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Abstract: Spectral features in remote sensing images are extensively utilized to detect land cover
changes. However, detection noise appearing in the changing maps due to the abundant spatial
details in the high-resolution images makes it difficult to acquire an accurate interpretation result.
In this paper, an object-oriented change detection approach is proposed which integrates spectral–
spatial–saliency change information and fuzzy integral decision fusion for high-resolution remote
sensing images with the purpose of eliminating the impact of detection noise. First, to reduce the
influence of feature uncertainty, spectral feature change is generated by three independent methods,
and spatial change information is obtained by spatial feature set construction and the optimal
feature selection strategy. Secondly, the saliency change map of bi-temporal images is obtained
with the co-saliency detection method to complement the insufficiency of image features. Then,
the image objects are acquired by multi-scale segmentation based on the staking images. Finally,
different pixel-level image change information and the segmentation result are fused using the
fuzzy integral decision theory to determine the object change probability. Three high-resolution
remote sensing image datasets and three comparative experiments were carried out to evaluate the
performance of the proposed algorithm. Spectral–spatial–saliency change information was found to
play a major role in the change detection of high-resolution remote sensing images, and the fuzzy
integral decision strategy was found to effectively obtain reliable changed objects to improve the
accuracy and robustness of change detection.

Keywords: change detection; fuzzy integral decision fusion; co-saliency detection; spectral–spatial
features; object-oriented method

1. Introduction

With the availability of increasingly high-resolution (HR) satellite images, remote
sensing is extensively utilized in many fields, such as urban planning, forest fire monitoring,
and vegetation phenology change [1–4]. As an important application of remote sensing
technology, change detection, as well as its role in revealing changes in land cover, is now
one of the critical research hotspots due to the close relationship between residents and
their environment [5–8].

Change detection (CD) refers to the process of detecting changes in the land surface
from bi-temporal, multi-temporal, and time series images acquired by different types
of sensors [9–13]. As one of the most important applications of satellite images, CD
plays a key role not only in finding change objects, but also in providing further insight
into the process of the evolution of the land surface. Recently, due to the global rapid
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urbanization process, CD is much more important because it provides accurate information
on changes in the land cover, for example, damages caused by earthquakes and flooding,
the extents of urban expansion, and the areas of forest fires [14–19]. Due to the rich spatial
characteristics of high-resolution remote sensing images, there are obvious differences
between different surface objects and certain spatial heterogeneity within the same object.
This hinders applying conventional change detection or semantic detection methods, such
as the difference method (DI), log ratio method, and change vector analysis method (CVA),
to the change detection of high-resolution remote sensing images. Therefore, accurate
and robust change detection or semantic detection approaches are still needed to meet
these application requirements in order to obtain a better and deeper understanding of the
change in land cover.

According to the gray value, used only as statistical information, the change detection
results obtained are often incomplete, and there are several spurious changed areas. A
variety of transform-based change detection algorithms were proposed, such as iterative
slow feature analysis (ISFA) [20], iteratively reweighted multivariate alteration detection
(IRMAD) [21], and principal component analysis (PCA) [22]. The errors caused by the
illumination conditions and radiation differences prove the limitation of utilizing spectral
information alone. In contrast, texture and structural features are more stable and are not
affected by spectral differences. Therefore, the idea of merging multiple features for change
detection is widely adopted.

Spectral, texture, structural features, and other changes are widely used in exist-
ing studies. Based on spectral characteristics, such as the spectral correlation mapper
(SCM) [23], the spectral gradient difference (SGD) [23], the Kullback–Leiber divergence [24],
and the neighborhood correlation image (NCI) are used for the change detection of re-
mote sensing images. Based on texture features, for instance, the Markov random field
(MRF) texture [25], grey level co-occurrence matrix (GLCM) [26,27], and wavelet based
textural features [28] are used for the change detection and object extraction of remote
sensing images with high spatial resolution. Based on structural features, such as ex-
tended morphological profiles (EMPs) [29], the rolling guide filter (RGF), histogram of
the orientated gradient (HOG) [30], and channel characteristics of orientated gradients
(CFOGs) [30], morphological attribute profiles (APs) [31] are used to detect the land use and
land cover. In addition, other change information, such as the morphological building index
(MBI) [32,33], the normalized difference vegetation index (NDVI) [34], and the modified
normalized difference water index (MNDWI) [35] can supplement the shortcomings of the
change results with the help of image features to optimize the final detection results. In
addition, deep learning is receiving much attention in different computer vision research
areas, including the analysis of remote sensing images change detection [36–39]. Deep
features of pixels or objects are extracted through deep learning methods, such as the neural
network of spatial–temporal attention [14], the transformer-based model [40], and fully
convolutional two-stream architecture [41]. Meanwhile, to better aggregate contextual and
detailed information from remote sensing images, some researchers introduced feature
fusion networks for change detection [41–43]. It should be noted that deep learning-based
methods require a certain number of labelled training samples. Unfortunately, there are
often not enough training data that represent the real change information of land cover
objects [39]. In summary, the ability to fuse multi-information features for change detection
in order to obtain reliable land cover change results is very necessary for high-resolution
remote sensing images.

It is noted that some of the algorithms were developed for medium or coarse spatial
resolution multispectral images. The abundance of spectral features in the multispectral
images makes it much easier to implement these methods to detect land cover changes.
Meanwhile, with the availability of higher resolution or very high-resolution images, the
requirement of developing CD algorithms for HR images becomes much more pressing.
As noticed, the pixel-based CD algorithms developed for the medium spatial resolution
multispectral images are not fully appropriate for HR images due to the heterogeneity of
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a pixel-based semantic image, meaning it does not account for the spatial context of an
image [22]. Two kinds of strategies are used to detect changes in HR images. The first
strategy is to extract as many features as possible from multiple scale images in order to
compensate for the scarcity of spectral features, so that the CD algorithms developed on
the multispectral features can be used at pixel-level CD in HR images [44,45]. The second
strategy is to develop object-based CD algorithms [46,47] by segmenting an HR image
into many non-overlapping objects. More robust change detection results are obtained by
generating and processing superpixels for optical and SAR images [48–52]. In addition, the
organic combination of the above two strategies provide a new idea for high-resolution
image change detection.

