, the
POI density in city centers (CBD) will be much greater than that in suburban or rural areas.
Additionally, in some extreme cases, such as abandoned towns, where the NTL intensity is
very low (without human activity) despite the high proportion of urban built-up areas, POI
density can effectively avoid this overestimation error.

Based on the abovementioned idea, this study introduces a novel desaturation in-
dicator that combines NDBI and POI, namely the Building and POI Density-Adjusted
Nighttime Light Index (BPANTLI), to regulate the NTL saturation problem and delineate
spatial differences in light intensity more robustly and effectively. Moreover, to verify
the performance of the BPANTLI, we compared it with other correction indicators (HSI,
VANUI, EANTLI), radiometric calibration NTL, NPP/VIIRS data, and evaluated the ac-
curacy of estimating socio-economic factors (electricity consumption, GDP, population
density). Three major urban agglomerations in China with the most severe light saturation
problems are selected as the test areas for validation of the proposed indicator.

2. Materials and Methods
2.1. Study Area

In this study, three major urban agglomerations: Beijing–Tianjin–Hebei (BTH), Yangtze
River Delta (YZD), and Pearl River Delta (PRD) urban agglomerations are selected as study
areas (Figure 1). The three urban agglomerations are located in North China (BTH), East
China (YZD), and South China (PRD), all of which are important political, economic, cul-
tural, and scientific centers for China. They are located between 112◦45′E and 123◦25′E and
between 21◦31′N and 42◦40′N, with an area of 218,000 km2, 211,000 km2, and 42,200 km2,
respectively. Since the reform and open-up policy, these urban agglomerations have expe-
rienced dramatic urbanization, and have become the most developed and economically
dynamic regions in China. The GDP of BTH, YZD, and PRD urban agglomerations in
2019 has reached $1.3 trillion, $3.6 trillion, and $1.8 trillion, respectively, accounting for
44% of the total GDP of China. Meanwhile, at the end of 2020, the resident population
of these three metropolitan regions reached 112 million (BTH), 235 million (YZD), and
64 million (PRD) respectively, accounting for 29.2% of the population of mainland China.
The vibrant socio-economic activity has increased the light intensity in these three urban
agglomerations, leading to severe saturation problems. Therefore, examining the pro-
posed BPANTLI in these three urban agglomerations possesses a certain representativeness
and significance.

Considering the data collection, Beijing, Tianjin, Tangshan, and Langfang cities were
selected for BTH urban agglomeration; Shanghai, Nanjing, Hangzhou, Changzhou, Ningbo,
Wuxi, Suzhou, Huzhou, Shaoxing, Jiaxing, and Nantong cities were selected for the YZD
urban agglomeration; Guangzhou, Shenzhen, Foshan, Dongguan, Zhuhai, Huizhou, Zhong-
shan, Jiangmen, and Zhaoqing cities are selected for the PRD urban agglomeration; coming
to a total of 24 cities. Table 1 provides a summary of the socio-economic conditions for
those 24 cities.
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Table 1. Overview of the administrative areas, population, and gross domestic product (GDP) of the
selected 24 prefecture-level cities.

City Administrative
Areas (km2)

Population
(Million)

Electricity
Consumption
(Billion kwh)

GDP
(Billion RMB)

Beijing 15,863.29 13.16 91.31 1950.06
Tianjin 11,916.85 14.72 82.34 1437.02

Tangshan 13,471.92 7.47 75.73 612.12
Langfang 6429.31 5.46 13.09 194.31
Shanghai 6340.50 24.15 141.06 2160.21
Nanjing 6587.02 6.43 46.27 801.17

Hangzhou 16,596.75 8.84 63.85 834.35
Changzhou 4372.15 4.69 39.10 436.09
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Table 1. Cont.

City Administrative
Areas (km2)

Population
(Million)

Electricity
Consumption
(Billion kwh)

GDP
(Billion RMB)

Ningbo 9816.28 5.80 55.94 712.88
Wuxi 4627.46 4.72 60.64 807.02

Suzhou 8488.42 6.53 126.32 1301.57
Huzhou 5819.85 2.62 18.29 180.31
Shaoxing 8279.02 4.94 35.96 396.73

Jiaxing 3915.34 3.46 38.55 314.76
Nantong 8001.11 7.66 60.05 503.88

Guangzhou 7434.40 8.32 71.07 1542.01
Shenzhen 1996.78 10.62 72.98 1450.02

Foshan 3797.72 7.29 57.76 701.07
Dongguan 2459.85 8.31 62.25 549.02

Zhuhai 1724.32 1.59 12.17 166.23
Huizhou 11,343.12 3.43 24.84 267.83

Zhongshan 1800.14 3.17 21.71 263.89
Jiangmen 9505.42 3.93 20.73 200.02
Zhaoqing 14,891.22 4.29 10.78 166.01

