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Abstract: With the development of multisource satellite platforms and the deepening of remote
sensing applications, the growing demand for high-spatial resolution and high-temporal resolution
remote sensing images has aroused extensive interest in spatiotemporal fusion research. However,
reducing the uncertainty of fusion results caused by sensor inconsistencies and input data preprocess-
ing is one of the challenges in spatiotemporal fusion algorithms. Here, we propose a novel sensor bias
correction method to correct the input data of the spatiotemporal fusion model through a machine
learning technique learning the bias between different sensors. Taking the normalized difference
vegetation index (NDVI) images with low-spatial resolution (MODIS) and high-spatial resolution
(Landsat) as the basic data, we generated the neighborhood gray matrices from the MODIS image
and established the image bias pairs of MODIS and Landsat. The light gradient boosting machine
(LGBM) regression model was used for the nonlinear fitting of the bias pairs to correct MODIS NDVI
images. For three different landscape areas with various spatial heterogeneities, the fusion of the
bias-corrected MODIS NDVI and Landsat NDVI was conducted by using the spatiotemporal adaptive
reflection fusion model (STARFM) and the flexible spatiotemporal data fusion method (FSDAF),
respectively. The results show that the sensor bias correction method can enhance the spatially
detailed information in the input data, significantly improve the accuracy and robustness of the
spatiotemporal fusion technology, and extend the applicability of the spatiotemporal fusion models.

Keywords: sensor bias; spatiotemporal fusion; machine learning; MODIS; Landsat

1. Introduction

Spatiotemporal fusion technology can fuse remote sensing images from different sen-
sors, scales, and times without changing the existing observation conditions to generate
synthetic images with high spatial resolution and high temporal resolution, which allevi-
ates the “spatiotemporal contradiction” of remote sensing data [1]. Spatiotemporal fusion
has been widely used in predicting high-spatiotemporal resolution land surface tempera-
ture (LST) [2–4], normalized difference vegetation index (NDVI) [5–7] evapotranspiration
(ET) [8,9], and leaf area index (LAI) [10–12]. Different algorithms have been proposed
for the spatiotemporal fusion approaches. Examples include: filter-based methods [1],
unmixing based [13–15], empirical and hybrid approaches [16,17], and machine learning
based [9,18,19]. The spatial and temporal adaptive reflectance fusion model (STARFM) [1]
is one of the earliest and most commonly used spatial weight function-based methods.
The STARFM assumes that different spatial resolution images possess identical tempo-
ral variations. Thus, the changes from the low-resolution pixels can be added directly
to the pixels in the high-resolution image to obtain a high-spatial-resolution image of
the predicted data [20]. Some studies have enhanced the STARFM for multisource data
and more complicated situations, and several methods have been developed to improve
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spatiotemporal fusion performance in heterogeneous areas and regions that experience
land cover changes [3,21–23]. Hybrid methods focus on improving spatiotemporal fusion
performance by combining multiple methods, such as the Flexible Spatiotemporal DAta
Fusion (FSDAF) [17] and improved FSDAF, including IFSDAF [24], SFSDAF [25], and
FSDAF 2.0 [26]. In FSDAF, temporal changes in each category of land cover are estimated
by spatially unmixing low-spatial-resolution images of base and predicted dates and dis-
tributing the residuals estimated from thin plate spline (TPS) interpolation according to
the spatial weighting of neighborhood similar pixels. Afterward, the temporally predicted
images containing phenological changes are combined with spatially predicted images,
including category changes for the final prediction. Recently, with the development of
deep learning, an increasing number of spatiotemporal fusion models based on deep
learning super-resolution algorithms have been developed. Most of these models directly
formulate the transformation functions from coarse to fine images. The representative
methods include the multistep STF framework with deep CNNs (STFDCNN) [19], the very
deep CNN-based STF [27], STFGAN [28], the deep convolutional STF network [29], and
MTDL-STF [30].

Due to different principles, existing spatiotemporal fusion algorithms have their
own advantages and weaknesses in different landscapes. The fusion results of different
algorithms vary greatly in heterogeneous landscapes, homogenous landscapes, and areas
undergoing dramatic land cover changes. For instance, the STARFM denotes excellent
accuracy in homogenous landscapes, with poor fusion results for landscapes with high
heterogeneity [23]. While the ESTARFM is capable of obtaining accurate fusion images
in heterogeneous landscapes, it performs even worse than the STARFM in predicting
abrupt changes in land cover [31]. Fit-FC captures significant phenological changes more
efficiently than the STARFM [32], whereas the fusion accuracy is lower in heterogeneous
areas than FSDAF and the STARFM [33]. In this sense, the robustness and reliability of the
spatiotemporal fusion approaches should be increased further. Accurate and reliable image
prediction for landscapes with different spatial heterogeneity and temporal variations is a
challenge for spatiotemporal fusion algorithms.