Compared with pixel-level methods, object-level change detection approaches can
effectively integrate change information from remote sensing images and avoid the influ-
ence of salt and pepper noise. However, the detection accuracy depends on the quality
of the segmentation results [53], so it is worth pondering how to choose the optimal seg-
mentation scale. Moreover, compared to the cumbersome process of the direct object
comparison method and the object classification post-comparison method, the idea of di-
rectly combining the segmentation result with the initial detection results, for example, the
Dempster–Shafer fusion theory [23,54,55], weighted Dempster–Shafer fusion theory [22],
and majority voting fusion [29,56,57] can greatly save time and efficiency. As reported in
many references, the effectiveness of providing accurate results is different for different
types of CD approaches, and the ensemble idea is considered as a key solution to reach
a high CD accuracy. Du et al. [5] discussed that the change detection effects of different
fusion strategies, i.e., the feature-level fusion, the decision-level fusion, and the improved
CD results could be achieved when compared to the CD results of a single approach. Much
more effort was made in this direction to find an improved fusion strategy [57–60]. In
high-resolution remote sensing images, the spectral characteristics of ground objects can
reflect the rich information on the categories and attributes of objects, while the spatial
features can help identify buildings and roads. They complement each other and jointly
reveal the rich information on land cover contained in the HR remote sensing images [61].
Furthermore, using other change information to optimize and supplement the detection
results based on image features is also a new idea for improving the accuracy of change
detection. The use of multi-information and decision fusion strategies is verified to be
helpful in obtaining accurate change detection results. The object-oriented method can
overcome the uncertainty of the ground targets and further improve the accuracy of change
detection [38,62].

Inspired by such research, in this paper we propose an object-oriented change detection
algorithm to make a comprehensive application of various forms of information, to convert
from a single detection method to a multi-method fusion, and to convert from the pixel
level to the object level by decision fusion. Three main characteristics can be found in
the proposed algorithm. First, the co-saliency change map of bi-temporal remote sensing
images not only considers the contrast cues, spatial cues, and correlation cues, but also
supplements the insufficiency of image features. Second, unlike other traditional methods
that apply only a single feature, spectral–spatial–saliency change information is utilized
comprehensively to overcome the shortcomings of a single factor. Third, in the proposed
approach, the combination of feature-level and decision-level fusion is used. The most
important contribution of the suggested framework lies in constructing a new object-based
configuration based on spectral–spatial–saliency change information and fusion using the
fuzzy integral decision theory, which plays a key role in the transition from pixel-level
detection to object-level recognition. It should be noted that the initial pixel-based change
results and object-based segmentations can be organically fused according to the fuzzy
integral strategy, which can determine the change probability of land objects regardless of
interference factors to achieve reliable detection results.

The remainder of this paper is organized as follows: Section 2 presents the proposed
change detection approach. Section 3 shows the experimental datasets and configuration.
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The experimental results are described in Section 4. A detailed discussion is addressed in
Section 5 and the conclusion is drawn in Section 6.

2. Methodology

It is a classical strategy in the field of information fusion to integrate multiple forms
of information and multiple methods to reach improved results. Inspired by this idea,
we tried to assemble multiple pieces of change information into object-oriented change
detection, and the flowchart of the proposed method is shown in Figure 1. The proposed
approach consists of the following steps:

(1) To overcome the limitations of a single extraction method, spectral feature change is
generated by three independent algorithms (IRMAD, ISFA, and PCA) as well as the
majority voting fusion strategy.

(2) Considering the scarcity of only employing image features, the cluster-based co-
saliency method is used to acquire the saliency change information of two temporal
remote sensing images.

(3) The spatial feature sets of bi-temporal remote sensing images are constructed by
using a histogram of oriented gradient, multi-scale grey-level co-occurrence matrix
texture and rolling guidance filter, and then the spatial change information is obtained
through optimal feature selection and adaptive threshold segmentation.

(4) Multi-scale segmentation is performed on the superimposed first principal compo-
nent image, and the optimal segmentation result is obtained by the scale parameter
determination strategy.

(5) Initial pixel-level change information and the segmentation results are combined by
fuzzy integral decision fusion to obtain the final land cover change results.
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2.1. Change Information Generation

The change information generation is composed of the first three phases previously
exposed, and are described in detail below.

2.1.1. Spectral Change Information

The rich spectral characteristics of ground objects in remote sensing images provide a
good reference for change detection. However, due to the false phenomenon caused by
illumination conditions or radiation differences, the accuracy of a single spectral extraction
method is limited. Therefore, the proposed algorithm integrates the initial results of
three spectral change detection methods (IRMAD, ISFA, and PCA) to obtain accurate and
comprehensive spectral change information after majority voting decision analysis.

IRMAD [22] is a typical algorithm based on spectral transformation. In the change
detection problem, a random variable related to the correlation between the two-phase
images is introduced in the basic function, and then the chi-square distribution function
is used to iteratively reweight the pixels. Pixels with changed spectral characteristics will
receive a smaller weight [21], and the new weight will be used for the next iteration until
convergence. The spectral difference of IRMAD is calculated by the chi-square distance:

XIRMAD =
N
∑

K=1

(
Uk−Vk

σk

)2
(1)

Uk = aT
k X1 (2)

Vk = bT
k X2 (3)

where, σk is the standard deviation of the k-th band; aT
k and bT

k are the transformation
vectors calculated by canonical correlation analysis [21]; k is the number of bands.

ISFA is similar to IRMAD. Compared with changed pixels, invariant pixels keep the
spectral characteristics unchanged or changed weakly in bi-temporal images. When the
spectral invariant components are extracted, the images will be converted into a new feature
space. The ISFA method applies the idea of iterative weighting to assign larger weights
to unchanged pixels in the iterative process, so that invariant pixels become more and
more important in the calculation, and improve the separability of changed and unchanged
pixels in the feature difference [20]. The chi-square distance is also utilized to calculate the
spectral difference map:

XISFA =
N
∑

j=1

( SFAj
φj

)2
(4)

SFAj = wT
j X1 − wT

j X2 (5)

where φj is the variance of the j-th SFA characteristic band and j is the number of bands.
wj represents the transformation vector in ISFA, which satisfies the constraint optimization
conditions of zero mean, unit variance, and de-correlation [54].