2.2. Data

In this study, the data contain F18 DMSP/OLS stable NTL data (version 4, 1992–2013),
radiometric calibration nighttime light product (RCNTL), Landsat TM/ETM data, POI
data, MODIS MOD13A3 annual average monthly vegetation index data products (NDVI,
EVI), GPWv4 global population density data (PD), Gross Domestic Product (GDP), and
annual electricity consumption (EC) of the study area (Table 2). We take 2013 as the time
node, the average visible and cloud-free DMSP/OLS stable NTL products were selected as
the correction object. The RCNTL and National Polar-orbiting Partnership/Visible Infrared
Imaging Radiometer Suite (NPP/VIIRS) data were adopted to examine the performance of
the saturation effect correction. The cloud-free Landsat TM images covering these three
urban agglomerations were selected to calculate the NDBI. The POI data was obtained from
the AutoNavi map. Due to the huge amount of POI data, four types of POI data that are
closely related to socio-economic activity are selected for this study (commercial locations,
dining locations, entertainment locations, and residential locations). The vegetation indices
(NDVI, EVI) were derived using the MOD13A3 product to construct vegetation-based
desaturation indicators. The GPWv4 population density data (PD) was provided by
NASA’s Earth-Observing System Data and Information System (EOSDIS). Since this data is
updated every 5 years, the global population density data in 2015 was selected as the data
source for this paper. The GDP and electricity consumption (EC) of each prefecture-level
city in three urban agglomerations were calculated from the statistical yearbook. All data
were reprojected to the WGS-84 coordinate system.

Table 2. Overview of data used in this study.

Data Resolution Time Data Source

DMSP/OLS nighttime light (NTL) 30 arc second 2013 NOAA/NGDC
(http://ngdc.noaa.gov/eog/download.html)

accessed on 1 May 2022Radiometric calibration nighttime
light (RCNTL) 30 arc second 2013

http://ngdc.noaa.gov/eog/download.html
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Table 2. Cont.

Data Resolution Time Data Source

National Polar-orbiting
Partnership/Visible Infrared Imaging

Radiometer Suite (NPP/VIIRS)
15 arc second 2013

Earth Observations Group
(https://www.ngdc.noaa.gov/eog/viirs/

download_dnb_composites.html)
accessed on 1 May 2022

Landsat TM/ETM 30 m 2013
USGS

(https://earthexplorer.usgs.gov/)
accessed on 1 May 2022

POI Point data 2013
OpenStreetMap

(http://download.geofabrik.de/)
accessed on 1 May 2022

MODIS MOD13A3 1 km 2013
MODIS

(https://modis.gsfc.nasa.gov/)
accessed on 1 May 2022

GPWv4 population density (PD) 1 km 2015

EOSDIS
(http://sedac.ciesin.columbia.edu/data/

collection/gpw-v4)
accessed on 1 May 2022

Gross Domestic Product (GDP) - 2013 China Statistical Yearbooks Database
(http://www.shujuku.org/)

accessed on 1 May 2022Annual electricity consumption (EC) - 2013

2.3. Methods

In this study, we propose a novel socio-economic-activity-based desaturation indicator
BPANTLI to regulate the NTL saturation problem more robustly and effectively. This
approach can be divided into three main steps (Figure 2). Firstly, multi-source data with
different spatial resolutions are unified into 500 m areas through grid processing and
normalization. Secondly, the geographical detector model was utilized to quantify the
effectiveness of NDVI, EVI, NDBI, and POI in reflecting the difference in light intensity
distribution from two levels: the NTL potential saturation region (NTL DN value (53, 63))
and NTL unsaturation region (NTL DN value (0, 52)), thereby verifying the feasibility of
mitigating the saturation problem based on the combination of NDBI and POI. Further,
the BPANTLI desaturation indicator was developed based on the explanatory power of
the interactive detectors from the geographical detector model. Lastly, the applicability
of BPANTLI is evaluated through (1) the verification of the desaturation capacity and the
performance of delineating light intensity; (2) the consistency of BPANTLI with RCNTL and
NPP/VIIRS data; (3) the corresponding correlation between BPANTLI and socio-economic
parameters (electricity consumption, GDP, and population density) from the prefecture
level and pixel level.

https://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
https://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
https://earthexplorer.usgs.gov/
http://download.geofabrik.de/
https://modis.gsfc.nasa.gov/
http://sedac.ciesin.columbia.edu/data/collection/gpw-v4
http://sedac.ciesin.columbia.edu/data/collection/gpw-v4
http://www.shujuku.org/
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2.3.1. Data Normalization and Grid Processing

Firstly, as each data has a different value domain, this study further normalizes the
attribute data within each grid unit (0, 1) to facilitate calculation and analysis. Additionally,
considering the different spatial resolutions of each data source, the create fishnet tool
in ArcGIS Pro was adopted to construct a fishnet with a resolution of 500 m. Then the
zonal statistics tool was utilized to extract the NTL DN values, NDVI, EVI, NDBI, and POI
information for each grid unit, so as to realize the unification of multi-source data. That
is to say, the attribute information (light intensity, vegetation index, NDBI, POI) from the
multi-source dataset is unified to a grid unit with a resolution of 500 m. Based on this,
these grid units containing attribute information and consistent spatial resolution lay a
foundation for subsequent quantitative and qualitative analysis.