NDVI is the most commonly used vegetation index for monitoring terrestrial ecosys-
tems. It exhibits more significant spatial and temporal differences than the original re-
flectance bands; thus, most spatiotemporal fusion models assess their performance through
NDVI data [34]. However, the differences between NDVIs derived from different sensors
and their associated impact on fusion reliability have not received sufficient attention
in the development and application of most spatiotemporal fusion methods. NDVI is
calculated using reflected signals in the red and near infrared bands. The factors that
affect spectral reflectance will also have impacts on NDVI calculation. The multi-sensor
NDVI inconsistencies are mainly from the differences in the following: orbital overpass
times [35], geometric, spectral, and radiometric calibration errors [36–39], and directional
sampling and scanning systems [40]. Satellite-based NDVI may be more complicated due
to the varying sun-target sensor geometries [41,42]. The difference in the relative spectral
response functions of the different sensors (such as Landsat-TM and Terra-MODIS) can
cause the inconsistency in NDVI [43]. The effect is comparable in magnitude to the uncer-
tainties caused by sensor calibration, atmospheric, and angular correction and can lead
to systematic biases if neglected [44]. To reduce these differences, Obata et al. (2021) [41]
developed an NDVI transformation method based on a linear mixture model of anisotropic
vegetation and non-vegetation endmember spectra, which can reduce the effects of surface
anisotropy caused by viewing angle differences and spectral response function differences
at the scene level. Wang and Huang (2017) [45] constructed a linear model to correct the
temporal change in coarse images. Shi et al. (2022) [46] introduced a new reliability index
to measure the spatial reliability distribution of the input data. The index was involved
in calculating the residual model and reliability weights to reduce the impact of sensor
bias on spatiotemporal fusion. Although the previous methods may lessen the effects of
discrepancies in sensor observations on spatiotemporal fusion to a certain extent, it is still
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worth investigating whether the sensor bias can be eliminated in the image preprocessing,
thus, reducing the uncertainty in image fusion estimation.

In this study, we introduced a simple bias correction approach and evaluated its
applicability for spatiotemporal fusion models that require identical spatial resolution
input data. High-frequency but low-spatial-resolution (MODIS, hereafter referred to as
“low-resolution images”) and high-spatial-resolution but low-frequency (Landsat, hereafter
referred to as “high-resolution images”) NDVI images were used as the base data. The
light gradient boosting machine (LGBM) regression model was used to quantify sensor bias
so that the high-frequency information of input data in the spatiotemporal fusion models
is reconstructed. The uncertainty caused by registration and systematic errors may be
reduced, and high-accuracy input data are generated. To evaluate the performance of the
proposed method, low-resolution images generated by the nearest neighbor interpolation
and the sensor-bias-based correction method were used as input data for the spatiotemporal
fusion model, respectively. By the comparison of the fusion results, the impacts of the bias
correction on two spatiotemporal fusion algorithms (i.e., FSDAF and the STARFM) were
analyzed.

2. Methodology

The sensor-bias-based correction method consists of four steps: (1) generating neigh-
borhood gray correlation matrices from low-spatial-resolution images; (2) establishing
the bias pairs of different sensor images; (3) nonlinear fitting of image bias pairs using
machine learning; and (4) correcting the low-spatial-resolution images. The corrected
low-resolution images are then input into the spatiotemporal fusion algorithm to obtain
the high-resolution increments, which are combined with the high-resolution image of the
base date to generate the high-resolution image of the predicted date. The flowchart for
this work is presented in Figure 1.

Figure 1. Flowchart of the sensor bias correction method applied in this study. C is the low-spatial-
resolution dataset, F represents the high-spatial-resolution dataset, C0 is the low-spatial-resolution
image of the base date (t0), and Cp represents the high-spatial-resolution image of the predicted
date (tp).
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2.1. Generating Neighborhood Gray Correlation Matrices

Images with low and high spatial resolutions used as input data for spatiotemporal
fusion models should be registered and calibrated to identical physical quantities. If the
spatial resolution difference between the two observations is significant in the registration
process, the low-resolution image is resampled to a high-resolution image using the nearest
neighbor algorithm, one image is georeferenced to the other using control points, or the
correlation between the two images is maximized, and then cropped to cover the identical
area [31,47]. However, a big spatial resolution gap between the two types of observations
causes registration errors.

Assuming that the resampled low-spatial-resolution image has a registration error of
N pixels with the high-spatial-resolution image, N is usually set as a multiple of the scaling
factor for the two types of sensors. The x-direction and y-direction are the column and row
of the image, respectively. The reference pixels are denoted as (xi, yj), and the registration
error is simulated to make the image pixels (xk, yk) with relative distance d equal to the
value of reference pixels.

dijk =
√
(xk − xi)

2 +
(
yk − yj

)2 (1)

where dijk represents the relative distance between the pixels with registration errors and
the reference pixels, which is determined by N. A schematic diagram of the registration
error direction (N = 1) is presented in Figure 2.