PCA method performs precisely in preventing both zero-mean Gaussian noise and
speckle noise. It is based on the difference image Xd = |X2 − X1| between bi-temporal
images acquired at the same geographical area but at a different time. Then, the difference
image Xd is segmented into 5× 5 non-overlapping blocks so that the PCA algorithm can be
applied to extract eigenvectors. The feature vectors for each pixel at a spatial location will
be projected into a feature vector space [26]. Therefore, spectral difference images based on
the PCA method can be calculated using the following formula:

XPCA = eTXd −m (6)

where eT is the eigenvector of the covariance matrix, m is the mean vector.
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After obtaining three spectral change magnitude images (CMI), the adaptive threshold
determination algorithm is utilized to generate three spectral change maps:

X′ =


255, i f CMI ≥ (µ + T·σ)

0, otherwise
(7)

where µ and σ are the mean and standard deviation of CMI, and T is the threshold parame-
ter to be established. When the discriminant criteria are met, the pixel is determined as the
changed pixel and assigned with a value of 255, otherwise it will be assigned with a value
of 0.

On the basis of ensuring the detection accuracy and effectively reducing the noise
interference, the majority voting fusion can be adopted to remove the discrete points in the
initial results and obtain more accurate spectral change results. For a certain pixel (i, j) in
the same position of the three initial detection images, if the value of two or three of the
three initial results X

′
IRMAD(i, j), X

′
ISFA(i, j), and X

′
PCA(i, j) is 255, this pixel is considered

to be the changed pixel after fusion. Otherwise, it is considered an unchanged pixel. Based
on this decision fusion strategy, the final spectral change result is acquired.

2.1.2. Co-Saliency Change Information

If the ground objects in the bi-temporal remote sensing images do not change, the
co-saliency map of two images can be considered to be the same [63]. This algorithm
fully considers the contrast information, spatial information, and correlation information.
The advantage of using the co-saliency detection method is that it can extract the most
likely changed areas and make up for the inadequacy of change detection based on image
features. The specific steps of the cluster-based co-saliency method are as follows:

1. The bi-temporal images X1 and X2 are divided into k clusters by the K-means method.
2. The contrast cues ϕc(k) and the spatial cues ϕs(k) of each cluster are calculated

as follows:

ϕc(k) =
K
∑

i=1,i 6=k

(
ni

N ‖µk − µi‖2

)
(8)

ϕs(k) =
1
nk

2

∑
j=1

Nj

∑
i=1

{
Y
(
‖zj

i − oj‖2
∣∣∣0, σ2

)
·δ
[
b
(

pj
i

)
− Ck

]}
(9)

where n∗ is the number of pixels in the cluster C∗; N represents the total number of
pixels; ‖·‖2 is utilized to calculate the feature space; µ∗ means the cluster centers of
C∗; Nj is the image lattice of image Xj ; Y(·) can be used to calculate the Euclidean

distance between the pixel zj
i and the image center oj; σ2 is the normalized radius

of the input image; δ(·) indicates the Kronecker delta function; pj
i is the pixel i in the

input image Xj ; b(·) refers to the clustering index.

3. The following formula is used to fuse the contrast cue and the spatial cue:

P
(

Ck
)
= ∏ ϕi(k) (10)

4. The co-saliency map of two temporal images can be obtained through the follow-
ing formula:

Sj =
K
∑

k=1
P
(

x
∣∣∣Ck
)

P
(

Ck
)

(11)

After co-saliency detection, the direct difference method is employed for S1 and S2
to generate the change magnitude image, and the final co-saliency change information is
obtained by the aforementioned adaptive threshold determination algorithm.
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2.1.3. Spatial Change Information

For high-resolution remote sensing images, different factors, such as solar altitude
angles, sensors, and imaging time will lead to the nonlinear characteristics of the surface
object’s spectral mixture, resulting in errors in the change detection results. Therefore, it
is impossible to obtain comprehensive detection results by only considering the spectral
information of land objects. In addition, for buildings, structural and textural features
play a key role in determining whether they changed or not. To make use of all the spatial
information contained in the high-resolution remote sensing images, multiple spatial
features (HOG, GLCM, and RGF) are exploited to improve the accuracy of change detection.

The HOG spatial feature is often used to extract the structural contour information
from remote sensing images. Its basic principle is to describe the contour features of
the local targets in the image to be measured completely using the gradient or edge
directional density distribution [30]. First, the amplitude and direction of each pixel
gradient in the input image are calculated to obtain texture and shape information and
reduce the interference of illumination. Second, the gradient histograms of all pixels are
put through cumulative projection and normalization processing to form a HOG feature
vector. Therefore, the structural features of T1 and T2 remote sensing images are extracted,
respectively, according to:

Gx(x, y) = f (x + 1, y)− f (x− 1, y) (12)

Gy(x, y) = f (x, y + 1)− f (x, y− 1) (13)

G(x, y) =
√

Gx(x, y)2 + Gy(x, y)2 (14)

α(x, y) = arctan
(
Gx(x, y)/Gy(x, y)

)
(15)

where, Gx(x, y) and Gy(x, y) are the horizontal and vertical gradient values of the input
image at pixels (x, y), respectively. G(x, y) represents the gradient magnitude, and α(x, y)
is the direction of the gradient.

To meet the requirements of different image change detection tasks, texture features are
extracted by exploiting six grey-level co-occurrence matrix (GLCM) [27] statistics, namely
variance, entropy, contrast, correlation, second moment, and dissimilarity. To comprehen-
sively select the best texture features, this article extracted the texture information of T1 and
T2 remote sensing images with pixel window sizes of 3 × 3, 5 × 5, and 7 × 7, respectively,
and then obtained 18 GLCM texture features, respectively. In addition, another spatial
feature extraction method, namely the rolling guide filter (RGF) [29], is used effectively to
obtain the details, texture, and structure information of bi-temporal remote sensing images.
In the end, 22 spatial features are acquired.