2.3.2. Geographical Detector Model

The geographical detector model is the new spatial statistical analysis model that
can effectively diagnose the spatial heterogeneity of landscape elements [49–51]. The
principle of this model is based on stratified spatial heterogeneity, which can either examine
the spatial heterogeneity of a single variable or detect the interaction of two factors on a
dependent variable. This method has no linear hypothesis, which effectively overcomes the
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limitations of the traditional statistical methods which have been widely used to explain
the degree of spatial distribution differences in geographical phenomena [39,52,53].

According to the characteristics of NTL data, this study measures the spatial correlation
of NDVI, EVI, NDBI, and POI with NTL distribution from two levels of light potential
saturation region and light unsaturation region. Given that the RCNTL offers a perfect
correlation with nighttime light data from DMSP-OLS, this study introduces the RCNTL
into the geographical detector model as a baseline for verifying the effectiveness of NDVI,
EVI, NDBI, and POI data in reflecting the differences in the spatial distribution of NTL
in saturated and unsaturated regions. The factor detector of the geographical detector
model uses the q value to measure the degree of explanation of NDVI, EVI, NDBI, and
POI on the spatial distribution difference of NTL. The q value is between 0 and 1, a higher
q value indicates that the NDVI, EVI, NDBI, or POI can better reflect the distribution of
NTL. When the q value is 0, it means that there is no relationship between NDVI, EVI,
NDBI, or POI and NTL. In addition, in order to judge whether the combination of different
indexes (NDVI, EVI, NDBI, POI) can more fully reflect the distribution pattern of NTL, this
study further uses the interactive detector to quantify the interaction effect of two separate
indexes on NTL distribution. The interactive detector calculates and compares the q value
of each single factor and the q value of the superposition of the two factors, and then judges
whether there is an interaction between the two factors and the strength, direction, linearity,
or nonlinearity of the interaction.

2.3.3. Developing BPANTLI

It is known that light intensity is inextricably linked to human activity, with both
NDBI and POI showing positive trends in relation to human activity intensity. Therefore,
in this study, we combine NDBI and POI to develop the BPANTLI based on the results of
the interactive detectors of the geographical detector model. The process of constructing
the BPANTLI desaturation indicator is shown in Figure 3.
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NDBI value and POI density; (B) Multiplying GBP value with original NTL data.

Given the high proportion of impervious surfaces and the intensity of socio-economic
activities in cities, both NDBI value and POI density are higher in urban centers. In rural
areas, however, the values of NDBI and POI density tend to be relatively low. Meanwhile,
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the light intensity in urban areas tends to be more intense than in suburban areas. This
indicates that the light intensity has a good consistency with NDBI value and POI density,
all decreasing from the urban center to the suburbs. Notably, the value of NDBI and POI
density are both normalized, which means that the maximum value of these two parameters
is 1. Therefore, we further sum the NDBI value and POI density (using GBP to represent) to
enhance the difference in human activity intensity (Figure 3A). This means that the closer
to the city center, the larger the value of the NDBI and POI, and the correspondingly larger
the GBP value, with a maximum value of 2 (both NDBI and POI values are 1). Conversely,
the further away from the city center, the smaller the value of the NDBI and POI value, and
thus the smaller the GBP value, with a minimum value of 0 (both NDBI and POI values
are 0). This suggests that greater GBP values are more likely (often greater than 1) in areas
with potential NTL saturation, such as central business districts. On the contrary, in areas
where NTL data generally does not have saturation problems (e.g., suburbs), the GBP
value is likely to be smaller (often less than 1). Based on this variation characteristic, we
consider the GBP value as an adjustment coefficient and multiply it with the original NTL
data (Figure 3B). In other words, the regional light intensity can be increased or decreased
depending on the value of the GBP. The BPANTLI calculated on the basis of NDBI and POI
further increases the difference between urban centers and suburbs, thus expanding the
spatial differences in NTL intensity between the saturation region and unsaturation region.

GBP = NDBInorm + POInorm (1)

BPANTLI = GBP×NTL (2)

It is worth noting that this study regulates the saturation problem based on the NDBI
value and POI density in the grid units, which means that the spatial resolution of BPANTLI
is determined by the size of the grid units. For example, the spatial resolution of the fishnet
is set to 500 m in this study (Figure 3). As a result, the spatial resolution of the regulated light
intensity (BPANTLI) is improved from 1 km to 500 m, which breaks through the inherent
spatial resolution of DMSP/OLS NTL data (Figure 4). The BPANTLI with higher spatial
resolution may have better performance in urban studies (urbanization level assessment,
energy consumption estimation). Moreover, multiple resolution grid units can be created
according to research needs to realize the dynamic transformation of the BPANTLI spatial
resolution, thereby overcoming the limitation of DMSP/OLS NTL data spatial resolution.
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2.3.4. BPANTLI Validation

(1) Comparison between HSI, VANUI, EANTLI, and BPANTLI

In this study, HSI, VANUI, and EANTLI desaturation indicators were also calculated
to compare the desaturation effect and the differentiation of light intensity in the NTL satu-
ration region with BPANTLI. Among them, the HSI, VANUI, and EANTLI are calculated
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according to the method proposed by Lu et al. [33], Zhang et al. [34], and Zhuo et al. [35],
and the calculation formulas are as follows:

HSI =
(1−NDVI) + NTL

(1−NTL) + NDVI + NDVI×NTL
(3)

VANUI = (1−NDVI)×NTL (4)

EANTLI =
1 + (nNTL− EVI)
1− (nNTL− EVI)

×NTL (5)

The NDVI and EVI data used to calculate HSI, VANUI, and EANTLI are from the
MODIS MOD13A3 product. In order to carry out consistent comparisons, all calculation
results are normalized to a range of (0, 1). In order to assess the ability of BPANTLI to
regulate the saturation problem, this study further selects typical NTL saturation regions in
BTH, YZD, and PRD urban agglomeration to compare the capability of each indicator to
regulate the NTL saturation problem and the distinguishability of light intensity (Figure 5).
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(2) Similarity with RCNTL and NPP/VIIRS data

Considering the accuracy and absence of a pixel saturation problem of RCNTL and
NPP/VIIRS data, this study selected these data as a criterion for comparative verification.
Firstly, three transects through the BTH, YZD, and PRD urban agglomeration saturation
regions are selected to compare the differences between NTL, BPANTLI, and RCNTL.
Secondly, the regression analysis was performed on HSI, VANUI, EANTLI, BPANTLI,
and RCNTL, NPP/VIIRS data on the transects. The correlation coefficients were then
calculated and compared to validate the correspondence between BPANTLI and RCNTL,
and NPP/VIIRS data, so as to verify the desaturation ability of BPANTLI.
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(3) Capacity to estimate electricity consumption, GDP, and population density

In recent years, since light intensity can mirror the spatial distribution of human
activities, many scholars have conducted studies on estimating socio-economic indicators
such as population density, GDP, and energy consumption using NTL data [25,32,54–56].
Therefore, in this paper, the electricity consumption, GDP, and population density at the
prefecture level were selected for regression analysis with NTL, VANUI, EANTLI, BPANTLI,
and NPP/VIIRS, respectively, so as to evaluate the respective correlation among them.
Additionally, this study further generates 500 random sampling points within the potential
saturation region and NTL unsaturation region in different level cities (Beijing, Shanghai,
Guangzhou, Shenzhen, Foshan) to examine the adequacy of fit between BPANTLI and
population density at the pixel level. Considering the spatial resolution of the NTL data,
the minimum distance between two sampling points is set as 1 km.

3. Results
3.1. Effectiveness of NDVI, EVI, NDBI, and POI in Reflecting NTL Distribution

In this study, the GDM is utilized to quantify the interpretation of RCNTL, NDVI,
EVI, NDBI, and POI on the spatial distribution of NTL. As shown in Table 3, RCNTL
unsurprisingly has the highest explanatory power. Apart from this, at the global scale (DN
values (0, 63)), NDVI, EVI, NDBI, and POI all have a certain spatial correlation with the
distributions of NTL. The q values were ordered as: NDBI (0.662) > EVI (0.593) > NDVI
(0.531) > POI (0.473). This result indicates that the NDBI has the best performance in
reflecting NTL distribution, followed by vegetation indices and POI. From the q values of
EVI and NDVI, it can be seen that the explanatory power of the EVI is 11.6% higher than
that of the NDVI. Compared with NDVI, the EVI has the advantage of overcoming easy
saturation and attenuating soil background and atmospheric effects, and thus using the EVI
to correct NTL data may be more effective than the NDVI. The results of the GDM further
support the advantages of EVI. In the potential saturation region (DN value (53, 63)), it
can be found that the NDBI and POI are more effective in reflecting the light intensity,
especially the POI, which has almost doubled the explanatory power of the unsaturated
region. For the unsaturation region (DN value (0, 52)), both NDBI and EVI can effectively
depict the NTL distribution, while the POI has a relatively low explanatory power. This
may be due to the lower density of POIs in suburban areas, which suggests that using
POI density alone to regulate the NTL saturation problem may introduce a relatively large
deviation into unsaturated areas.

Table 3. The results of the factor detector and interaction detector.

Light Intensity (DN) Global Scale
(DN Value (0, 63))

NTL Potential Saturation
Region (DN Value (53, 63))

NTL Unsaturation Region
(DN Value (0, 52))

RCNTL 0.694 0.637 0.602
NDBI 0.662 0.586 0.424
EVI 0.593 0.395 0.352

NDVI 0.531 0.303 0.371
POI 0.473 0.435 0.288

NDBI & EVI 0.744 0.583 0.550
NDBI & NDVI 0.681 0.490 0.502
NDBI & POI 0.797 0.842 0.653
EVI & NDVI 0.632 0.411 0.567
EVI & POI 0.751 0.526 0.418

NDVI & POI 0.694 0.585 0.496

Furthermore, the interaction detector is adopted to further measure the interaction
effect of NDVI, EVI, NDBI, and POI on NTL spatial distribution. It is found that the
interaction of NDVI, EVI, NDBI, and POI enhanced the explanatory power of the spatial
distribution of NTL data. In particular, the largest q value at the global scale is NDBI
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interacting with POI (0.797), which was 20.3% (NDBI) and 68.4% (POI) enhancement
compared with their individual effect. Especially in the potential saturated region, the
explanatory power is as high as 0.842. This illustrates the importance of the combination of
NDBI and POI, which can effectively reflect the spatial distribution differences of NTL in
the unsaturated and potential saturated regions. Therefore, it is highly feasible to combine
NDBI and POI to construct the BPANTLI as a desaturation indicator to regulate the NTL
saturation problem and delineate spatial differences in light intensity.