Figure 2. Schematic diagram of the registration error directions assumed for the reference pixel at
N = 1.

The neighborhood gray correlation matrix is generated by combining the registration
errors and the neighboring pixels through a series of mathematical transformations. The
resampled low-spatial-resolution image is used as the reference image. Padding N steps of
0 around the reference image shifts the matrix of the reference image by a set dimension in
each direction. Each unique shift is stored as a new neighborhood correlation matrix, ensur-
ing that each neighborhood pixel to be considered is in the same position as the reference
pixel in the new neighborhood correlation matrix and the reference matrix, respectively.
Finally, new neighborhood correlation matrices are compressed into a 3-dimensional matrix
to generate the set of neighborhood correlation matrices. The registration error matrix Cn

j is
expressed as:

Cn
j = Φ

(
C(x, y) + dijk

)
(2)

where C(x, y) indicates the reference matrix for images with low spatial resolution. Φ
represents the registration error direction, determined by N, with a value of 8N.
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The effects due to sensor differences are further characterized by using additional
neighborhood information. When the registration error shift N ≥ 2 is assumed, considering
the impacts of neighboring pixels at a relative distance m on the reference pixel, the neighbor
pixel matrix Cn

k is defined as:

Cn
k = Φ

(
C(x, y) + dijk −m

)
(3)

F′(x, y, l) =
[
C, C1

j , C2
j , · · · · · ·Cn

j , C1
k , C2

k , · · · · · ·Cn
k

]
(4)

where the range of m is (1 . . . N − 1). F′(x, y, l) represents the set of neighborhood
correlation matrices considering all possible registration errors and spatial neighborhood
information, and l represents the number of matrices as (2N + 1)2.

2.2. Establishing Bias Pairs of Different Sensors

The difference between the two sensor observations EFC is expressed as:

EFC = EBRDF + Es + Et + Er (5)

where FC represents the high-resolution image (e.g., Landsat) and low-resolution image
(e.g., MODIS), EBRDF represents the difference generated by the bidirectional reflectance
distribution function (BRDF) effect, Es represents the systematic difference due to the dif-
ference in spectral band configuration between the two sensors, Et represents the difference
generated by the temporal intervals between observations, and Er represents the difference
in observations generated by the registration errors [46]. Therefore, the overall difference
in the observations resulting from sensor bias, EFC is expressed as:

EFC(x, y) = F(x, y)− C(x, y) (6)

EF′C(x, y, l) = F′(x, y, l)− C(x, y) (7)

where F(x, y) represents the matrix of the high-resolution image and EF′C(x, y, l) denotes
the bias of the neighborhood correlation matrix with the reference matrix.

2.3. Nonlinear Fitting of Image Bias Pairs

After obtaining the bias pairs, a regression relationship needs to be established for
each pair of bias pixels. The pixels in EF′C(x, y, l) are treated as features that affect the
generation of EFC(x, y). It is assumed that there is a registration error. When N’s value is
larger, pixels farther away from the reference pixel may have a greater impact. However,
in practice, we do not know the displacement and direction of the specific registration
errors. Previously, empirical formulae were used to determine the weights of each feature.
Although the calculation was simple and balanced the computational efficiency, it is not
the most accurate solution.

The light gradient boosting machine (LGBM) [48] is widely used in the field of remote
sensing, and research has proved that the LGBM has obvious advantages in computational
speed and accuracy compared with other similar algorithms [49,50]. Given the advantages
of machine learning in nonlinear mapping, we used the LGBM regression model to obtain
the weights of each impact factor by nonlinearly fitting the bias pairs. In the model,
a piecewise function is established for each feature value by a histogram optimization
algorithm before training, thus, converting the feature values from continuous to discrete
values. First, the information entropy of the training data Ent(D) is calculated:

Ent(D) = −∑Q
i=1 P

(
DQ
)

log2P
(

DQ
)

(8)
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where D represents the training dataset, DQ represents the discrete values of the optimized
histogram of target sample features, and P

(
DQ) is the occurrence probability of each

discrete value in D.
Second, assuming that a single feature li has V discrete values after histogram opti-

mization, if li is used to partition the training dataset D, V subsets are generated, denoted
as Dv. The information entropy of Dv is calculated according to Equation (8). Considering
that different subsets contain different numbers of samples, the subsets are given a weight
|Dv |
|D| , i.e., more samples have a greater impact on the subset weights; therefore, information

gain Gain(D, li) obtained by dividing the sample set D using a single feature li can be
calculated and expressed as follows.