After extracting spatial features, the multi-feature sets of bi-temporal high-resolution
images are constructed by direct superposition combination, that is, the feature vectors of
a 22 × 1 dimension are combined. After the normalization of the feature sets, principal
component transformation is performed, respectively. It is mapped to linearly independent
variables in k dimensions, that is, the k-dimensional variables obtained after transformation
are irrelevant when projected onto an orthogonal basis. In this paper, k is set to 3, and
the first three principal components retain the most abundant spatial feature information
from the original images. After optimal feature selection, the difference feature map is con-
structed, and the adaptive threshold algorithm above is employed for binary classification
in order to obtain the spatial change result.

2.2. Multi-Scale Segmentation

The aim of image segmentation is to divide the image into different regions with
special semantics according to a certain similarity criterion in order to separate the target of
interest in the complex background. The multi-scale segmentation method not only obtains
the segmentation results rapidly and effectively, but also maintains the object boundary
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by considering the spatial structure information of high-resolution remote sensing images.
The bi-temporal images are first processed by superposition, and then the first principal
component (PC1) image of the superimposed image is segmented by the fractal evolution
net approach (FENA) [29,54]. For multi-scale segmentation, in object-based remote sensing
information extraction, the optimal segmentation scale of each object is relative. The ideal
result of image segmentation is that the object obtained by segmentation exhibits good
homogeneity inside and good heterogeneity between adjacent objects. Three parameters
(shape, compactness, and scale) are covered in multi-scale segmentation to control the qual-
ity of the objects. In particular, the idea of optimal scale determination is mainly to control
the shape and compactness in order to find the optimal scale. When the segmentation
scale matches the real objects, the heterogeneity between different objects will reach the
maximum, resulting in the maximum value of the local variance measurement [64].

2.3. Decision Fusion Using Fuzzy Integral

Considering that any single change detection operator has limitations, multiple pieces
of change information can be integrated on the basis of ensuring detection accuracy and
effectively reducing the interference of noise. On the other hand, the advantages of different
change information detection methods are used comprehensively to improve the capacity
to detect different objects. The fuzzy integral decision theory is expressed through a fuzzy
measure [5], in the form of expert decisions and evaluations of the performance of different
detection results.

In the change detection process, Z = {Z1, · · · , Zn} constitutes the set of initial change
results. hk(Zn) represents the classification results of Zn in class K ∈ {0, 1}, and gk(Zn) is
the performances of Zn in class K ∈ {0, 1}. Where, 0 represents the unchanged class and 1
represents the changed class. A set function g : 2Z → [0, 1] represents a fuzzy measure if it
satisfies several properties [5,65]:

(1) g(∅) = 0;
(2) g(Z) = 1;
(3) g(Zm) ≤ g(Zn) if Zm ⊂ Zn.

The fuzzy measure represents the degree of interaction between two elements accord-
ing to a λ parameter.

g(Zm ∪ Zn) = g(Zm) + g(Zn) + λ · g(Zm)·g(Zn) (16)

For the object Oi, if hi
k(Z1) ≥ · · · ≥ hi

k(Zn) ≥ 0 is satisfied, the set of initial change
results are then rearranged, and the fuzzy measures of the new order Am = {Z1, · · · , Zm}
are constructed according to:

gi
k(A1) = gi

k(Z1) (17)

gi
k(Am) = gi

k(Am−1 ∪ Zm) = gi
k(Am−1) + gi

k(Zm) + λ·gi
k(Am−1)·gi

k(Zm) (18)

where, λ means the unique root of an n− 1 degree equation that verifies λ ∈ [−1,+∞] and
λ 6= 0. It is confirmed by solving the following formula:

λ + 1 =
n

∏
m=1

(
1 + λ·gi

k(Zm)
)

(19)

For the object Oi in each class K ∈ {0, 1}, the fuzzy integral is calculated as:

FIi
K =

n

∑
m=1

Max
[
Min

(
hi

k(Zm), gi
k(Am)

)]
(20)
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After obtaining the fuzzy integral of the object Oi with respect to the changed and
unchanged class, the object change probability can be obtained by the formula:

results =
{

255, FIi
1 > FIi

0
0 , FIi

1 ≤ FIi
0

(21)

Therefore, based on the above FI decision fusion process, the change probability of each
object in the image can be determined to obtain the final object-oriented change detection
results. The advantage of different initial pixel-level change information is integrated under
the restriction of the segmentation objects to acquire complete land cover change.

2.4. Assessment of the Change Detection Processes

In terms of accuracy evaluation, five indices related to experimental results and
ground truths were adopted, including the missed detection rate (MR), false alarm rate
(FAR), overall accuracy (OA), kappa coefficient and F1 score. Table 1 shows the common
quantitative evaluation index: TP, FP, FN, and TN [23,32,46].

Table 1. Quantitative evaluation index of change detection.
XXXXXXXXXDetection

True
Change Unchange

Change TP FP
Unchange FN TN

Total Nc Nu

Specifically, the MR refers to the probability that actually changed pixels are detected
as invariant pixels, which is defined as:

MR = FN/Nc (22)

where FN is the number of unchanged pixels in the change detection result that were
classified as the changed class in the ground truth image, and Nc is the total number of
changed pixels counted in the ground truth image.

The FAR is the probability that actually unchanged pixels are detected as changed
pixels, which is indicated as

FAR = FP/Nu (23)

where FP is the number of changed pixels in the change detection result that were classified
as the unchanged class in the ground truth image, and Nu is the total number of unchanged
pixels counted in the ground truth image.

The OA represents the probability of the correctly detected part, which is calculated as:

OA = (TP + TN)/(Nc + Nu) (24)

where TP is the number of changed pixels both in the change detection result and the
ground truth image, and TN is opposite.