3.2. Desaturation Capacity of BPANTLI

In order to compare the characterization of light intensity by BPANTLI, this study
selected the VANUI desaturation indicator in BTH urban agglomeration, the HSI desatura-
tion indicator in YZD urban agglomeration, and the EANTLI desaturation indicator in PRD
urban agglomeration, respectively, and compared their correction effects with BPANTLI. It
can be clearly seen from Figures 6–8 that, compared with the original NTL DN value, the
VANUI, EANTLI, and BPANTLI desaturation indicators can reduce the saturation effects
and enhance the difference in light intensity within the potential saturation region. In the
original NTL images, there is a clear saturation effect in the BTH, YZD, and PRD urban
agglomerations. It is almost impossible to identify the internal light distribution. In general,
the HSI-corrected results are slightly better than that of NTL, but cannot identify typical
areas within cities. The calibration results of VANUI and EANTLI can better show the
difference of light intensity in the saturated area, but there is little overall discrimination
and it is difficult to distinguish typical areas. BPANTLI, on the other hand, can more
effectively reduce the saturation problem and accurately delineate the differences in light
intensity in saturation regions. The overall discrimination is much greater, and the typical
plots in the saturation regions are easier to identify.
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In BTH urban agglomeration (Figure 6), six typical plots located in Beijing were
selected, namely: Summer Palace (a), Olympic Park (b), Forbidden City (c), Temple of
Heaven Park (d), Beijing Economic Center (e), and Capital International Airport (f). In
the original NTL images, none of the 6 typical plots can be identified. As for VANUI,
the Olympic Park (b), Temple of Heaven (D), and Capital International Airport (f) can
also be roughly recognized in VANUI, while other places cannot be distinguished due to
insufficient contrast. However, in the BPANTLI, the above six plots are clearly identified.
The difference between the light intensity and the surrounding area is clearly shown on the
BPANTLI. For example, the Forbidden City (c) is closed at night (with weak light intensity),
but due to its location in the center of Beijing, it is surrounded by bright lights at night.

In the YZD urban agglomeration (Figure 7), six typical areas located in Shanghai,
namely: Xujiahui Commercial Zone (a), Lujiazui CBD (b), Jiangwan New City Park (c),
Gongqing Forest Park (d), Senlan Sports Park (e), and Pudong International Airport (f)
were selected. Similar to Figure 6, none of the six typical plots can be identified in the
NTL map. In HSI, only Xujiahui Commercial Zone (a), Lujiazui CBD (b), and Pudong
International Airport (f) can be identified. For the areas with more vegetation information,
such as forests and parks, it is difficult for HSI to highlight the difference between these
areas and the surrounding light intensity. This may be due to the error caused by the easy
saturation of NDVI. In contrast, the BPANTLI can better identify various typical areas
inside the saturation regions, where the Huangpu River, Lujiazui CBD, and Nanjing Road
commercial areas are clearly distinguishable and the details of the rivers are not obscured.
This result illustrates that the BPANTLI can accurately describe the differences in NTL
intensity in saturation regions.
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Mountain Scenic Area, (e) Zhujiang New Town CBD, (f) Pearl River Waterway.

In the PRD urban agglomeration, this study selected Foshan Financial High-tech Zone
(a), Guangzhou Liwan historical urban area (b), Chenxiangsha river island (c), Baiyun
Mountain Scenic Area (d), Zhujiang New Town CBD (e), and Pearl River Waterway (f).
Similar to BTH and YZD urban agglomerations, the selected typical areas cannot be iden-
tified in the NTL data, whereas both EANTLI and BPANTLI can better distinguish these
typical areas. However, it is difficult for EANTLI to recognize water body plots (c, f), which
is mainly due to the fact that EANTLI is established based on the EVI that responds to the
degree of vegetation coverage. The EVI values for both water bodies and built-up areas are
relatively low, which leads to high EANTLI and an inability to distinguish between water
bodies and urban centers. Thereby, the NTL intensity is similar between water bodies and
built-up areas. Moreover, as for the area (a, e) of Foshan Financial High-tech Zone and
Zhujiang New Town CBD, with a better understanding of sustainable urban development,
the vegetation coverage in the urban CBD is gradually increasing, leading to low EANTLI
values and underestimation of the NTL intensity of the CBD. In contrast, the BPANTLI
better identifies these selected typical areas. The establishment of BPANTLI based on NDBI
and POI can more accurately reflect the difference in light intensity within urban CBDs as
well as in the suburbs.