Gain(D, li) = Ent(D)−∑V
i=1
|Dv|
|D| Ent(Dv) (9)

Thus, l information gain values are obtained, which are normalized to obtain the
weight of each feature, denoted as Wi:

Wi =
Gain(D, li)

∑l
i=1 Gain(D, li)

(10)

Finally, the weighted sum of the different features is used to generate the sensor bias
EFC(x, y):

EFC(x, y) = ∑l
i=1 EF′C(x, y, l) ∗Wi (11)

2.4. Correcting the Low-Spatial-Resolution Images

The low-spatial-resolution image Ct(x, y) to be corrected is taken as the reference
matrix. The set F′Ct

(x, y, l) of neighboring gray correlation matrices of the reference matrix
is generated by the equations in Section 2.1. Then the original image pixels are subtracted
to obtain the deviation in the neighboring correlation matrix from the reference matrix and
expressed as:

EF′Ct(x, y, l) = F′Ct
(x, y, l)− Ct(x, y) (12)

The predicted bias is added to the resampled low-resolution image Ct(x, y) to obtain
the corrected image:

Cc(x, y) = Ct(x, y) + ∑l
i=1 EF′Ct(x, y, l) ∗Wi (13)

where Ct and Cc denote the low-resolution image before and after correction, respectively.
Each pixel of the corrected low-resolution image considers all possible registration errors
and neighborhood pixel information.

2.5. Predicting High-Resolution Image with Spatiotemporal Fusion Models

There are many different approaches to spatiotemporal fusion, but the main concept
can be described as follows:

Fp = F0 + ∆F (14)

∆F = f (∆C) (15)

The high-resolution increments (∆F) of the predicted known and predicted times are
first estimated through the low-resolution increments (∆C) of the known and predicted
times obtained by the spatiotemporal fusion model ( f ). Then, the predicted NDVI values for
time tp are obtained through the base high-resolution NDVI values (F0) and the increments
(∆F) [24]. In this research, using spatiotemporal fusion models, i.e., FSDAF and STARFM,
the high-resolution increment (∆F) due to land cover change and intraclass variations were
approximated by the changes in the corrected low-resolution images at different times.
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Then, they were summed with the high-resolution NDVI values at the base date (t0) to
obtain the predicted NDVI images (Fp).

3. Experiment

In this paper, we used Landsat and MODIS NDVI images derived from red-band
reflectance and near-infrared-band reflectance as experimental data to analyze the effect of
sensor bias correction strategies on spatiotemporal fusion methods. The experiments were
carried out in three diverse geographical landscapes (Figure 3), and two spatiotemporal
fusion methods, FSDAF and STARFM, were utilized.

Figure 3. The location of the test area.

3.1. Experimental Area and Data

The first experimental area is located in the Coleambally Irrigation Area, Australia
(34◦54′S, 145◦57′E), a region with highly varied terrain characterized by many small patchy
fields and fast phenological variations. Two Landsat ETM+ images (800 × 800 pixels, with
a resampling resolution of 25 m) obtained on December 04, 2001 (t0) and 12 January 2002
(tp), and corresponding daily MODIS images (MOD09GA Collection 5) were chosen as
experimental data (Figure 4).

The second study site is located in the Gwydir area, Australia (149.2818◦E, 29.0855◦S).
Two Landsat 5 TM images (800 × 800 pixels, with a resampling resolution of 25 m) were
obtained on 26 November 2004 (t0) and 12 December 2004 (tp), and MOD09GA images
obtained on the same dates were utilized (Figure 5). The test images of the above two sites
were obtained from the open-source spatiotemporal fusion experimental dataset [31].

The third experimental site in western Jilin Province, China (44◦40′–44◦56′N and
123◦44′–124◦7′E), covering an area of 29 km × 29 km (960 × 960 Landsat image pixels),
is a homogeneous landscape where the main land cover type is farmland, water bodies,
and construction land (Figure 6). At present, sensors, such as Landsat 5 TM, have been
discontinued. Furthermore, the use of images on neighboring dates will increase Et in
Equation (5), which will increase the uncertainty in the spatiotemporal fusion results.
Therefore, the analysis of the influence of the bias correction method on the fusion results
with date-adjacent images demonstrates the potential of the proposed method to generate
high-resolution images of long time series. We selected two Landsat8 OLI images acquired
on 1 July 2018 (t0) and 2 August 2018 (tp), and the corresponding adjacent MOD09A1
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images acquired on 26 June 2018 and 28 July 2018, as experimental data, and resampled the
spatial resolution of the MOD09A1 images to 30 m to match the Landsat image.

Figure 4. Test data at the Coleambally Irrigation Area: Landsat NDVI obtained on (a) 4 December
2001 and (b) 12 January 2002, Landsat false-color composite images obtained on (c) 4 December
2001 and (d) 12 January 2002, (e,f) resampled MODIS NDVI corresponding to the same dates, and
(g,h) corrected MODIS NDVI corresponding to the same dates.