The kappa coefficient is utilized to reflect the consistency of the classification results
and the reference change map, which is defined as:

kappa = (OA− Pe)/(1− Pe) (25)

Pe = ((TP + FP)Nc + (FN + TN)Nu)/(NC + Nu)
2 (26)
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The F1 score is an indicator that comprehensively considers the detection rate p and
the recall rate r. It is calculated as:

F1 score = 2pr/(p + r) (27)

p = TP/(TP + FP) (28)

r = TP/(TP + FN) (29)

3. Experimental Datasets and Experimental Configuration
3.1. Experimental Datasets

Three datasets with different spatial resolutions, different sensors, and different ground
objects were selected for change detection experiments to verify the comprehensive detec-
tion performance of the proposed algorithm. As shown in Figure 2, each dataset includes
two bi-temporal remote sensing images and a reference change map. The reference change
map was manually delineated by specialists according to visual interpretation, while
the changed regions were marked in white. All datasets were pre-processed with image
registration and radiometric correction.
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Figure 2. Experimental datasets and ground truth images for change detection: (a) SPOT images
acquired in 2006 with a spatial resolution of 2.5 m; (b) SPOT images acquired in 2007 with a spatial
resolution of 2.5 m; (c) reference change map of DS1. (d) aerial images acquired in 2000 with a spatial
resolution of 1.5 m; (e) aerial images acquired in 2005 with a spatial resolution of 1.5 m; (f) reference
change map of DS2. (g) side-view satellite images acquired in 2017 with a spatial resolution of
0.5~0.8 m; (h) side-view satellite images acquired in 2020 with a spatial resolution of 0.5~0.8 m; and
(i) reference change map of DS3.

The first dataset (DS1) is formed by images captured by the SPOT satellite in 2006 and
2007, with a size of 877 × 738 pixels and a spatial resolution of 2.5 m. The main change
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categories are bare land and vegetation, with strong representation in the wild. The second
dataset (DS2) is the SZADA dataset [66], which represents a section (952 × 640 pixels) of
optical aerial images with a spatial resolution of 1.5 m, taken in 2000 and 2005, respectively.
The change information involved different land-use types, such as buildings, bare land,
roads, and vegetation. The third dataset (DS3) is the side-looking dataset [67], which
was derived from side-view satellite remote sensing images of rural areas captured at
different off-nadir angles in 2017 and 2020. The image size is 1024 × 1024 pixels, and the
spatial resolution is 0.5~0.8m. The change information consists of large areas with newly
constructed and demolished buildings. For a clearer explanation, some indicative images
of the public SZADA dataset and side-looking dataset are shown in Figure 3.
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3.2. Experimental Configuration

Three experiments were designed to evaluate the effectiveness of the proposed al-
gorithm. The first experiment is used to verify the performance of multi-method fusion
by comparing the proposed algorithm with the other three methods. The second ex-
periment aims to test the superiority of the object-oriented method compared to five
pixel-level change detection methods, including IRMAD, ISFA, PCA, CVA-SIFCM [63],
and DI-Kmeans [13]. Finally, to demonstrate the superiority of fusing multi-feature and
multi-information for change detection, different object-level spectral–spatial feature com-
bination methods were compared in the third experiment, including: spectral feature alone,
spectral and texture fusion, spectral and structure fusion, and the proposed method of
fusing multiple pieces of change information.

In the three experiments, the relevant parameters were set as follows: In the IRMAD
and ISFA iteration, the maximum number of iterations was 100 and the convergence
threshold was 10-5. When extracting HOG features, considering the actual situation and
applicability, it is more appropriate to set the pixel numbers of each cell unit as 10, 15,
and 13, respectively, in DS1, DS2, and DS3. As for the adaptive threshold algorithm, the
parameter T was set to 2, 1.5, and 2.5, respectively, in the three datasets. For multi-scale
segmentation, the shape and compactness were fixed at 0.3 and 0.5. Furthermore, the
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optimal scale determination strategy proved that desirable results were obtained when the
segmentation scales were 87, 73, and 139, respectively, in three datasets.

4. Results
4.1. First Experiment Results

As can be seen in Figure 4, the change maps acquired by co-saliency, spectral feature,
and spatial features had a good detection effect on DS1, DS2, and DS3, but there was still
several obvious “salt and pepper” noises and false detections, especially for buildings. It is
worth noting that areas most likely to change were extracted by co-saliency detection, which
continues to compensate for the shortcomings of spectral-spatial change information. The
spectral change results illustrate that the strategy integrating three independent methods
through the MV decision reduced noise interference and retained the real spectral variation
areas. The spatial change maps had a better effect on edge detection of changed areas,
but were worse at anti-noise performance. It can be found that the proposed method had
significant advantages in terms of visual effects. The object-oriented results after fuzzy
integral fusion not only effectively employed the advantages of different feature extraction
methods, but also decreased false alarms and missed detections. We observe that the
proposed approach had the potential power to detect correctly all the kinds of changes in
three datasets.
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Table 2 shows the quantitative evaluation of the results achieved previously. In
particular, higher accuracy can be reached by the proposed approach, with 2.424% to
13.902% increase in overall accuracy, 0.074 to 0.362 increase in the kappa coefficient and
the F1 score, while 0.012 to 0.203 decrease in missed detection rate and false alarm rate.
This result not only proves the high performance of the proposed method, but also certifies
the effectiveness of the Fuzzy Integral decision fusion theory in the transition from pixel-
level detection to object-level recognition. It is not difficult to observe that almost all the
changed areas could be obtained, the whole structure was more complete, and the speckle
noise was significantly reduced. The comprehensive application of combining multiple
change information could realize the complementary advantages among features, which
was helpful in obtaining more robust change results and the highest detection accuracy.
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Therefore, it can be seen that the overall accuracy of the proposed framework was greater
than 95% and the kappa coefficient, as well as the F1 score were higher than 0.78 in the
three datasets.

Table 2. Quantitative evaluation of change detection results in the first experiment.

Dataset Method
Quantitative Evaluation Index

MR FAR OA (%) Kappa F1 Score

DS1

Co-saliency change 0.190 0.042 93.629 0.754 0.792
Spectral change 0.203 0.040 93.531 0.748 0.787
Spatial change 0.208 0.023 94.892 0.793 0.823

Proposed method 0.129 0.011 97.316 0.881 0.897

DS2

Co-saliency change 0.337 0.024 95.775 0.622 0.644
Spectral change 0.340 0.024 95.729 0.618 0.641
Spatial change 0.288 0.035 95.054 0.598 0.624

Proposed method 0.261 0.005 98.479 0.781 0.789

DS3

Co-saliency change 0.441 0.061 87.667 0.524 0.596
Spectral change 0.396 0.057 88.764 0.570 0.637
Spatial change 0.327 0.158 81.366 0.429 0.541

Proposed method 0.238 0.016 95.268 0.791 0.818

4.2. Second Experiment Results

Figure 5 represents the change detection results for the five pixel-level methods and the
proposed method. As can be seen from the detection results, the IRMAD method had a good
detection effect, but is still affected by noise. The performance of the ISFA algorithm was
similar to the IRMAD achievement, due to the iterative weighting strategy. However, the
ISFA method was revealed to have a high false alarm rate and poor internal integrity of the
changed objects. The experimental results of the three datasets proved that the PCA method
not only detected relatively complete changed areas, but also produced a large range of
false alarms, which seriously affected the accuracy of the change detection. The reason is
that after the principal component transformation, the false detection phenomenon caused
by illumination conditions or radiation differences cannot be eliminated. Furthermore, the
detection effect of CVA-SIFCM and DI-Kmeans was poor; there was a large number of false
changed areas and speckle noises, which seriously affected the change detection accuracy.