3.3. Similarity between BPANTLI and RCNTL and NPP/VIIRS Data

As shown in Figure 9, three transect lines that pass through the potential saturation
areas of the BTH, YZD, and PRD urban agglomerations are selected to visually compare
the differences between NTL, EANTLI, BPANTLI, and RCNTL of each pixel. It can be seen
that the NTL curve has a DN value of almost one as it passes through the city center. This
result illustrates that the uncorrected NTL data has a significant saturation problem in the
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city center, which does not characterize the details of the light intensity inside the saturated
zone. However, the radiation-corrected RCNTL does not suffer from this problem. By
comparing the fluctuation trends between the EANTLI, BPANTLI, and RCNTL curves,
it can be seen that the BPANTLI and RCNTL curves fluctuate most similarly in both the
potential saturation and unsaturated regions.
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In order to further quantify the desaturation effect of BPANTLI, this study performed
regression analysis on desaturation indicators (HSI, VANUI, EANTLI, BPANTLI) with
RCNTL and NPP/VIIRS data to examine the similarity among them (Figure 10). It can be
found that the fitting degree between BPANTLI and RCNTL, and NPP/VIIRS data is better
than the other desaturation indicators (EANTLI > VANUI > HSI) in the BTH, YZD, PRD
urban agglomerations, whether in the saturated or unsaturated areas, with a coefficient
of determination R2 greater than 0.80. This indicates that the BPANTLI-corrected light
intensity has a more prominent correspondence correlation with NPP/VIIRS data, which
further confirms the feasibility of the BPANTLI. Furthermore, the determination coefficient
R2 of EANTLI is higher than that of VANUI to varying degrees, which further confirms the
superiority of EANTLI over VANUI in regulating NTL saturation problems. The fitting
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degree of HSI and NPP/VIIRS data was the lowest, which further validates the results in
Section 3.2.
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3.4. Electricity Consumption, GDP, and Population Density Estimation

To verify the estimated accuracy of each desaturation indicator on regional electricity
consumption (EC), GDP, and population density (PD), Figure 11 shows the regression
results of the desaturation indicators (VANUI, EANTLI, BPANTLI) and NPP/VIIRS data in
three urban agglomerations. We found that the NPP/VIIRS data obtain the highest corre-
lation with all socio-economic indicators, especially population density, with an adjusted
R2 of 0.89. Compared with the original NTL data, the correlations of each desaturation
indicator (VANUI, EANTLI, BPANTLI) with EC, GDP, and PD have increased significantly.
This finding indicates that the desaturated NTL data allows for more accurate estimates
of regional electricity consumption, GDP, and population density. More importantly, the
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fitting degree of BPANTLI for electricity consumption, GDP, and population density is
significantly higher than other indicators and is not much different from NPP/VIIRS data.
In detail, the adjusted R2 of BPANTLI and EC is as high as 0.81, which is 15.0% and 11.3%
higher than the R2 of EANTLI and VANUI, respectively. The regression coefficient be-
tween BPANTLI and GDP is 0.76, followed by EANTLI (0.74), and VANUI (0.73). As for
population density, the R2 of BPANTLI is 0.86, which has a significant advantage over the
EANTLI, VANUI, and NTL. Additionally, compared with the NPP/VIIRS data, the fitting
degree among BPANTLI and EC, GDP, and PD is only 3.3%, 8.8%, and 3.1% lower than
NPP/VIIRS data. In other words, there is a certain corresponding correlation among them.
This result suggests that the BPANTLI-regulated light intensity provides better accuracy
for estimating electricity consumption, GDP, and population density.
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Furthermore, given the highly corresponding correlation of population density, this
study randomly selected 500 sample points in five cities of Beijing, Shanghai, Guangzhou,
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Shenzhen, and Foshan to verify the accuracy of the BPANTLI index for estimating pop-
ulation density at the pixel level. As shown in Figure 12, at the pixel level, the fitting
coefficients of BPANTLI with population density in Beijing, Shanghai, Guangzhou, and
Shenzhen are 0.80, 0.78, 0.83, 0.75, and 0.69, respectively, which are significantly higher
than those of EANTLI and VANTLI. Similarly, the NPP/VIIRS data also obtain the highest
fitting degree with population density at the pixel level in these five cities. Therefore, it can
be seen that, not only at the city level, the BPANTLI-corrected light intensity also has better
accuracy for the population density estimation at the pixel level.
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4. Discussion
4.1. Evaluate the Desaturation Effect of Each Indicator