Figure 5. Test data for the Gwydir area: Landsat NDVI obtained on (a) 26 November 2004 and (b) 12
December 2004, Landsat false-color composite images obtained on (c) 26 November 2004 and (d) 12
December 2004, (e,f) resampled MODIS NDVI for the same dates, and (g,h) corrected MODIS NDVI
for the same dates.
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Figure 6. Test data for western Jilin Province: Landsat NDVI obtained on (a) 1 July 2018 and (b) 2
August 2018, false-color-composite Landsat images obtained on (c) 1 July 2018 and (d) 2 August 2018,
(e,f) resampled MODIS NDVI for the corresponding dates, and (g,h) corrected MODIS NDVI for the
corresponding dates.

3.2. Experimental Design and Evaluation

Our experiments used 11 pairs of preprocessed Landsat and MODIS images from
adjacent dates (t0 and tp) for the above three sites as training data. As MODIS images in
the open-source dataset have been preprocessed with nearest neighbor resampling, we
employed it as the default resampling method for the consistency of the experiments. For
the correction and fusion process, the registration shift N and the scaling factor of the
spatiotemporal fusion model were assumed to be 20 in the Coleambally and Gwydir areas,
and the two parameters for the western Jilin area were set to 16. The rest of the parameters
used the default values.

As the STARFM is a spatiotemporal fusion model designed for fixed sensor pairs,
we employed a version of the STARFM that can be used for diverse sensors to verify the
correctness of the results [22]. We compared the fusion results of the STARFM and FSDAF
model through visual assessment and quantitative measurements, in which input was
processed by sensor bias correction and nearest-neighbor resampling, respectively. The
predicted date’s high-resolution images (Landsat NDVI) were regarded as actual data. The
predicted Landsat-like images were quantitatively compared to the actual Landsat images.
The root mean square error (RMSE) and correlation coefficient (CC) were used to measure
the difference and the degree of relevance between the fused NDVI image and the real
NDVI image. A smaller RMSE means a better prediction. The average difference (AD)
between two NDVI images can reflect the overall deviation in the prediction. Generally,
a positive AD value means that the fused NDVI image overestimates the actual values,
whereas a negative AD means an underestimate. Structural similarity (SSIM) is a metric
used to assess the structural similarity of real and fused NDVI images. High similarity
between two images exists when the RMSE (or AD) value is close to 0 or the CC (or SSIM)
value is close to 1.

4. Results
4.1. Fusion of the NDVI after Sensor Bias Correction in Heterogeneous Landscape Areas

The experimental area has a high spatial heterogeneity and no significant land cover
changes, but the crop phenology changes rapidly between the two time periods. Figure 7
shows a visual comparison of the Landsat NDVI images predicted by FSDAF and the



Remote Sens. 2022, 14, 3274 10 of 20

STARFM before and after the bias correction process for the Landsat NDVI image (actual
image) observed on 12 January 2002. The STARFM-predicted NDVI image without bias
correction captured most seasonal changes but generated patches with uniform values
(Figure 7b). In the FSDAF-predicted image, phenological information was predicted,
but more discontinuity existed in the areas of rapid phenological changes (Figure 7e). In
contrast, after bias correction, errors (e.g., the speckle noise) in the regions with phenological
changes in the NDVI images predicted by FSDAF were significantly reduced (Figure 7c).
The NDVI of plant covers in the real image is dark blue (Figure 7d). The fusion result of
the STARFM after correction removed the patches and is also visually similar to the actual
NDVI image (Figure 7f). Figure 8 and Table 1 show that the NDVIs predicted by FSDAF
and the STARFM after bias correction were more accurate and closer to the 1:1 line than the
precorrection results.

Figure 7. Landsat NDVI of the Coleambally Irrigation Area on 12 January 2002: (a,d) actual images
for two test areas, (b) image predicted by FSDAF, (c) image predicted by bias-corrected FSDAF,
(e) image predicted by the STARFM, and (f) image predicted by the bias-corrected STARFM.

For the whole image, the fusion results of FSDAF obtained after correction were
highly correlated with the actual NDVI (CC = 0.8269 and RMSE = 0.1449). The increases
in structural similarity (SSIM) reduced the blur caused by pixel discontinuities. For the
STARFM, the bias-corrected inputs of the fusion results showed a higher CC (0.8406), lower
RMSE (0.1416), and higher SSIM (0.7186). Compared to the actual Landsat NDVI, the
low AD values were 0.0002 and −0.0056, indicating the high accuracy of NDVI fusion by
FSDAF and the STARFM after bias correction.
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Figure 8. Scatter plots of NDVI and Landsat NDVI observations on 12 January 2002 estimated
using various techniques: (a) FSDAF, (b) bias-corrected FSDAF, (c) STARFM, and (d) bias-corrected
STARFM (the red line is the 1:1 line).

Table 1. Accuracy of the STARFM- and FSDAF-predicted NDVIs before and after bias correction of
input data for the Coleambally Irrigation Area. Best results are marked in bold.