It can be seen that the edge contour of the changed objects in the detection results of the
five pixelwise methods was not clear enough, and there were many holes and gaps inside.
Especially for the third dataset, due to the changes of a large number of buildings involved
in the images, pixel-level methods had a poor detection effect. Compared with the above
methods, the proposed object-oriented approach reflected the real changes better, reduced
noise interference, and obtained accurate changed objects with clear edges. The reason is
that the proposed method can integrate the advantages of all initial change information
and transform change detection from the pixel level to the object level in order to obtain
comprehensive change results from high-resolution remote sensing images. The results of
the accuracy evaluation (Table 3) correspond to the visual effects. It can be observed that
the proposed approach achieved the highest overall accuracy, the kappa coefficient and
the F1 score, the lowest missed detection rate, and the false alarm rate, which showed that
the object-level fusion strategy was helpful in identifying changed and unchanged land
cover areas.
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Table 3. Quantitative evaluation of change detection results in the second experiment.

Dataset Method
Quantitative Evaluation Index

MR FAR OA (%) Kappa F1 Score

DS1

IRMAD 0.181 0.028 94.850 0.796 0.826
ISFA 0.196 0.051 92.700 0.723 0.767
PCA 0.349 0.120 84.546 0.466 0.557

CVA-SIFCM 0.286 0.054 91.149 0.654 0.707
DI-Kmeans 0.241 0.069 90.528 0.649 0.705

Proposed method 0.129 0.011 97.316 0.881 0.897

DS2

IRMAD 0.328 0.031 95.212 0.593 0.619
ISFA 0.465 0.027 94.778 0.514 0.542
PCA 0.290 0.147 84.439 0.382 0.345

CVA-SIFCM 0.464 0.056 92.023 0.396 0.437
DI-Kmeans 0.414 0.078 90.230 0.361 0.409

Proposed method 0.261 0.005 98.479 0.781 0.789

DS3

IRMAD 0.398 0.064 88.127 0.552 0.623
ISFA 0.383 0.089 86.290 0.512 0.594
PCA 0.434 0.103 84.334 0.447 0.541

CVA-SIFCM 0.460 0.092 84.756 0.444 0.536
DI-Kmeans 0.433 0.122 82.741 0.413 0.517

Proposed method 0.238 0.016 95.268 0.791 0.818

4.3. Third Experiment Results

In terms of object-level methods, based on the optimization of spectral features, the
influence of different combinations of feature factors on the precision of change detection
was analyzed. Details can be found in Figure 6 and Table 4, where the different feature
combination methods with different effects on the performance of change detection are
illustrated. However, the best accuracy was obtained by the proposed approach. Further-
more, the accuracy of change detection was improved by combining texture or structure
feature alone, while the results were significantly improved by combining simultaneously
spatial features and co-saliency detection results. The main reason is that the spatial fea-
tures help to distinguish the buildings from other impermeable surfaces and prevent false
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alarm detection. Co-saliency detection was helpful in optimizing the feature extraction
results and increasing the reliability of the final results. The method utilizing the spectral
feature alone had the most obvious salt and pepper noise, resulting in the lowest detection
accuracy. Combined with the spectral difference and GLCM texture methods, the spectral
information extracted by the difference method was highly mixed with false changes,
resulting in missed and error detections. However, employing texture features can promote
the detection of buildings and roads, so the overall accuracy, kappa coefficient, and F1
score of change detection results in DS3 were significantly improved. After combining
spectral and structure features, the changed objects with clear boundaries can be detected,
but several false detection regions should not be neglected.
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Figure 6. Change detection results in the third experiment: (a) spectra; (b) spectra + texture;
(c) spectra + structure; and (d) proposed method.

Compared with methods that applied the spectral feature alone, the spatial feature
coupled with the spectral feature acquired the clear boundaries and complete changes of
the land cover objects. From the indicators of accuracy evaluation, it can be seen that the
OA, Kappa coefficient, and FAR were improved significantly, i.e., with a 0.077% to 5.525%
increase in overall accuracy, 0.001 to 0.237 increase in kappa coefficient, and a 0.009 to
0.050 decrease in false alarm rate. In addition, visually compared with detection results
based on spectra and texture, as well as on spectra and structure, the use of co-saliency
detection and fuzzy integral fusion can effectively avoid more noise interference and false
alarms. To be specific, higher accuracy can be obtained by the proposed approach, with a
2.287 % to 4.774% increase in overall accuracy, 0.077 to 0.244 increase in kappa coefficient,
and F1 score, as well as a 0.026 to 0.059 decrease in false alarm rate.
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Table 4. Quantitative evaluation of change detection results in the third experiment.