The desaturation effect of NTL data is inextricably linked to the construction of the
desaturation indicator. Previous studies utilize NDVI or EVI to construct desaturation
indicators (HSI, VANUI, EANTLI) under the assumption that light intensity is inversely
proportional to vegetation coverage [34,35,57,58]. However, we have noticed that this
negative correlation is not very stable, especially in rapidly urbanizing areas. Firstly, rapid
urbanization has led to a dramatic decline in urban vegetation density. The continuous
encroachment of urban green space leads to the fragmentation of the vegetation landscape
and inhibits the spatial heterogeneity of vegetation coverage. Using vegetation coverage
with low spatial heterogeneity to regulate saturated NTL data may lead to the inability
to depict the spatial distribution differences in light intensity (Figures 6–8). Secondly,
with the introduction of concepts such as sustainable urban development and habitable
cities, the vegetation abundance within CBDs is gradually increasing. Therefore, using the
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vegetation-based desaturation indicator will undoubtedly underestimate the light intensity
of the CBD at night (Figure 7). Thirdly, in certain areas, it is difficult to use vegetation
coverage to characterize light intensity. For example, the vegetation coverage of water
bodies or bare land is relatively low (low NDVI or EVI), but this does not mean that the
light intensity is high (Figure 8). Based on this assumption, the relatively low NDVI and
EVI values incorrectly increase the light intensity in these areas. Moreover, this error is
even more pronounced when these areas are located on the urban fringe. It is worth
noting that vegetation cover in some desert cities does not show a trend of being low in
urban centers and high in suburban areas. These desert cities are constantly increasing
their vegetation coverage in order to adapt to the demands for livability. Therefore, the
assumption that NTL intensity is inversely related to vegetation abundance may not be
applicable to these cities.

It is well known that light intensity is closely related to economic vitality and human ac-
tivities [59,60]. That is to say, light intensity is more of a socio-economic indicator reflecting
human activity. However, the vegetation index is only a side reflection of socio-economic
intensity, which assumes urban development will encroach on vegetation coverage. In
reality, a place with sparse vegetation often does not imply strong socio-economic vitality
in the area. This also explains the defect of using vegetation-based desaturation indicators
alone to regulate NTL. Based on this, this study proposes a novel desaturation indicator
based on the urban spatial structure and socio-economic activity intensity. With the devel-
opment of the city, various urban facilities related to daily life become denser, along with a
large proportion of urban built-up areas. At the same time, the light intensity is also increas-
ing. This positive relationship is the theoretical basis for the BPANTLI correction method
developed in this study. The GDM results (Table 3) further confirmed this conjecture that
the combination of the NDBI and POI has the highest explanatory power for the spatial
distribution of light intensity, whether in saturated or unsaturated regions. Thus, it is highly
feasible to combine NDBI and POI to construct the BPANTLI as a desaturation indicator
to regulate the NTL saturation problem and delineate light intensity. By comparing the
desaturation results with HSI, VANUI, and EANTLI, the BPANTLI can more effectively
reduce the saturation problem and express spatial differences in light intensity. We can
easily distinguish the urban inner structures such as central business districts, green areas,
airports, and river channels. Furthermore, the BPANTLI shows a more prominent similarity
to radiation-calibrated data, with a much higher coefficient of determination R2 than other
indicators. This result illustrates the desaturation accuracy of BPANTLI, which depicts a
more realistic picture of the light intensity distribution. Also, the BPANTLI-regulated light
intensity significantly improves the accuracy of estimating urban socio-economic activity,
which provides better reference data for electricity consumption, GDP, and population
density estimates. In general, the validation results from the above three aspects fully
demonstrate the effectiveness of the BPANTLI in regulating the NTL saturation problem.
Therefore, the BPANTLI proposed in this study can be considered a reasonable indicator of
NTL desaturation.

With the development of the remote sensing cloud computing platform (Google Earth
Engine), the huge storage space and advanced cloud computing capabilities have made
largescale desaturation studies possible. In this context, this study further applies the
proposed BPANTLI method to the typical NTL saturation region in Asia, Europe, and
North America (Figure 13).
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4.2. Overcoming the Spatial Resolution of NTL Data

It has become widely accepted that light data directly reflects human activity. Con-
siderable research has been carried out using DMSP/OLS NTL data to estimate urban
social and economic parameters (GDP, population, energy consumption), and to mon-
itor urbanization processes and the ecological environment [61–65]. However, due to
the generally low spatial resolution of DMSP/OLS NTL data, its application accuracy is
greatly limited. With the development of nighttime observation technology, the spatial
resolution of the NPP/VIIRS and Luojia 1 light data have been increased to 500 m and
130 m, respectively. Although the spatial resolution of NPP/VIIRS and Luojia 1 light data
have now been significantly improved, these datasets have only become available in recent
years. This implies these high-spatial-resolution NTL datasets cannot be used for long
time-series studies. In contrast, given the long-term historical monitoring of DMSP/OLS
NTL data, the unique ability to conduct long-term time series analysis exists. Therefore, it
is of great practical significance to overcome the original spatial resolution of DMSP/OLS
data to produce more accurate historical data. In view of the advantages of NDBI and
POI vector data in spatial resolution, we can achieve dynamic conversion of BPANTLI
spatial resolution by setting grid units with different sizes according to research needs,
thus breaking through the limitation of DMSP/OLS NTL data spatial resolution (Figure 14).
For example, in this study, the spatial resolution of BPANTLI-regulated NTL data is 500 m
(Figure 4). We can even set the grid size to 250 m for higher spatial resolution light intensity.
On the contrary, since the spatial resolution of NDVI and EVI of MOD13A3 products is
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1 km (similar resolution with light intensity), whose inherent spatial resolution is difficult
to improve. The BPANTLI-regulated light data with a higher spatial resolution allows for
a better characterization of the spatial distribution differences of light intensity, which is
expected to produce more accurate and meaningful regulated results.
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However, it is important to note that this method cannot improve the spatial resolution
to a relatively high level (50 m, 100 m). Theoretically, we can increase the spatial resolution
of BPANTLI up to 30 m (based on NDBI resolution), but the spatial resolution of the original
DMSP/OLS NTL data is still 1 km. Simply building higher resolution grid units (i.e., 30 m)
to increase the spatial resolution of BPANTLI while maintaining the same resolution of
the original NTL data (still 1 km) will inevitably create more uncertainty (excessive spatial
heterogeneity). As shown in Table 4, we found that the correlation between BPANTLI and
NPP/VIIRS began to decline at a spatial resolution of 100 meters. Therefore, this result
suggests that the method proposed in this study can only improve the spatial resolution of
nighttime light to a certain extent.