Methods Image CC RMSE AD SSIM

FSDAF uncorrected 0.7974 0.1563 −0.0072 0.6837
corrected 0.8269 0.1449 0.0002 0.6901

STARFM uncorrected 0.7990 0.1577 −0.0133 0.6976
corrected 0.8406 0.1416 −0.0056 0.7186

4.2. Fusion of NDVI Images after Sensor Bias Correction in Areas of Dramatic Land Cover Change

By visual comparison, the bias-uncorrected FSDAF- and STARFM-predicted NDVI
images captured partial land cover change information at the Gwydir site (Figure 9). The
predicted images included large-area flood inundation; however, such extensive flooding
areas were not found in the actual Landsat NDVI images. In the areas of land cover change,
the image generated by FSDAF after the correction process (RMSE = 0.1315) still had
speckle noise compared to the predicted image without bias correction (Figure 9b). More
land cover changes could be captured and generate the boundary of flooding in the real
image (Figure 9c). The NDVI image (RMSE = 0.1204) predicted by the STARFM after bias
correction had many fuzzy spatial details but was more similar to the actual NDVI image
(Figure 9a) than the predicted image before correction (Figure 9d), therefore, reducing the
misjudgment of pixels of unchanged land cover and false flooded areas (circle area marked
in Figure 9).

As the CC and AD values are shown in Table 2, after the correction process, both the
NDVI fusion images predicted by the two models were highly correlated to the actual
NDVI image with almost no deviation. The spatiotemporal fusion model’s robustness
and accuracy in predicting images of areas with changing land cover improved. SSIM
found that bias-corrected fusion images retrieved changed features and retained spatial
details better than bias-uncorrected fusion images. As illustrated in Figure 10, the scatter
points of the bias-corrected fusion NDVI results obtained using FSDAF and the STARFM
were more concentrated and were closer to the 1:1 line than those of the bias-uncorrected
fusion results.
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Figure 9. Landsat NDVI of the Gwydir site on 12 December 2004: (a) actual image, (b) image
predicted by FSDAF, (c) image predicted by the bias-corrected FSDAF, (d) image predicted by the
STARFM, and (e) image predicted by the bias-corrected STARFM.

Figure 10. Scatter plots of NDVI and Landsat NDVI observations on 12 December 2004 estimated
using various techniques: (a) FSDAF, (b) bias-corrected FSDAF, (c) STARFM, and (d) bias-corrected
STARFM (the red line is the 1:1 line).
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Table 2. Accuracy of the STARFM- and FSDAF-predicted NDVIs before and after bias correction of
input data for the Gwydir area. Best results are marked in bold.

Methods Image CC RMSE AD SSIM

FSDAF uncorrected 0.7586 0.1507 −0.0448 0.4561
corrected 0.7960 0.1315 −0.0013 0.5027

STARFM uncorrected 0.7817 0.1432 -0.0458 0.5006
corrected 0.8316 0.1204 −0.0013 0.5556

4.3. NDVI Fusion after Sensor Bias Correction in Homogeneous Regions

Figure 11 shows the predicted Landsat-like NDVI before and after bias correction
and the Landsat NDVI observed on the predicted dates for the homogeneous landscape
region of western Jilin, China. With the MODIS and Landsat images of the adjacent dates,
the fusion NDVI predicted by the original FSDAF algorithm based on the uncorrected
input data generated obvious errors in some pixels, e.g., the blocky artifacts (Figure 11b,
area within the dashed circle). The images predicted by the STARFM lost many spatial
details and were visually blurred due to over-smoothing (Figure 11e). In contrast, the NDVI
image predicted by FSDAF after the input data performed bias correction showed more
spatial details, and blocky artifacts were eliminated (Figure 11c). The blurring effects in the
fused image obtained by the STARFM were somewhat alleviated, generating spatial details
that were more similar to those of the actual Landsat NDVI image of the predicted date
(Figure 11f).

Figure 11. Landsat NDVI of western Jilin Province, China, on 2 August 2018: (a,d) actual images
for two test areas, (b) image predicted by FSDAF, (c) image predicted by bias-corrected FSDAF, (e)
predicted image of the STARFM, and (f) image predicted by the bias-corrected STARFM. The enlarged
images are used for better visual comparison.
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Table 3 shows the accuracy of the fusion results obtained using spatiotemporal models
before and after bias correction of input data for an area in west Jilin, China. Compared
to the bias-uncorrected FSDAF and STARFM predictions, the fused NDVI image after
correction had a lower RMSE, a higher CC, and higher SSIM values relative to the actual
NDVI data, indicating that the spatiotemporal fusion algorithms after bias correction of
input data might be better at retrieving the spectral and structural information of images.
Moreover, according to the AD value, the fusion result had almost no deviation from
the actual NDVI, suggesting improved robustness of the spatiotemporal fusion model.
From Figure 12, the NDVI values predicted by the spatiotemporal fusion method after
bias correction showed less dispersion and were more similar to the actual NDVI values,
which indicates that the bias correction method might reduce the uncertainty caused by the
original spatiotemporal fusion algorithm when using images from adjacent dates.