Dataset Method
Quantitative Evaluation Index

MR FAR OA (%) Kappa F1 Score

DS1

Spectra 0.128 0.065 92.564 0.733 0.778
Spectra + texture 0.110 0.070 92.641 0.734 0.779

Spectra + structure 0.112 0.048 94.203 0.786 0.820
Proposed method 0.129 0.011 97.316 0.881 0.897

DS2

Spectra 0.292 0.081 90.667 0.423 0.467
Spectra + texture 0.280 0.050 93.705 0.537 0.569

Spectra + structure 0.175 0.031 96.192 0.660 0.680
Proposed method 0.261 0.005 98.479 0.781 0.789

DS3

Spectra 0.323 0.058 89.865 0.625 0.685
Spectra + texture 0.274 0.049 91.463 0.684 0.735

Spectra + structure 0.259 0.066 90.299 0.655 0.714
Proposed method 0.238 0.016 95.268 0.791 0.818

5. Discussion

The results of the accuracy evaluation show that the overall accuracy of the proposed
method was above 95% and the kappa coefficient and the F1 score were the highest in
the three datasets. Furthermore, the accuracy evaluation results were also consistent with
the visual interpretation analysis. Through the change detection experiments of three
datasets of different sensors and different resolutions, it is observed that the proposed
algorithm can effectively integrate the advantages of multiple features, and retain more
accurate land cover change information. To accelerate the application and robustness of the
proposed framework in practical problems, this section discusses the major achievements
of this research.

First, scholars noticed and applied the idea of employing multiple pieces of infor-
mation to improve the accuracy of change detection in the past ten years. Three fusion
levels, i.e., data-level, feature-level, and decision-level, were discussed in some literature.
However, there was no deterministic strategy to find the most appropriate method to
implement the change detection process. Du et al. [5] found that the fusion of feature levels
and decision-level fusion led to an increase in overall accuracy, which is consistent with
our research. In addition, feature-level fusion can effectively reduce omission errors, and
decision-level fusion is good at restraining commission errors [65]. Different fusion strate-
gies are still necessary to find the appropriate algorithm for the detection of heterogeneous
situations, such as building extraction during the urban expansion process, and to improve
the accuracy of the change detection results.

In the first experiment, there were differences in the change detection results of
different types of regions, such as wild, rural, and urban. It is observed that the change
detection results in rural areas are closest to the reference change map, with the highest
overall accuracy and the lowest false detection rate. In particular, with a 1.163% to 3.211%
increase in overall accuracy and a 0.006 to 0.011 decrease in false alarm rate. False detections
occurred on country trails in wild areas due to the difference in illumination conditions,
resulting in an increased false alarm rate. However, other changes in wild regions can
be detected and the boundary of ground objects was relatively complete, resulting in the
missed detection rate being at its lowest, and the kappa coefficient, as well as the F1 score,
being higher than 0.88. In urban areas, false detection and missed detection existed at
the same time, and changes in several small buildings were ignored. Specifically, lower
accuracy can be reached in urban area detection results, with a 2.048% to 3.211% decrease
in overall accuracy and a 0.005 to 0.109 increase in missed detection rate and false alarm
rate. In terms of high-resolution remote sensing images, the spectral characteristics of
ground objects can reflect the rich information of land cover, the texture features can
reflect the relationship between neighborhood pixels, and the attributes of structural
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features to identify buildings and roads. Therefore, the spatial feature and the spectral
feature complement each other and jointly reveal the information on land cover from
remote sensing images. In the third experiment, compared to the raw spectral feature, the
addition of spatial information, such as texture and structure features, can eliminate the
phenomenon of salt and pepper noise and obtain accurate changed land objects, resulting in
an improvement in OA, the kappa coefficient, and the F1 score. Furthermore, to overcome
the insufficiency of spectral–spatial feature extraction methods, the co-saliency detection
algorithm that considers contrast cues, spatial cues, and correlation cues, plays an important
role in optimizing the feature extraction results and improving the accuracy of the final
detection results. The comprehensive use of multi-feature and multiple pieces of change
information showed extraordinary advantages in the application of three remote sensing
images with different resolutions and different changes.

As proven in the previous sections, the proposed method achieved the best change
detection accuracies for high-resolution remote sensing images. However, the detection
performance of remote sensing images with different resolutions should also be considered
in this paper. The experimental results of the SPOT images (DS1) show that when relatively
complete changed areas were detected, some false detection areas were also generated,
which affected the accuracy of the change detection. Aerial images with a spatial resolution
of 1.5 m (DS2) presented less noise than the others and had the best visual interpretation
effect of change detection. However, when the resolution of the images was further
improved, due to the influence of shadows and spectral differences, there were several
omissions and errors in the detection results of DS3. Compared to the reference change
map, the unchanged buildings were incorrectly detected and the internal compactness of
the buildings was not high. On the contrary, the change information in DS1 and DS2 can be
obtained correctly. It can be seen from the quantitative evaluation that the overall accuracy
of DS2 was the highest, and the false detection rate was the lowest.

The scale of multi-scale segmentation has an important influence on the result of
object-level recognition. Taking a small area in experimental dataset 1 as an example, three
segmentation scales (58, 87, and 124) were used to perform a comparative analysis on the
influence of different scale parameters on the recognition of changed objects, as shown in
Figure 7.

False alarms were detected for small segmentation scales, that is, non-changed ground
objects were wrongly identified as changed objects, as shown in the green box in Figure 7.
The reason is that a segmentation scale that is too small leads to fragmentation of ground
object segmentation. However, due to the high false alarm rate of pixel-level change
detection in high-resolution remote sensing images and the high proportion of changed
pixels in the segmented objects, the use of segmented objects to screen changed land
cover objects is ineffective. When comparing the performance of different methods, a
segmentation scale that is too large can easily lead to a missed detection, that is, the
changed ground objects were not correctly identified, as shown in the red box in Figure 7.
The main reason is that the large segmentation scale leads to an over-segmentation of the
surface objects, so those with a relatively small area and similar spectral characteristics to
the neighboring ground objects are merged into the adjacent objects, reducing the pixel
proportion of the sub-target level changed objects. The proposed approach takes advantage
of the optimal scale estimation strategy to select the appropriate segmentation parameter,
which provides a good basis for the final results of object-level change detection.
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Figure 7. Comparison of recognition results at different segmentation scales: (a) image segmentation
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(f) changed objects recognition when scale = 124. Green box: false detection; Red box: missed detection.

Regarding the change detection post-processing, the proposed fusion procedure pro-
vides a new idea; that is, multi-scale segmentation of the first principal component superim-
posed image is selected to combine the initial pixel-level change information and generate
the final object-oriented change detection map. To verify the advantage of the proposed
fusion procedure, morphology post-processing was carried out on the images fused with
multiple pieces of change information in the second experiment and the images only using
spectral features in the third experiment. In the morphological processing, the opening and
closing convolution kernels are set to 7 × 7 pixels and 5 × 5 pixels.