Table 4. The fitting degree between BPANTLI and NPP/VIIRS data across different spatial resolutions
in Guangzhou.

NPP/VIIRS BPANTLI

Spatial resolution 250 m 200 m 100 m 50 m 30 m

Correlation coefficient 0.75 0.78 0.67 0.62 0.54

4.3. Limitations

Although the BPANTLI proposed in this study has many advantages, there are still
some shortcomings that should be considered in future work. Firstly, in this study, we only
considered the POI density within each grid unit and did not distinguish the differences in
light emission of the selected POI types (commercial, entertainment, dining, and residential).
Therefore, the light emission of different POIs should be further considered in order to
delineate the actual light intensities in more detail. Secondly, for the principle of BPANTLI,
this study develops the BPANTLI only based on the results of interactive detectors of the
geographical detector model. Hence, the sensitivity analysis of the proposed method needs
to be further supplemented in following research. Thirdly, the BPANTLI is established
based on NDBI and POI, so the difficulty of obtaining NDBI and POI will directly affect
the application of this desaturation method. Compared with the NDVI and EVI vegetation
indices that can be directly obtained from MODIS MOD13A3 products, the development of
BPANTLI first needs to calculate NDBI and POI density, which undoubtedly increases the
difficulty of applying the BPANTLI desaturation indicator. With the explosive growth of
spatiotemporal geographic data, the time required to update multi-source remote sensing
data and POI has become shorter, providing a data basis for the construction of BPANTLI
desaturation models. In addition, with the development of the remote sensing cloud
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computing platform (Google Earth Engine), the huge storage space and advanced cloud
computing capabilities have made large-scale desaturation studies possible. Lastly, only
one year and three major urban agglomerations are selected to verify the effectiveness
of the BPANTLI in reducing the NTL saturation problem. Therefore, it is necessary to
further construct long-term series and cross-regional BPANTLI data to further verify its
universality and credibility.

5. Conclusions

In this study, a novel desaturation indicator, BPANTLI, that combines NDBI and POI
is proposed to regulate the DMSP/OLS NTL saturation problem based on the spatial
characteristics of urban structures and human activity. The geographical detector model
is firstly adopted to quantify the explanatory power of NDVI, EVI, NDBI, and POI on
light intensity distribution, so as to clarify the feasibility of developing the BPANTLI
desaturation indicator. The performance and applicability of BPANTLI are validated in
three major urban agglomerations with the most severe light saturation problems in China
through the depiction of light intensity spatial differences in NTL saturation regions; the
similarity among the BPANTLI and the RCNTL, NPP/VIIRS data; and the accuracy of
estimating urban socio-economic parameters (electricity consumption, GDP, population
density). The results indicate that compared with HSI, VANUI, and EANTLI desaturation
indicators, the BPANTLI can robustly and effectively regulate the NTL saturation problem
and delineate the spatial differences of light intensity. In the potential saturation region
of three urban agglomerations, the typically selected areas that are indistinguishable in
the original NTL and HSI or difficult to distinguish in the VANUI and EANTLI can be
clearly distinguished in the BPANTLI-regulated NTL data. Secondly, the BPANTLI shows
a more prominent similarity with RCNTL and NPP/VIRRS data, with a much higher
coefficient of determination R2 than other indicators. Thirdly, the BPANTLI-regulated light
intensity significantly improves the accuracy of estimating urban socio-economic activity,
which provides a better reference data for electricity consumption, GDP, and population
density estimates. Overall, the results of these three aspects confirm that the BPANTLI
proposed in this study can more effectively alleviate the saturation problem and delineate
a more realistic picture of the light intensity distribution. Through the construction of the
BPANTLI, the existing DMSP/OLS NTL data can be desaturated and regulated to obtain
a time-series-calibrated NTL dataset, which can compensate for the deficiencies of the
radiation calibration NTL data (RCNTL). At the same time, the dynamic conversion of
the spatial resolution of nighttime light data can also be realized according to the research
needs, so as to more accurately characterize the spatial distribution difference of light
intensity and provide an accurate data set for research requiring NTL data.
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