Table 3. Accuracy of STARFM- and FSDAF-predicted NDVI images before and after bias correction
of input data in an area of western Jilin, China. Best results are marked in bold.

Methods Image CC RMSE AD SSIM

FSDAF uncorrected 0.8525 0.1149 0.0220 0.6257
corrected 0.8742 0.1055 0.0003 0.6538

STARFM uncorrected 0.8693 0.1066 0.0207 0.6582
corrected 0.8869 0.0967 −0.0016 0.6684

Figure 12. Scatter plots of NDVI and Landsat NDVI observations on 2 August 2018, estimated using
various methods: (a) FSDAF, (b) bias-corrected FSDAF, (c) STARFM, and (d) bias-corrected STARFM
(the red line is the 1:1 line).

5. Discussion
5.1. Effect of Different Regression Algorithms on Correction Models

Different regression methods may have different effects on the model of sensor bias
correction. Here, we selected four popular regression methods, namely, the random forest
(RF) regression method [51], the support vector regression (SVR) method [52], the partial
least squares regression (PLS) method [53], and the light gradient boosting machine (LGBM)
regression method [48], to analyze their influences on the bias correction method. The
MODIS NDVI of the three experimental areas was divided into three sets of test data.
To evaluate the effects of the four regression methods, they were evaluated based on the
correlation coefficient (CC) and root mean square difference (RMSE) between the test data
(before and after correction) and the corresponding Landsat NDVI.

Figure 13 illustrates that the bias correction method driven by the four regression
methods performed well in terms of CC and RMSE. In the three test datasets, the LGBM
algorithm showed more consistent performance in correcting sensor bias compared to
the RF, SVR, and PLS algorithms with minimum average RMSEs of 0.1258 (Table S1) and
maximum average CCs of 0.7768 (Table S2). The average RMSEs decreased by 15.29% and
the average CCs increased by 13.25% compared to the pre-correction. The corrected MODIS
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NDVI deviated the least from the corresponding Landsat NDVI after correction by using the
LGBM-driven bias correction method (Figure 13). Figure 14 shows the spatial distribution
of the absolute difference between MODIS NDVI and the corresponding Landsat NDVI
before and after correction with the LGBM-driven bias correction method. The enlarged
images are used for better visual comparison. The lighter color in Figure 14 represents the
smaller absolute difference. It can be seen that the corrected MODIS NDVI is closer to the
actual Landsat NDVI, which proves the effectiveness of the correction method. On the
whole, the LGBM algorithm is the most suitable for sensor bias correction among the four
regression algorithms in terms of performance index and visual results.

Figure 13. Distribution of MODIS NDVI correction results of four regression methods for three
experimental areas. (a) CC and (b) RMSE.

Figure 14. The absolute difference between MODIS NDVI (before and after correction) and the
corresponding Landsat NDVI in the three experimental areas. (a) 4 December 2001, (b) 12 January
2002, (c) 26 November 2004, (d) 12 December 2004, (e) 26 June 2018, and (f) 28 July 2018.

5.2. Effect of Bias Correction on the Input Image for Spatiotemporal Fusion

The differences between sensors may result in inconsistent phenological changes and
land cover changes expressed by different sensors at the predicted time [54]. As seen
in Equation (15), the estimation of the high-resolution increment (∆F) depends on the
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incremental change (∆C) in the low-resolution image between different times. Due to the
absence of a high-resolution image on the prediction date, all relevant information on land
cover type change and intraclass variability are included in the low-resolution image.

In this study, we found that in the heterogeneous landscape region with rapid pheno-
logical changes, compared to the nearest neighbor resampled increment ∆C (Figure 15b),
the bias-corrected increment ∆C (Figure 15c) had a higher correlation with the actual
high-resolution NDVI increment ∆F (Figure 15a), with a higher correlation coefficient
(CC = 0.6214) and a smaller RMSE (0.1473). In the area of intense changes in land cover,
compared with the increment acquired from resampling (Figure 15e), the increment ob-
tained after bias correction (Figure 15f) determined more accurate change information and
was closer to the actual high-resolution increment ∆F (Figure 15d). In the western region of
Jilin, due to the large observation date interval of the high- and low-resolution image pairs
at t0, the NDVI increment of MODIS at different times (Figure 15h) differed greatly from the
true high-resolution NDVI increment (Figure 15g). In contrast, the corrected ∆C (Figure 15i)
was more closely correlated with the high-resolution increment ∆F (CC = 0.6214). The
proposed bias correction method can effectively reduce the uncertainty of the input data
increment (∆C) caused by rapid changes in the phenological period, drastic changes in
land cover, and large date intervals between sensors. Correcting the low-resolution input
image to generate reliable spatial distributions provides a strong guarantee for obtaining a
more accurate high-resolution increment (∆F) of temporal prediction.