In general, post-processing of change detection eliminates or reduces the interference
of “noise detection” by utilizing relevant knowledge of mathematical morphology. From
the basic erosion and dilate tool of mathematical morphology, Figure 8 illustrates that this
type of post-processing method will destroy the boundary of the actual ground object while
removing the noise. To optimize the effect of pixel-based change detection results, the
fuzzy integral strategy, under the restriction of multi-scale segmentation, was then applied.
As shown in Figure 8, based on the advantages of multiple methods of extracting initial
information, the proposed decision fusion procedure can remove the interference of “salt
and pepper noise” and maintain the internal and boundary integrity of the actual ground
objects. Furthermore, under the condition of morphological post-processing, the effect of
multi-change information fusion was better than that of spectral features alone, which also
proved the advantages of spectral–spatial–saliency change information fusion.
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The quantitative evaluation results in Table 5 were consistent with the visual interpre-
tation in Figure 8. Specifically, the detection accuracies of the proposed method achieved
the best accuracies in terms of MR, FAR, OA, kappa coefficient, and F1 score. It can
be seen from Table 5 that compared to the morphology operation methods, there is a
1.933 % to 9.095% increase in overall accuracy and a 0.008 to 0.185 decrease in the false
alarm rate and missed detection rate, further supporting the effectiveness and feasibility
of the proposed post-processing framework. In summary, in the actual change detection
application, pixel-based and object-based change detection processes can be organically
combined according to different detection purposes. Therefore, the final change detec-
tion results not only correspond to the meaningful geographic entities but also effectively
integrate the advantages of both strategies to obtain the best detection accuracy.

Table 5. Quantitative evaluation of post-processing methods.

Dataset Method
Quantitative Evaluation Index

MR FAR OA (%) Kappa F1 Score

DS1
Multi-feature + morphology operation 0.170 0.034 94.558 0.788 0.820

Spectra + morphology operation 0.170 0.084 90.349 0.663 0.720
Proposed method 0.129 0.011 97.316 0.881 0.897

DS2
Multi-feature + morphology operation 0.379 0.013 96.546 0.657 0.675

Spectra + morphology operation 0.367 0.076 90.664 0.423 0.439
Proposed method 0.261 0.005 98.479 0.781 0.789

DS3
Multi-feature + morphology operation 0.340 0.049 90.324 0.633 0.690

Spectra + morphology operation 0.423 0.083 86.173 0.494 0.576
Proposed method 0.238 0.016 95.268 0.791 0.818

The time complexity of the proposed method was also investigated. Table 6 shows the
processing time of different components of the proposed framework. It can be observed
that the acquisition of spatial change information demanded more time, as the spatial
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feature sets had to be constructed and the optimal features selected. Furthermore, the
multi-scale segmentation processing time increased due to the determination of the optimal
segmentation scale. DS3 required the longest processing time (Table 6), which may also be
related to the larger image size (1024 × 1024 pixels).

Table 6. Running time of different components of the proposed method.

Saliency Change Spectral Change Spatial Change Multi-Scale
Segmentation

DS1 12.1 s 37.2 s 336.0 s 67.2 s

DS2 13.0 s 28.2 s 298.1 s 64.2 s

DS3 13.5 s 55.4 s 463.1 s 76.9 s

The main contributions of the proposed framework are as follows: First of all, it
should be noted that the comprehensive use of multiple pieces of change information can
overcome the uncertainty of any single method. Unlike other traditional methods that use
the raw spectral feature alone, spectral–spatial–saliency change information is employed
comprehensively in this paper. The co-saliency detection can supplement the insufficiency
of image features, and the advantages of different change maps are integrated to enhance
the accuracy of change detection. Second, in the process of extracting spectral feature
changes, the idea of integrating multiple spectral change detection methods (IRMAD, ISFA,
and PCA) is adopted to overcome the limitation of a single operator and the influence of
false alarms, such as salt and pepper noise, as well as obtain the optimal spectral difference
information. Third, the combination strategies of both feature-level and decision-level
fusion are utilized and verified in this article. It is worth noting that the fuzzy integral
decision theory, which can determine the change probability of land objects by integrating
the advantages of initial change results, improves the change detection accuracy.

6. Conclusions

Generally, a large amount of salt and pepper noise and the low accuracy of the
detection of artificial objects frequently appear in methods based on a single spectral
difference. In this paper, an object-level change detection approach was proposed that
combines spectral–spatial–saliency change information and the fuzzy integral decision
fusion algorithm. By combining three independent change results with the decision analysis
strategy, real land cover change information was obtained. The proposed approach not
only overcame the salt and pepper noise caused by illumination conditions or radiation
differences, but also acquired the whole change object with a distinguishable boundary.
The results of the three experiments showed that the proposed method could effectively
obtain the changed objects. The overall accuracy of the proposed method was greater than
95%, the false alarm rate was lower than 0.016, and the kappa coefficient, as well as the F1
score, were higher than 0.78 in the three datasets. In addition, the detection accuracy of the
proposed method improved significantly compared to other state-of-the-art methods.

The proposed method has the following findings: (1) The fusion of three spectral
change detection results can overcome the influence of speckle noise and obtain optimal
spectral difference information. (2) Spectral characteristics can reflect the rich land cover
information, spatial features can display the domain and spatial relationship between
pixels, while co-saliency detection considers contrast, spatial, and correlation information.
The joint application of multiple pieces of change information can take advantage of the
complementary features, which is useful for more robust change results and improves
detection accuracy. (3) The fuzzy integral decision fusion strategy integrates the initial
pixel-level results and determines the change probability of objects under the restriction of
the multi-scale segmentation, which plays a key role in generating the final results.

However, regarding the change detection effect on buildings, the proposed framework
was not satisfactory compared to other land cover objects. The limitation of the proposed
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method is the selection of optimized parameters, which will have some influence on
the final change detection results. In other respects, the time complexity of the proposed
method should be taken into account since the method is composed of different components.
Therefore, how to improve the applicability of the proposed algorithm for buildings change
detection and effectively select optimal spatial features under appropriate running time for
subsequent experiments remains a research topic that should be focused in the future.
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