Figure 15. NDVI increment: (a) high-resolution NDVI increment (∆F) in the Coleambally area,
(b,c) corresponding low-resolution NDVI increment (∆C) values before and after bias correction;
(d) ∆F for the Gwydir area, (e,f) corresponding low-resolution NDVI increment (∆C) values before
and after bias correction; (g) ∆F for the western Jilin area, (h,i) corresponding low-resolution NDVI
increment (∆C) values before and after bias correction.
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5.3. Effect of Bias Correction on the Spatiotemporal Fusion Results

Equation (14) shows that the spatiotemporal fusion result depends on the accuracy of
the increment ∆F estimation. In three experiments for different landscapes, the accuracies
of the predicted NDVI from the two bias-corrected spatiotemporal models were both
improved. By comparing the four indexes (i.e., RMSE, CC, AD, and SSIM), we found that
the improvement in fusion accuracy by the STARFM after bias correction was better than
that by bias-corrected FSDAF.

FSDAF is regarded as a hybrid spatiotemporal fusion model that combines the un-
mixing method, spatial interpolation, and weight function into one framework [20,26]. In
the process of FSDAF, the high-resolution increment ∆F is estimated by using land cover
type change information obtained from the unmixing method, the distribution of residuals
guided by thin plate spline (TPS) interpolation, and the information of weighted neigh-
borhood changes. FSDAF works well for land cover change visible in the low-resolution
image. In this study, the value changes for most bias-corrected image pixels have small
effects on the results when estimating the temporal changes of each land cover type in
coarse images, indicating that FSDAF has excellent robustness. In contrast, the STARFM
estimates high-resolution pixel values by combining information from all input images
through weight functions. It utilizes the change information of the neighboring similar
image pixels (i.e., spatial proximity, spectral similarity, and change similarity) to predict the
target pixel. One of the key steps in the STARFM is to find the pixels with spectral features
similar to those of the reference image pixels. In Figure 15, the changes in pixel values
in the corrected low-resolution images are more similar to the real value variations. The
bias correction helps to find similar pixels and obtain weights more accurately; thus, the
accuracy of STARFM prediction may greatly improve.

5.4. Applicability of the Bias Correction Method

The correction method based on sensor bias is suitable for spatiotemporal fusion mod-
els that require the same spatial resolution of the input data (e.g., STARFM and FSDAF),
which is not applicable to spatiotemporal fusion models with different requirements for
the input data (e.g., Fit-FC and SFSDAF). It requires learning the biases between high- and
low-spatial-resolution images of the same region to establish a mathematical model charac-
terizing the nonlinear relationship between sensor biases. In this paper, the effectiveness
of the correction method is demonstrated by testing on areas with different landscapes,
especially in areas with rapid land cover changes. For regions with high heterogeneity
with rapid land cover changes, the correction reduced the misjudgment of drastically
changing pixels during spatiotemporal fusion prediction and enhanced blurred spatial
details. However, errors, such as speckle noise, could not be completely eliminated due to
the limitations in the spatiotemporal fusion model.

6. Conclusions

We propose a simple and effective correction method to quantify sensor bias to ad-
dress the uncertainty of spatiotemporal fusion results due to sensor differences and pre-
processing. Using the correction method, the contrast information of low-spatial-resolution
images can effectively be recovered, and a higher correlation with high-spatial-resolution
images with land cover type changes can be maintained. After bias correction, the correla-
tion between high- and low-spatial-resolution images of neighboring dates increases, thus,
extending the available date range of input images in the spatiotemporal fusion algorithm.
The accuracy of the fusion results improved for different landscape feature areas, especially
in areas with drastic land cover changes. The findings are summarized as follows.

(1) The machine learning algorithm is introduced to quantify sensor bias, which mitigates
the uncertain effects of sensor differences and preprocessing on fusion results and
provides optimized input data for spatiotemporal fusion.

(2) Sensor bias correction helps to improve the robustness and usability of spatiotemporal
fusion algorithms in different types of landscapes.
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(3) The bias correction method reduces the misjudgment of pixels and occurrence of
blocky or blurring effects induced by the spatiotemporal fusion model in areas with
high heterogeneity or drastic land cover changes, thus, effectively recovering the
changed features and retaining more spatial details.

(4) By bias correction, the availability of high- and low-spatial-resolution image pairs
for adjacent dates without large-scale land cover changes will be improved, provid-
ing convenience for generating large-scale high-spatiotemporal-resolution datasets
through spatiotemporal fusion models.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14143274/s1, Table S1: Comparison of the correlation coefficient
(CC) results of MODIS NDVI and Landsat NDVI after correction by four regression algorithms;
Table S2: Comparison of the root mean square error (RMSE) results of MODIS NDVI and Landsat
NDVI after correction by four regression algorithms.
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